搜档网
当前位置:搜档网 › An Insulin-Like Modular Basis for the Evolution of Glucose Transporters (GLUT) with Implica

An Insulin-Like Modular Basis for the Evolution of Glucose Transporters (GLUT) with Implica

REVIEW

Correspondence: Robert Root-Bernstein, Department of Physiology, 2174 Biomedical and Physical

Sciences Building, Michigan State University, East Lansing, MI 48824 U.S.A. Tel: 517-355-6475 ext 1101;Fax: 517-355-5125; Email: rootbern@https://www.sodocs.net/doc/2d16457999.html,

Copyright in this article, its metadata, and any supplementary data is held by its author or authors. It is published under the Creative Commons Attribution By licence. For further information go to: https://www.sodocs.net/doc/2d16457999.html,/licenses/by/3.0/.

An Insulin-Like Modular Basis for the Evolution of Glucose Transporters (GLUT) with Implications for Diabetes

Robert Root-Bernstein

Department of Physiology, 2174 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, MI 48824 U.S.A.

Abstract: Glucose transporters (GLUT) are twelve-transmembrane spanning proteins that contain two pores capable of transporting glucose and dehydroascorbate in and out of cells. The mechanism by which transport is effected is unknown. An evolutionarily-based hypothesis for the mechanism of glucose transport is presented here based on reports that insulin has multiple binding sites for glucose. It is proposed that insulin-like peptides were incorporated as modular elements into transmembrane proteins during evolution, resulting in glucose transporting capacity. Homology searching reveals that all GLUT contain multiple copies of insulin-like regions. These regions map onto a model of GLUT in positions that de ? ne the glucose transport cores. This observation provides a mechanism for glucose transport involving the diffusion of glucose from one insulin-like glucose-binding region to another. It also suggests a mechanism by which glucose disregulation may occur in both type 1 and type 2 diabetes: insulin rapidly self-glycates under hyperglycemic conditions. Insulin-like regions of GLUT may also self-glycate rapidly, thereby interfering with transport of glucose into cells and disabling GLUT sensing of blood glucose levels. All aspects of the hypothesis are experimentally testable.

Introduction

Root-Bernstein and Dillon have suggested that molecular complementarity acts as a selective pres-sure that directs evolution in particular directions by linking molecular structure and function. In essence, those molecules that bind to one another are more likely to survive degradative processes and so become the materials upon which living systems build. Further, the complexes that such pairs of molecules will form will have emergent properties that their individual components do not, thereby providing a constant source of novelty upon which further complexity can be built. (Root-Bernstein and Dillon, 1997; Hunding et al. 2006) Root-Bernstein recently applied this theory to the elucidation of insulin receptor evolution. Insulin both self-aggregates and binds to glucagon, making insulin self-complementary and complementary to glucagon. (Root-Bernstein and Dobblestein, 1999) Nota-bly, the insulin receptor has multiple insulin-like and glucagon-like sequences located in regions associated with insulin binding, and these regions are highly conserved throughout evolution (Root-Bernstein, 2004; Root-Bernstein, 2005).

Another interesting aspect of insulin behavior is that glucose binds directly to it, suggesting that glucose and insulin were linked functionally very early in evolution. Various physicochemical methods (Anzenbacher and Kalous, 1975; Kalous and Anzenbacher, 1979), x-ray crystallography (Yu and Caspar, 1998), and molecular modeling programs (Zoete, Meuwly and Karplus, 2004) have demonstrated that eight D-glucose binding sites exist on the insulin molecule, two with a binding constant of about 1 × 10–3 M and six with a binding constant of about 6 × 10–2 M. This means that at normal blood glucose of 5 × 10–3 M, the two higher af ? nity sites are likely to be occupied, while the lower af ? nity sites are likely to be sensitive only to hyperglycemic conditions. One can hypothesize that prior to the origins of insulin receptors and glucose transport proteins, an insulin-like molecule may have carried glucose into cells itself. In addition, in the presence of glucose, insulin is rapidly and non-enzymatically glycated, which may have a variety of effects to be discussed below.

The binding of glucose to insulin, combined with the molecular complementarity theory of evolu-tion, suggested that perhaps glucose transporters (GLUT) might have evolved from an insulin-like precursor that could also bind glucose. If that were the case, then one would expect to ? nd modular insulin-like regions in the transporter core of GLUT but not at the transporter cores of other sugar

transporters. This paper reports that this prediction is correct. It describes how such a structure results

Robert Root-Bernstein

in functional glucose transport and how glycation of the insulin-like regions in GLUT might result in insulin resistance and inability to transport glucose ef? ciently.

Methods

Sequence similarities were determined between the human insulin precursor (SwissProt ID P01308) and all human GLUT precursor sequences avail-able on the SWISSPROT database as of November 2006 (GTR1 P11166; GTR2 P11168; GTR3 11169; GTR4 P14672; GTR5 P22732; GTR6 Q9UGQ3; GTR8 Q9NY64; GTR9 Q9NRM0; GTR10 O95528; GTR11 Q9BYW1; GTR14 Q8TDB8). A further set of similarity searches was carried out in November 2006 involving the sodium/glucose cotransporters 1, 2 and 3 (P13866, P31639, and Q9NY91), using as control sequences the sodium dependent phosphate transporter proteins 1, 2A, 2B, 2C, 3, and 4 (Q14916, Q06495, O95436, Q8N130, O00624, O00476), the sodium dependent phosphate transporter 1 (Q8WUM9), the yeast mannose transporter (P40107), and the arabidopsis mannose transporter (Q941R4).

Similarities were determined using LALIGN (Huang and Miller, 1991). The best 20 similarities were found using default parameters for scoring (penalty for the ? rst residue in a gap, ?14; penalty for each additional residue in a gap, ?4). Sequences were deemed to be signi? cantly homologous only if they had at least ? fty percent identity over a sequence of at least ten amino acids or a raw score (E) of at least 35. Ten amino acid-long sequences were chosen because ten amino acid stretches are approximately the length recognized by T-cell receptors and are therefore of some biological signi? cance (Rudensky et al. 1991) and because in previous studies, it was determined using LALIGN that the probability of a hormone such as insulin or glucagon having ? ve identical amino acids within any stretch of ten amino acids in ran-domly selected receptors or transporters is six percent (p = 0.06) (Root-Bernstein, 2002).

A secondary estimation of the signi? cance of the similarities was also used, involving raw scores. Raw scores (E) are used by LALIGN to derive a function that calculates the probability that an alignment with such a score is likely to occur if any peptide of an equivalent length were used to search 10,000 proteins of equivalent length to the receptor or transporter sequence. Raw scores of 35 or above in this study always corresponded to probabilities of less than 1 in 20 that such align-ments occur by chance (p ? 0.05). Raw scores above 50 generally corresponded to probabilities of less than 1 in 100 that such alignments occur by chance (p ? 0.01). The vast majority of the sequences described in the tables below satisfy both sets of criteria for signi? cance.

It must be emphasized that the probabilities presented above correspond to that of ? nding a single homology between a peptide hormone and a receptor satisfying one or the other criteria. The probability that more than one such signi? cant homology would occur within a single receptor or transporter is a multiplicative function of the num-ber of signi? cant sequences found. The probability of ? nding four such similarities within a single transporter sequence is approximately (0.05)4 or about 6 × 10–6 and the probability of ? nding seven such signi? cant similarities is about 10–11. All of the GLUT transporters have between four and twelve signi? cant homologies so that the probabil-ity that the results presented here have occurred by chance are extremely small.

The sequences of GLUT transporters that had high homology with insulin were mapped onto the model of the GLUT transporter developed by Zuniga et al. (Zuniga et al. 2001) using the amino acid identi? ers in their model.

Results

The results of the homology study are displayed in Tables 1 through 14. As can be seen by inspection, every human GLUT sequence currently available on SwissProt has multiple homologies with insulin satisfying the criteria described above (Tables 1–11). Particularly notable are GLUT 1, GLUT 4, GLUT 6, GLUT 10, and GLUT 11. GLUT 1 has eight sig-ni? cant homologies; GLUT 4 has ten; GLUT 6 and 10 have seven, and GLUT 11 has eleven. Most strikingly, GLUT 11 has one homology that repre-sents virtually the entire unprocessed insulin chain. Many significant similarities were also found between the sodium/glucose cotransporter proteins and insulin (Tables 12–14).

No signi? cant similarities at all were found between insulin and the sodium dependent phos-phate transport proteins, the sodium dependent phosphate transporter, or mannose transporters (data not shown, since there is nothing to show). These results are in accord with our previous

Evolution of glucose transporters (GLUT) with implications for diabetes

observation that insulin-like regions are extremely rare in randomly selected receptors and enzymes (Root-Bernstein, 2002) It is also interesting to note that mannose transporters lack signi? cant homol-ogies to the QLSQQLS, and QLG sequences that have been identi? ed through amino acid substitu-tion and modeling as probable glucose recognition regions in GLUT (Seatter et al. 1998; Olsowski et al. 2000, Salas-Burgos, 2004).

On the other hand, insulin itself contains several regions that have the QLS and QLG motifs associ-ated with insulin binding—although these are sometimes in the reversed order—and these motifs occur in regions with signi? cant homologies to GLUT transport cores (see underlines in Tables 1–11). Thus, the insulin-like homologies reported here correspond to putative glucose binding regions identified by previous investigators of GLUT structure (Seatter et al. 1998; Olsowski et al. 2000, Salas-Burgos, 2004; Hruz and Mueckler, 2001; Zuniga et al. 2001).

In order to demonstrate the location of these insulin-like regions in the GLUT structure, the homologies listed in Tables 1–11 (the GLUT sequences) have been mapped onto Zuniga et al.’s model of GLUT transport cores (Zuniga et al. 2001).

INS 81–87 ALE GSLQ

| : | | | |

GLUT 1 17–25 GGA VLGSLQ34E

| | | | | |

INS 70–78 GGPGAGSLQ

GLUT 1 56–93 I LPT–T LTTL W SLS – V A I FSVGG M IGSFSVGLFV NRFGRR : | | : | : | | : : : | : | / : | | : | : : | | INSULIN 7–46 LLPLLALLAL W GPDPAAAFV NQH LCGSHLVEALYLVCG ER INS 84–92 GS LQKRGIV

| : | : : | | |

GLUT 1 137–165 TGFVPMYVGEVSPTAFRGALGTLHQLGIV37E

: | | : : : | | : | : |

INS 67–86 REAEDLQVGSLQPLALEGSL

GLUT 1 181–190 GNKDL W PLLL 27E

| : | | | |

INS 73–82 GAGS LQPLAL

GLUT 1 278–286 LQLSQ – QLSG 21E

| | : : | : | : |

INS 61–70 LQVGQVELGG

GLUT 1 310–329 AT I GSGIVNTAFT–VVSLFVVE 26E

/ / | | |: : | : | | : : |

INS 90–1XX SL QKRGIVEQCCTSICSLYQLE

GLUT 1 353–394 W MSYLSIV AIF GFV AFFEV GPGPI P W F IV A EL38E

| | | : : | : : : : | | | | : : |

INS 4–30 W MRLLPLLALLALW – – – – –GPDPAAAF VNQHL

GLUT 1 390–406 IV AELFAQ GPRPAAIA V40E

: : | | | | | | | |

INS 10–26 LLALLALWGPDPAAAFV

GLUT 1 449–471 YFKVPETKGRTFDEI ASGF RQGG 36E

: | : | : | : : : | : : : | |

INS 48–70 FFY TPKTRREAEDLQVGQVELGG

Table 1. GLUT 1-Insulin similarities.

Robert Root-Bernstein

Table 2. GLUT 2-Insulin similarities.

Table 3. GLUT 3-Insulin similarities.

GLUT 2 176–188 GEIA PTALRGAL 41E

| : | | | : | : |INS 75–86

GSLQPLALE GSL

GLUT 2 217–230 L W HI LLGLSGVRAI 30E | | | | | : : | :INS 3–16

L W MRLLP LLALLAL

GLUT 2 174–196 MYIGE IAPTALR GALGTFHQLAI 28E : : | : : : | | | : : : | |: INS 61–82

LQVGQVELGGGPGA– GSLQPLA L GLUT 2 406–417 LFVSFF E I GPG P 33E

| | : | : | | |INS 61–72

LQVGQVELGGGP GLUT 2 430–435 GPRPAA 36E

| | | | |INS 18–23

GPDPAA

To simplify the visualization of the placement of

the various homologies, only those shared by GLUT 1 and GLUT 4 (arguably two of the most important of the GLUTs) were used; these were reformatted (Table 15) to display their common-alities; and these common areas were then mapped onto Zuniga’s model of the transport cores by means of color coded dots (Figure 1). Figure 1

demonstrates that many of the insulin-like regions that are common among the GLUTs can be assigned to regions of the GLUTs thought to de ? ne the transporter core itself. Notably, these insulin-like regions are found to be in the transporter cores of all models of GLUT (e.g. Seatter et al. 1998; Olsowski et al. 2000, Salas-Burgos, 2004; Hruz and Mueckler, 2001). Moreover, all of the amino

GLUT 3 61–118 SL W SLS V AI FSVGGM I GSFSVGLFVNRFGRRNSMLI VNLLA VTGG–C FMGLCKV AKSVEM 43E

: | | | : : : : : : | : : | | | : : | | : | | | | : | : : : |

INS 2–61 AL W MRLLPLLALLALWGPDPAAAFVNQH–LCGSH LVEALYLVCGERGFFYTP KTRREAE D GLUT 3 143–154 GE ISPTALRGAF

38E

| :: | | | : | : : INS 75–86

GSLQPLALEGSL GLUT 3 155–163 GTLNQLGIV 32E

| : | : : | | | INS 84–92

GSLQKRGIV

GLUT 3 380–406 GPGPIPW FIV A ELF SQ GPRPAAMA V AG

36E

| | | | : : | : : | : | |

INS 18–43 GPDPAAAFVNQHLCGSH LVEALYL VCG GLUT 3 388–404 IV AELFS Q GPRPAAMA V

40E

: : | | | | | | | | INS 10–26

LLALLALWGPDPAAAFV GLUT 3 447–461 FFKVPETRGRTFEDI 42E | | : | : | | | | | : INS 48–61 FFYTPKTR– REAEDL

Evolution of glucose transporters (GLUT) with implications for diabetes Table 4. GLUT 4-Insulin similarities.

acids thus far identi? ed as contributing to glucose recognition and binding through mutagenesis studies fall into these insulin-like regions or imme-diately adjacent to them, including GLUT 1 resi-dues W65, S66, T137, V140, QLS 161–163, V165, QLS 279–285, T310, N317, T321, R333, P387, and W388 (Seatter et al. 1998; Olsowski et al. 2000, Salas-Burgos, 2004; Hruz and Mueckler, 2001; Zuniga et al. 2001).

These data therefore show that the transport cores of GLUT, as de? ned by current experimental and modeling data, are composed of repeating

GLUT 4 31–37 A VLGSLQ28E

| : | | | |

INS 81–87 ALEGSLQ

INSULIN 7–46 LLPLLALLAL W GPDPAAAFV NQH LCGSHLVEALYLVCG ER : | : | : | | : : : | : | \ : | : | : : : | : GLUT 4 90–109 IPPG– TLTTL W ALS – V A I FSVGG M I SSF L IG I ISQWLGRK GLUT 4 124–147 SLMGLANAAASYEML ILGRFL IGA 30E

: | | | | | : : : | | : |

INS 15–38 ALWGPDPAAAFVNQHLCGSHLVEA

GLUT 4 158–180MYVGE IAPTHLRGALGTLNQLAI30E

: | | : : | | | : | : | | :

INS 61–82 LQ VGQVELGGGPGA–GS LQPLA L

INS 2–16 AL W MRLLPLLALLAL

: | | | | | : | | |

GLUT 4 197–214 GTASL W PLLL G LTVLPAL 38E

| : : | | | | |

INS 73–82 GAGSLQPLAL

GLUT 4 204–238 LL LG LTVLPALLQV – LLP FCPESPRYLY I IQNLEG 35E

: | : : | | | : | : | : | : : | : | : |

INS 1–32 MALWMRLLPLLALLAL—WGPD–PAAAFVNQHLCG GLUT 4 273–286 LSLLQL LGSR THR 28E

| : | | | | : : |

INSULIN 79–92 LQPLALEGSLQ KR

GLUT 4 294–302 LQL SQ – QLSG 21E

| | : : | : | : |

INS 61–70 LQVGQV ELGG

GLUT 4 307–330 FYYSTS I FETAGVGQPA YATIGAG 33E

| : | : \ | : | : : : : | : |

INSULIN 47–71 FFYTPKTRREAEDLQVGQVELGGG

GLUT 4 350–362 RTLHLLGLAGMC G 28E

| | | | :| : : |

INS 6–18 RLLP LLALLA LWG

INS 18–44 GPDPAAAFVNQHLCGSHLVEALY LVCG

| | | | : : | : : | : | |

GLUT 4 398–424 GPGP I PWF IV AEL F SQGPRPAAMA V AG 40E

: : | | | | | | | |

INS 10–26 LLALLALWGPDPAAAFV

Robert Root-Bernstein

subunits, or modules, based on an insulin-like sequence. It is further reasonable to propose that since insulin has multiple binding sites for glucose, these insulin-like modular regions are the basis for GLUT binding and transport of glucose.

Discussion The fact that glucose binds to insulin and that insulin-like regions make up the transport cores of GLUT proteins suggests an obvious mechanism by which glucose can be transported through these proteins. Glucose would be attracted from extracel-lular plasma to the glucose-binding sites on the insulin-like regions in the transport core. Simple diffusion from one site to another within the trans-port core would carry the glucose from the extra-cellular to the intracellular side of the transporter as long as the concentration of glucose was higher outside the cell than inside. Because the proposed

Table 5. GLUT 5-Insulin similarities.

Table 6. GLUT 6-Insulin similarities.

GLUT 5 12–22 RLTLVLALATL 26E | | : | | | : | INS 6–16

RLLPLLALL AL GLUT 5 85–100 GSLLVGPLVNKFGRKG 30E

| | | | | | : : | INS 32–47

GSHLVEALYLVCGERG

GLUT 5 151–172 GELAPKNLRGAL – – –GVVPQL F I TV 38E

| | | | : | : | | : | | : : INS 75–99 GSLQPLALEG SLQKRGI VE QCCTSI GLUT 5 214–223 ALQ LL LLPFF 31E | | : | | | : : INS 2–11

ALWMRLLPLL

GLUT 6 91–109 GAAAGGLSAMILNDLLGRK 36E

| : | | : | : : | : | : : INS 71–89

GPGAGS LQPLALEGSLQKR GLUT 6 167–182 GALGATPQLMA VFGSL 28E

| : : : | : | : | | |INS 71–86

GPGAGS LQPLALEG SL GLUT 6 278–288 V AL L MRLLQQL : | | | | | | |INS 1–11

MALWMRLLPL L

GLUT 6 308–66 LLP PKDDAAI VGA VRLLSVLIA ALTMDLAGRKVLLFVSAAIMFAANLTLGLYI HFGPRP 38E

| | | | : | : | | : : : : : | : : : : : : : | : | : | : : : | |

INS 16–72 LWGPDPAAAFVNQHLCGSHLVEALY L– VCGERGFFYTPKTRREAEDLQVG–QVELGGGP INS 2–14

ALWMRLLPLLAL L | : : | : | | | | :

GLUT 391–403 AGYLTLV PLLATMLFIMGYA VG W GP 38E

| : | : : : : | | |INS 3–19 LWMRLLPLLAL LAL W GP GLUT 6 481–497 CCVPETKGRSLEQIES F 29E

| | | : | | | : | : :INS 92–108

CC– – – TSIC SLYQLE NY

Evolution of glucose transporters (GLUT) with implications for diabetes

mechanism is passive, diffusion could also occur from the inside of the cell out if the concentration of glucose were higher within the cell than outside it. If the binding af ? nities were essentially equal from one site within the transport core to the next, then transport would occur with equal velocity in either direction. If the bindings progress either toward greater af ? nity from outside in, or vice versa, then the velocity of diffusion will differ depending on whether the glucose is diffusing into or out of the cell. The difference in rate will depend on the difference in af ? nities across the transporter.

Differential af ? nities might be of value in regulat-ing rates of glucose ? ow.

The fact that multiple insulin-like regions occur within the transport core should not come as a great surprise in terms of the way in which most proteins are thought to have evolved. An ever-increasing body of literature suggests that large proteins are often conglomerates of repeating subunits or mod-ules (e.g. Patthy, 1999; Liu and Rost, 2004; Born-berg-Bauer et al. 2005). Thus, the structure proposed here for GLUT proteins may be seen as just one of many known modular protein structures.

Table 7. GLUT 8-Insulin similarities.

Table 8. GLUT 9-Insulin similarities.

GLUT 8 24–37 RRVFLAAFAAAL GP 27E

| : | | : | | | INS 6–19 RLLP LLALLALWGP GLUT 8 122–133 MLLGG RLLTGLA 26E

| | | | | | |INS 1–12

MALWMRLLPL LA GLUT 8 170–177 LLAYLAG W 35E

| | | | | |INS 10–17 LLALLAL W

INS 6–20 RLLP LL ALLAL W GPD | : | | | | | :

GLUT 8 194–236 LMLLLMCFMPETPRF LLTQ H RRQEAMAALRFL W GSEQGWEDPP 42E

| : | | | | : : : : | | : : \ \ : | : | : | : |INS 10–52 LLALLAL WGPDPAAAFVNQ H C G SH LVEAL YLVCGERG F FYTP GLUT 8 345–351 GGPGNSS 38E

| | | | : | INS 70–76

GGPGAGS

GLUT 9 156–166 ACS LQAGAFEM 29E

| : | | : | | : INS 58–68

AE DLQVGQVEL

GLUT 9 299–308 I RLVSVLELL 29E : | | : : | | | INS 5–15

MRLLPLLALL

GLUT 9 310–339 APYVRWQVVTVIVTMACYQLCGLNAIWFYT 38E | : | : : : : | | : | | : : | | | INS 23–51

AAFVNQ HLCGSHLVEAL YLVCGERG–F FYT GLUT 9 321–340 IVTMACYQLCGLNAIWFYTN 45E | | : | : : | : : : | | INS 91–110

IVE QCCT SIC SLYQLENYCN

Robert Root-Bernstein

What is unusual about this example of modularity is that it may have been based on complementarity between a pair of simple molecules (insulin and glucose) that dictated selection for the speci? c utility and function of the modules during the evolutionary process itself (Root-Bernstein and Dillon, 1997). Since this is also the case in the insulin receptor, one may speculate that such complementarity will be found in other receptor and transporter proteins as well.

The hypothesis that GLUT evolved from the stringing together of insulin-like modules capable of binding glucose makes a number of novel, experi-mentally testable predictions. Synthetic peptides derived from the regions of insulin-like homology listed in the Tables above should bind glucose with approximately the affinity previously found for insulin-glucose binding sites. For reasons described above regarding the rate of ? ow of glucose through the transporter, it will be interesting and important to determine whether all of the binding sites are more or less similar in their glucose af? nity, or whether they increase in one direction or the other.

A second prediction of the hypothesis is that these insulin-like regions of GLUT should glycate rapidly (hours to days) in hyperglycemic condi-tions. It has been shown by several groups of investigators that insulin in the presence of either unusually high concentrations of glucose, or nor-mal glucose concentrations for longer periods of time, will auto-glycate. (Farah et al. 2005; McKillop et al. 2003; Abdel-Wahab et al. 2002; Boyd et al. 2000; O’Harte et al. 2000; Abdel, Wahab et al. 1997a, b; O’Harte et al. 1996; Doll-hofer and Wieland, 1979). This auto-glycation occurs on both N- and O-groups of amino acids; is non-enzymatic; and its effect on insulin is to decrease its activity. In contrast to the very slow (weeks to months) non-enzymatic glycation of most proteins (Schalkwijk, Stehouwer and van Hinsbergh, 2004; Vlassara and Palace, 2002; Baynes, 2001), the glycation of insulin is very fast, beginning within hours and reaching a maximum within 24 to 36 hours in hyperglycemic conditions. (Farah et al. 2005; McKillop et al. 2003; Abdel-Wahab et al. 2002; Boyd et al. 2000; O’Harte et al. 2000; Abdel, Wahab et al. 1997a, b; O’Harte et al. 1996; Dollhofer and Wieland, 1979) One would expect the same rapid glycation to occur on the insulin-like regions of GLUT. This prediction can

Table 9. GLUT 10-Insulin similarities.

GLUT 10 7–18 VLPLCASVSLL G 34E

: | | | | : : | |

INS 7–18 L LPLLALLALWG

GLUT 10 30–42 SGALLPLQLDFGL 35E

: | : | | | | : : |

INS 74–86 AGSLQP LALEGSL

| | | | | : | | | |

GLUT 10 87–99 AGSLT– LGLAGSL35E

GLUT 10 50–78 LVGSLLLGAL – LASLVGGFLIDCYGRKQA 34E

| | | | : | | | : | | : | : : |

INS 30–58 LCGSHLVEALYLVCGERGFFYTPKTRREA

GLUT 10 76–84 QAI LGSNLV 29E

| : | | : | |

INS 28–36 QHLCGSHLV

GLUT 10 271–304 LASVGLGA VKV AATLTAMGLVDRAGRRALLLAGC35E

: : : | | | | : : | : : | : | : : : |

INS 63–96 VGQVELGGGPGAG SLQP LALEGSLQ KRGIVEQCC

GLUT 10 337–368 GQTGLP GDSGLLQD SSLP PIPRT NEDQREP IL 30E

| | : | | | : | | | : : | : : | :

INS 64–92 GQVE LGGGPGA – – – GSLQPLALEGSLQKRGIV

Evolution of glucose transporters (GLUT) with implications for diabetes

be tested both in vitro using insulin-like peptide regions derived from GLUT, or under in vivo con-ditions, in which the GLUT are isolated and ana-lyzed for the presence of glycation products within speci? c regions of the transport core. If glycation is present under in vivo conditions, it would further be predicted that glucose transport would decrease inversely to increasing GLUT glycation.

A third test of the hypothesis stems from the fact that GLUT also transport dehydroascorbate (DHA) (reviewed in Root-Bernstein, Busik and Henry, 2002). It can be predicted, therefore, that insulin and the insulin-like regions of GLUT should bind DHA with affinities approximating those which they bind glucose. Moreover, DHA binding may significantly retard glycation, which can be tested in both the in vitro and in vivo conditions just specified above. This prediction may be of clinical significance as well (see below).

Table 10. GLUT 11-Insulin similarities.

GLUT 11 64–158 LLM W SL IVS LYPLGGL F GALLAGPLAITLGRKKSLLVNNI FVVSAA IL FGFSRKAGS : : | : : | | : | : | | : : : : | | | : : : : | : | : : | : INS 1–92 MAL W MRLLPLLALLALWGPDPAAAF–VNQHLCGSHLVEALYLVCGERGFFYTPKTRR

F –EMIMLGRLLVGV NAGVSMNIQ PMYLSESAPKELRGA V 52E

| : : : | : : : | : | : : :: | | : | | | | | : |

EAEDLQVGQVELGGGP GAG– SLQ PLA LEGSLQK – –RGI V

GLUT 11 70–76 IVSLYPL26E

| | | | |

INS 99–105 ICSLYQL

GLUT 11 72–83 SLYPLGG LF GAL26E

| | | | : | | : |

INS 76–86 SLQPLA – LE GSL

GLUT 11 69–100 L I VS LYPLGGL F GALLAGPLAITL GRKKSLLV 42E

| | : | | | | | | | | : : : | : |

INS 61–92 LQVGQVE LGGGP GAGSLQPLALEGSLQKRGIV

| | | | | | | | |

GLUT 11 176–190 VGLRELL GGP QAWPL 45E

GLUT 11 198–226 PGALQLASLPLLPESP RYLL I DCGDTEAC 33E

| | | : | | | : : : : | |

INS 69–100 GGGPGAGSLQPLALEGSLQKRGIVEQCC TSI C

| : | | | | : | |

GLUT 11 235–249 GSGDLAGEL EELEEE 36E

GLUT 11 286–294 LCGNDSVYA 31E

| | | : | |

INS 30–38 LCGSHLVE A

GLUT 11 383–397 FGI GP– AGVTGILATE29E

: | | | | | | | |

INS 68–83 LGGGPGAGSLQPLALE

GLUT 11 386–412 GPAGVTGI LATELFDQMARPAACMVCG37E

| | : : : : : : | : | : | | |

INS 18–44 GPDPAAAFVNQHLCGSHLVEALY LVCG

GLUT 11 446–460 VCGAIYT GLFL –PETK 27E

| | | | : | | : | :

INS 42–55 VCGE – –RGFFYT PKTR

Robert Root-Bernstein

Table 12. Na+/Glucose high af ? nity co transporter 1/Insulin similarities.

Table 11. GLUT 14-Insulin similarities.

GLUT 14 9–30 VSG IGGFLVSLTSRMKPHTLAV 33E

| | | | : : : : | : : | |INS 42–63 VCGERGFFYTPKTRREAEDLQV GLUT 14 167–178 GEI SPTALRGAF 38E

| : : | | | : | : :INS 75–86

GSLQPLALEGSL GLUT 14 398–407 V ACFE I GPGP 33E

| : | : | : | | INS 63–72

VGQVELGGGP

INS 10–26 LLALLALWGPDPAAAFV : : | | | | | | | |GLUT 14 404–430 GPGP I PWFI V AELFSQGPRPAAM A V AG 40E

| | | | : | : : | : | |INS 18–44

GPDPAAAFVNQHLCGSHLVEALYLVCG GLUT 14 471–485 FFKVPETRGRTFEDI 42E | | : | : | | | | | | INS 48–61

FFYTPKTR—REAEDL

SLC5A1 597–610

KKKGIFRRAYDLFCGLEQ 39E

: | : | | : : : | : | |

INS 87–105 QKRGIVEQCCTS I CSLYQL | | | | : : |SC5A1 517–527 CPTIICGVHYL 36E SLC5A1 175–191 LNL Y L A I FLLLAI TALY 37E

: | : : : : | | | : | | :INS 1–17

MALWMRLLPLLALLALW

SLC5A1 276–318

W PGF IFGMS ILTL W YWCTDQVIVQRCLSAKNMSHVKGGCILCG 36E | : : : : : | : | | : : | : : | : : : : | : : : : | |

INS 4–44 W MRLLPLLALLAL W GPDPAAAFVNQHLCGSHL – – VEALYLVCG | | : : | | : : | | : : : : : : / | | : | : |

SLC5A1 184–218 LLAITALYTI T GGLAA VIYTDT LQTVIML – – VGSL IL 31E

SLC5A1 79–100 IGS GHFVGLAGTGAASGIA IGG 35E : | : : | | : | : : : : | : : |INS 56–84 REAEDLQVGQVELGGGPGAGS LQPLALEG | : | | | | : | | : | SLC5A1 603–618 RRAYDLFCG – LEQHGAP 33E SLC5A1 166–184 A I FI NLAL–GLNLYLA I FLL 34E | : | : | | | : | | : : | : INS 20–42 GPDPAAAFVNQHLCGSHLVEALYLV | | / | | : | :

SLC5A1 464–472 GPP IAA VFL 33E

Evolution of glucose transporters (GLUT) with implications for diabetes

A ? nal test of the hypothesis is bioinformatic. All glucose transporters in all species should con-tain insulin-like sequences in their transport cores that are very highly conserved compared to other regions of the transporters. One of the interesting questions that arises evolutionarily is therefore whether insulin evolved prior to glucose transport-ers, parallel to them, or from some precursor of the glucose transporters. Currently available data do not permit this problem to be resolved. Determin-ing the structural relationships of insulins and GLUT derived from a very wide range of organisms

may therefore shed important light on the molecu-lar origins of glucose regulation and, in turn, new targets for the development of novel therapeutic regimens for diabetes.

Clinical Implications

The presence of insulin-like sequences in the GLUT has several pratical implications for under-standing the consequences of hyperglycemia in both type 1 and type 2 diabetes. Perhaps the most important follows from the possibility that the

Table 13. Na+/Glucose low af ? nity co transporter 2/Insulin similarities.

Table 14. Na+/Glucose low af ? nity co transporter 3/Insulin similarities.

SLC5A2 276–317 W PALLLGLT IVSG W YWCSDQVIVQRCLAGKSLTHIKAGCILCG 45E | | | | : : | : : : | : : | | / | | : | : : | |INS 4–43 W MRLLPLLALLAL W GPDPAAAFVNQHLCGSHL –VEALYLVCG | | : : | | | | :SLC5A2 649–661 W ARVVNLNALLMM 39E SLC5A2 76–97 IG SGHFVGLAGTGAASGLA V AG 39E : | : : : | | : | : : | | : |INS 63–84 VGQVELGGGPGAGSLQPLALEG

SLC5A2 558–617 RLVFSLRHSKEEREDLDADEQQG S SLPVQNGCPESAMEMNEPQAPAPSLFRQCLLWFCGM 38E | : | : : : : | | | | : : : : | / \ | : | : : | : : : | | | | : :INS 46–102 RGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPLALEGSLQKR – – – GI VEQCCT S I C SL SLC5A2 621–631 GVGSPPPLTQE 35E

| : | | | | : |

INS 73–83 GAGSLQPLALE

SLC5A2 67–89 VGASLFAS N IGSGHFVGLAGTGA 35E | | \ : : : | : | : | | : | :INS 63–85 VGQVELGGGPGAGSLQPLALEGS

SLC5A4 276–317 W PG I IFGMP ITAL W YWCTNQVIVQRCLCGKDMSHVKAACIMC 54E | : : : : | | | : : : | : : | | | : | : | : : | INS 4–43 W MRLLPLLALLAL W GPDPAAAFVNQHLCGSHL – – VEALYLVC | | | : : | | :SLC5A4 140–151 RLQVYLSILSLF 26E SLC5A4 464–477 GPP I AA VFVLA I FC 42E | | | | : | | : |INS 17–31 GPDPAAAFVNQHLC SLC5A4 133–143KKRFGGERLQV 27E

| | : | | | |

INS 53–63 KTRREAEDLQV

SLC5A4 599–621 LKKAYDLFCGLQKG – – – – PKLTKEEEE 32E

| : | \ | : | | : : | | | : | | :INS 35–60LVEALYLVCG– ERG FFYTPKTRREAED

Evolution of glucose transporters (GLUT) with implications for diabetes

insulin-like regions of GLUT glycate rapidly under hyperglycemic conditions. (Parenthetically, one might expect fructose glycation of GLUT 2 and GLUT 5 since these transport fructose as well as glucose [Schalkwijk, Stehouwer and van Hinsbergh, 2004]). The glycation of binding sites for glucose transport would be predicted to interfere with glu-cose transport by blocking the transport cores, thus exacerbating hyperglycemia. The greater the hyperglycemia, the greater the glycation, and the greater the percentage of GLUTs that would mal-function. A positive feedback system would be set up that is self-destructive. The paradoxical result would be that the greater the hyperglycemia, the less glucose would be transported into cells. Cells, starved for a ready energy source, would have to metabolize protein, resulting in the ketosis associ-ated with hyperglycemia. In children with diabetes, the result of such refractory glucose transport would be to inhibit critical developmental pro-cesses that are glucose-dependent, such as bone growth (Mobasheri et al. 2002) and insulin-dependent neuron growth (Whitmer, 2007), result-ing in long term de ? cits.

Two additional effects of hyperglycemic glyca-tion might also result. First, if GLUT and sodium-dependent glucose transporters are critical sensors for blood glucose concentration as is currently thought (Freeman et al. 2006; Uldry and Thorens, 2004; Bogacka et al. 2004; Ferber et al. 1994;

Leloup et al. 1994), then glucose regulation might be impaired because glucose sensing would be impaired not only in somatic cells but in the brain. Various types of neurons act as glucose sensors in the brain, helping to regulate glucose homeostasis (Parton et al. 2007), so that blocking glucose trans-port in neurons would also exacerbate glucose disregulation. Secondly, if the same rapid glycation reaction occurs on insulin-like regions of the insu-lin receptor (Root-Bernstein, 2002; Root-Bernstein, 2005), then insulin activation of its receptor may be impaired, resulting in the insulin-resistance that is associated with diabetes. The combination of these two malfunctions would be an inability for the glucose-regulatory system to sense or respond to its normal regulatory cues.

Understanding the evolutionary structure-function relationship of insulin and GLUT may also provide hints about a novel therapeutic approach to treating auto-glycation. Since GLUT transport dehydro-ascorbate (DHA), it is possible that serum ascor-bate or DHA levels may be a critical factor in preventing (the assumed) GLUT auto-glycation. In essence, higher levels of DHA (which can be generated by higher levels of dietary or transfused ascorbate or DHA itself), will compete with glu-cose for the GLUT transport sites; DHA competi-tion for glucose binding sites on insulin-like regions of GLUT may decrease auto-glycation of

GLUT (as well as on insulin and the insulin

Figure 1. Regions of shared homology between GLUT 1, GLUT 4 and insulin (color coded in TABLE 15) mapped onto Zuniga et al.’s (2001) model of the GLUT transport core.

Robert Root-Bernstein

receptor), thereby helping to prevent some of the deleterious effects of hyperglycemia. This possibil-ity is also testable by determining rates of auto-glycation of insulin and or insulin-like regions in GLUT in the presence and absence of various concentrations of DHA and ascorbic acid. The likelihood that this approach will be successful is indicated by a report by Abdel-Wahab et al. (2002) that ascorbic acid supplementation decreases insu-lin glycation in obese hyperglycemic mice. Clearly, these results need to be extended to determine rates of glycation of GLUT and insulin receptors in the presence of ascorbate and DHA.

Finally, the same factors just discussed in terms of diabetes may have relevance for understanding some aspects of normal aging as well. The rate of protein turn-over, particularly of GLUT, is well-documented to decrease with increasing age (Mooradian and Shah, 1997). This means that as a person ages, GLUT will be exposed for longer times to normal glucose serum concentrations. In addition, ascorbate (and thus DHA) de? ciency increases with age (Junquiera et al. 2004) The result of prolonged exposure of GLUT to glucose and decreased antioxidant concentrations would be increased GLUT glycation, resulting in body-wide decreased sugar transport and decreased glucose sensitivity. These are early symptoms of metabolic syndrome, a pre-diabetic state also known to increase in prevalence with aging (Rodriguez et al. 2007; Yaffe, 2007). Indeed, the formation of advanced glycation endproducts is a major problem not only in diabetes, but in demen-tias as well (Vlassara and Palace, 2002; Baynes, 2001). Perhaps these syndromes, too, might be responsive to increased DHA intake.

Summary

In sum, I have proposed an evolutionary basis for GLUT structure based on a modular units originat-ing in insulin-glucose binding. The model that results suggests various experimentally testable implications including a mechanism for GLUT transport of glucose via a series of insulin-like sequences that form the GLUT transport cores. The proposed structure also suggests the possibility that GLUT are auto-glycated under hyperglycemic conditions, resulting in defective glucose transport and regulation, and it proposes that dehydroascor-bate (DHA) may prevent such auto-glycation by direct competition for the glucose binding sites. Thus, a simple modular approach to GLUT evolu-tion based on small molecule complementarity may provide basic insights into the structure and func-tion of a major protein and its modi? cations in disease states.

Acknowledgements

I would like to thank my research assistant Sherika Gibson for help with the similarity searches. Two anonymous reviewers asked help-ful questions that improved the manuscript. I also thank Maurine Bernstein for her generous dona-tion of funds supporting this research in memory of Morton Ira Bernstein, who survived diabetes for many decades.

References

Abdel-Wahab, Y.H.A., O’Harte, F.P.M., Barnett, C.R. and Flatt, P.R. 1997a.

Characterization of insulin glycation in insulin-secreting cells main-

tained in tissue culture. J. Endocrinol., 152:59–67.

Abdel-Wahab, Y.H.A., O’Harte, F.P.M., Boyd, A.C., Barnett, C.R. and Flatt, P.R. 1997b. Glycation of insulin results in reduced biological activity

in mice. Acta. Diabetol, 34:265–70.

Abdel-Wahab, Y.H.A., O’Harte, F.P.M., Mooney, M.H., Barnett, C.R. and Flatt, P.R. 2002. Vitamin C supplementation decreases insulin glyca-

tion and improves glucose homeostasis in obese hyperglycemic (ob/ob) mice. Metabolism, 51:514–7.

Anzenbacher, P. and Kalous, V. 1975. Binding of D-glucose to insulin.

Biochim. Biophys. Acta., 386:603–7.

Baynes, J.W. 2001. The role of AGEs in aging: Causation or correlation.

Exp. Gerontol., 36:1527–37.

Bogacka, I., Roane, D.S., Xi, X., Zhou, J., Li, B., Ryan, D.H. and Martin, R.J. 2004. Expression levels of genes likely involved in glucose sensing in obese Zucker rat brain. Nutr. Neurosci., 7:67–74. Bornberg-Bauer, E., Beaussart, F., Kummerfeld, S., Teichmann, S. and Weiner, J. 3rd, 2005. The evolution of domain arrangements in pro-

tein and interaction networks. Cell Mol. Life Sci., 62:435–45. Boyd, A.C., Abdel-Wahab, Y.H.A., McKillop, A., McNulty, H., Barnett,

C.R., O’Harte, F.P.M. and Flatt, P.R. 2000. Impaired ability of gly-

cated insulin to regulate plasma glucose and stimulate glucose transport and metabolism in mouse abdominal muscle. Biochim.

Biophys. Acta., 1523:128–34.

Brownlee, M. 1995. Advanced protein glycosylation in diabetes and aging.

Ann. Rev. Med., 46:223–34.

Dollhofer, R. and Wieland, O.H. 1979. Preparation and biological properties of glycosylated insulin. FEBS Lett., 100:133–6.

Farah, M.A., Bose, S., Lee, J.H., Jung, H.C. and Kim, Y. 2005. Analysis of glycated insulin by MALDI-TOF mass spectrometry. Biocheim.

Biophys. Acta., 1725:269–82.

Ferber, S., BeltrandelRio, H., Johnson, J.H., Noel, R.J., Cassidy, L.E., Clark, S., Becker, T.C., Hughes, S.D. and Newgard, C.B. 1994. GLUT2 gene transport into insulinoma cells confers both low and high af? n-

ity glucose-stimulated insulin releas. Relaitionship to glucokinase activity. J. Biol. Chem., 269:11523–9.

Freeman, S.L., Bohan, D., Darcel, N. and Raybould, H.E. 2006. Luminal glucose sensing in the rat intestine has characteristics of a sodium-

glucose cotransporter. Am. J. Physiol. Gastrointest Liver Physiol., 291:G439–45.

Hruz, P.W. and Mueckler, M.M. 2001. Structural analysis of the GLUT1 facilitative glucose transporter. Mol. Memb. Biol., 18:183–93 (review).

Evolution of glucose transporters (GLUT) with implications for diabetes

Huang, X. and Miller, W. 1991. A time-ef? cient, linear-space local similar-ity algorithm. Adv. Appl. Math., 12:337–57.

Hunding, A., Lancet, D., Kepes, F., Minsky, A., Norris, V., Raine, D., Sriram, K.

and Root-Bernstein, R. 2006. Compositional complementarity and prebiotic ecosystems in the origin of life. Bioessays, 28 (4):399–

412.

Junqueira, V.B., Barros, S.B., Chan, S.S., Rodrigues, L., Giavarotti, L., Abud, R.L. and Deucher, G.P. 2004. Aging and oxidative stress. Mol.

Aspects Med., Feb–Apr; 25(1–2):5–16.

Kalous, V. and Anzenbacher, P. 1979. On the mechanism of the insulin-glucose interactions. Acta. Diabetol. Lat., 16:169–174.

Leloup, C., Arluison, M., Lepetit, N., Carier, N., Marfaing-Jallat, P., Ferre, P.

and Penicaud, L. 1994. Glucose transporter 2 (GLUT 2) expression in speci? c brain nuclei. Brain Res., 638:221–226.

Liu, J. and Rost, B. 2004. CHOP: Parsing proteins into structural domains.

Nucleic Acids res, 32:W569–W571.

McKillop, A.M., Meade, A., Flatt, P.R. and O’Harte, FPM. 2003. Evaluation of the site(s) of glycation in human proinsulin by ion-trap LCQ-

electrospray ionization mass spectrometry. Regul. Pept., 113:1–8. Mobasheri, A., V annucci, S.J., Bondy, C.A., Carter, S.D., Innes, J.F., Arteaga, M.F., Trujillo, E., Ferraz, I., Shakibaei, M. and MartinVasallo, P.

2002. Glucose transport and metabolism in chondrocytes: a key to understanding chondrogenesis, skeletal development and cartilage degradation in osteoarthritis. Histol. Histopathol., 17(4):1239–67. Mooradian, A.D. and Shah, G.N. 1997. Age-related changes in glucose transporter-one mRNA structure and function. Proc. Soc. Exp. Biol.

Med., 216(3):380–5.

O’Harte, F.P.M., Hojrup, P., Barnett, C.R. and Flatt, P.R. 1996. Identi? cation of the site of glycation of human insulin. Peptides, 17:1323–30. O’Harte, F.P.M., Boyd, A.C., McKillp, A.M., Abdel-Whab, Y.H.A., McNulty, H., Barnett, C.R., Conlon, J.M., Hojrup, P. and Flatt, P.R.

2000. Structure, antihyperglycemic activity and cellular actions of a novel diglycated human insulin. Peptides, 21:1519–26. Olsowski, A., Monden, I., Kruase, G. and Keller, K. 2000. Cysteine scanning mutagenesis of helices of helices 2 and 7 in GLUT1 identi? es an exofacial cleft in both transmembrane segments. Biochemistry, 39:2469–75.

Parton, L.E., Y e, C.P., Coppari, R., Enriori, P.J., Choi, B., Zhang, C-Y., Xu, C., Vianna, C.R., Balthasar, N., Le, C.E., Elmquist, J.K., Cowley, M.A.

and Lowell, B.B. 2007. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature, 449:228–32. Patthy, L. 1999. Blackwell Science, Protein Evolution, Oxford. Rodriguez, A., Muller, D.C., Metter, E.J., Maggio, M., Harman, S.M., Blackman, M.R. and Andres, R. 2007. Aging, androgens, and the metabolic syndrome in a longitudinal study of aging. J. Clin. Endo-

crinol. Metab., 92(9):3568–72.Root-Bernstein, R.S. and Dillon, P.F. 1997. Molecular complementarity, I: The molecular complementarity theory of the origin and evolution of life. J. Theor. Biol., 188:447-479.

Root-Bernstein, R.S. and Dobbelstein, C. 2001. Insulin binds to glucagon forming a complex that is hyper-antigenic and inducing complemen-

tary antibodies having an idiotype-antiidiotype relationship. Autoim-

munity, 33:153–69.

Root-Bernstein, R.S., Busik, J. and Henry, D. 2002. Are diabetic neu-ropathy, retinopathy, and nephropathy caused by hyperglycemic exclusion of ascorbate uptake by glucose transporters. J. Theor.

Biol., 216:345–59.

Root-Bernstein, R.S. 2002. Molecular complementarity III. Molecular complementarity as the basis for peptide hormone evolution. A bioinformatic case study of insulin, glucagon, and gastrin. J. Theor.

Biol., 218:71–84.

Root-Bernstein, R.S. 2005. Peptide self-aggregation and peptide comple-mentarity as bases for the evolution of peptide receptors: A review.

J. Molec. Recognit., 18:40–49.

Rudensky, A.Y., Preston-Huriburt, P., Hoag, S-C., Balrow, A. and Janeway, C.A.

1991. Sequence analysis of peptides bound to MHC class II mole-

cules. Nature, 353:622–7.

Schalkwijk, C.G., Stehouwer, C.D.A. and van Hinsbergh, V.W.M. 2004.

Fructose-mediated non-enzymatic glycation: sweet coupling or bad modi? cation. Diabetes Metab. Res. Rev., 20:369–82.

Seatter, M.J., de la Rue, S.A., Porter, L.M. and Gould, G.W. 1998. QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selec-

tion at the exofacial binding site. Biochemistry, 37:1322–6. Uldry, M. and Thorens, B. 2004. The SLC2 family of facilitated hexose and polyol transporters. P? ugers Arch., 447:480–9.

Vlassara, H. and Palace, M.R. 2002. Diabetes and advanced glycation endproducts. J. Intern. Med., 251:87–101.

Whitmer, R.A. 2007. Type 2 diabetes and risk of cognitive impairment and dementia. Current Neurol. Neurosci. Rep., 7:373–80.

Yaffe, K. 2007. Metabolic syndrome and cognitive disorders: is the sum greater than its parts? Alzheimer. Dis. Assoc. Disord., 21(2):167–71. Yu, G.B. and Caspar, D.L. 1998. Structure of cubic insulin crystals in glu-cose solutions. Biophys. J., 74:616–22.

Zoete, V., Meuwly, M. and Karplus, M. 2004. Investigation of glucose binding sites on insulin. Proteins, 55:568–81.

Zuniga, F.A., Chi, G., Halber, J.F., Rubaskin A., Flynn, D.R., Isorovich, P., Fishbarg, J. 2001. J. Biol. Chem., A three dimensional model of the human facilitative transporter Glut1, 276:44970–5.

主数据管理办法

中国联通供应商主数据管理办法(试行) 第一章总则 第一条为逐步形成中国联通完善的供应链管理体系,为企业运营和各业务发展提供唯一、准确的供应商基础数据,实现中国联通供应商基础数据的单点录入、全局共享,依据中国联通采购管理办法、中国联通IT规划等相关制度,制定本办法。 第二条本办法所称供应商,是指直接向中国联通提供物资和服务的企业及其分支机构、事业单位和个人。个人包括个体工商户和其他自然人。 第三条本办法所称供应商主数据,是指在整个企业范围内各个信息系统需要共享的,长期稳定存在的,描述供应商自然属性的相关数据。 第四条中国联通供应商主数据管理的原则:一级平台、两级管理、三级操作。 第二章供应商主数据管理范围 第五条中国联通供应商主数据按照企业供应商和个人供应商分别管理。对于费用较低的零星购臵或一次性供应商,根据成本优先的原则不对其数据进行管理,仅作为企业

供应商的特殊类型(杂项供应商)予以归一化管理。 第六条供应商信息主要包括基本信息、业务地点信息、联系人信息、采购信息和财务信息等五类信息。供应商基本信息是供应商的自然属性,由供应商主数据系统管理。 第七条供应商的其它业务属性,由各业务属性的归口部门负责,通过各专业应用系统创建和维护。供应商的业务地点信息和财务信息由财务部门归口负责,在ERP系统中维护;联系人信息和采购信息由采购管理部门归口负责,在采购管理系统中维护。 第三章供应商主数据管理职责 第八条中国联通建立全集团统一的供应商主数据管理平台,建立全集团集中的维护工作组,统一负责供应商编码、数据质量、数据安全等管理和日常维护工作。 第九条中国联通总部和省两级采购管理部门是中国联通供应商主数据的业务管理部门,负责制定供应商主数据管理制度、规范、编码规则和操作手册,负责指导下级公司的供应商主数据业务操作工作。供应商编码标准见附件1。 第十条中国联通总部、省、市三级采购管理部门是中国联通供应商主数据的业务操作部门,负责受理各级供应商主数据创建的申请、审核、创建、维护和分发等工作。各级采购管理部门的操作权限如下:

客户主数据维护流程

****** 第二章-SD02_客户主数据维护流程 1.流程说明 1.1.总述: 该流程描述了客户主数据的维护过程。客户主数据为创建订单的先决条件,客户主数据中的内容必须完全正确,并将作为后续单据中的各项信息的来源。 1.2.流程重点: 数据维护范围,客户数据扩展方法 在系统中,由于存在总公司、分公司两份订单,为了在总公司订单中实现:总公司订单的售达方为分公司、送达方为直接顾客,所以 1、责任中心助理在自己的销售组织下创建客户主数据的同时,还必须在总公司 的销售组织 下创建该客户主数据(用COPY 的方法,并且用一个客户编号,客户编号人工 编排)产销接单人员必须维护分公司-这个特殊的顾客的主数据。 2、市场处人员在创建KEY ACCOUNT时,必须注意扩展到各销售组织的完成。 3、为维护客户主数据的保密性,在系统中的“一般数据“、“公司代码数据”及 “销售数据”中须在“权限组”栏位KEY IN 自己的责任中心编号,已作到本 责任中心客户仅自己可以查阅。 1.3.操作要点: 1、维护新客户时须先查询该客户是否存在(因市场处亦会维护KEY ACCOUNT)。 2、维护装运条件时,注意分公司与总公司的区别,若维护错,会影响后续下单。 3、参照创建总公司顾客主数据时,公司代码不要输,因为责任中心助理无总公司f001的权限。

2.流程图 3.系统操作 3.1.操作范例 新建和扩展一个直销客户 3.2.系统菜单及交易代码 后勤→销售和分销→主数据→商业伙伴→客户→创建→完成 交易代码:XD01 3.3.说明 每个顾客主数据包含三个部分,即: 一般数据:记录一些基本信息,如地址、电话等; 销售范围数据:包含与销售处理功能相关的信息,维护时必须指定销售组织/分销渠道; 公司代码数据:包含与财务处理功能相关的信息,维护时必须指定公司代码。 交易代码XD01〈完成〉指同时维护上述三部分信息 3.4.系统屏幕及栏位解释 栏位名称栏位说明资料范例科目组用于财务帐的客户科目分配,目前定义的科目组为:1110:国内直销;1120:1110

SAP系统BASIS标准手册

BASIS标准手册 目录 一、重启SAP生产服务器操作手册 (2) 二、SU01用户维护操作手册 (3) 三、PFCG角色配置操作手册 (9) 四、DB13数据备份操作手册 (14) 五、创建、拷贝和删除集团操作手册 (17) 六、SCC3命令操作手册 (27) 七、STMS传输请求操作手册 (32) 八、SM02发布系统消息操作手册 (37) 九、P43生产机数据库恢复操作手册 (40) 十、更换页面图片操作手册 (52) 十一、广州分公司ERP系统客户端安装手册 (55) 十二、日常维护操作手册 (65)

BASIS标准手册 一、重启SAP生产服务器操作手册 1停止APP服务器的SAP服务,重启APP服务器 1.1telnet10.119.6 2.3 1.2从10.119.6 2.3上telnet p43app 1.3在p43app上,执行smitty clstop,选择graceful,回车 1.4查看cluster的输出文件tail-f/tmp/hacmp.out 1.5ps-ef|grep sap 1.6shutdown-Fr 2停止DB服务器的SAP和ORACLE服务,重启DB服务器 2.1telnet10.119.62.3 2.2从10.119.62.3上telnet p43db 2.3在p43db上,执行smitty clstop,,选择graceful,回车 2.4查看cluster的输出文件tail-f/tmp/hacmp.out 2.5ps-ef|grep sap 2.6ps-ef|grep ora 2.7shutdown-Fr 3操作系统启动后,启动DB服务器的SAP和ORACLE服务 3.1在p43db上,执行smit clstart,使用默认选项,回车 3.2tail-f/tmp/hacmp.out 3.3ps-ef|grep ora 3.4ps-ef|grep sap 4操作系统启动后,启动APP服务器 4.1在p43app上,执行smit clstart,使用默认选项,回车 4.2tail-f/tmp/hacmp.out 4.3ps-ef|grep sap 5用SAP GUI客户端分别登陆DB、APP服务器,并检查系统运行情况。

主数据维护平台用户手册

主数据维护平台用户手册Material Master Data Maintenance Platform User Manual Prepared by: Lu Ying Han Jan. 22, 2010

目录 一、概述 3 二、使用范围 3 三、基本内容 3 1.申请授权 3 2.进入数据库 4 3.数据库基本界面介绍 4 4.主维护界面介绍8 5.审批流基本过程9 四、支持服务11

为有效改善原纸张申请审批过程中存在的效率较抵、维护错误、缺失审批环节、难于监控等情况。SSEKW开发了此主数据维护平台以实现电子流操作过程。主数据的创建、修改等申请将通过Lotus Notes 上的平台进行流转审批,审批结束将通过与SAP间的接口程序更新SAP相应数据。同时达到提高效率、防错、降低消耗等目的。 二、使用范围: 适用于SSEKW SAP物料主数据的创建、修改、冻结、解冻等过程 三、基本内容 1. 申请授权 由于主数据平台中相应的电子流及操作权限均根据用户的实际角色进行分配。因此,如用户需要开通主数据平台进行操作,需事先通知数据库管理人员进行角色设定。基本步骤如下: 1.1选择数据库标志,单击右键。选择“数据库”->“存取控制” 1.2 依据上图显示,添加用户,设定用户类型和权限(通常依据用户情况,选择作者、编辑者或管理者)。针对用户实际操作需求,选择角色。 Admin: 数据库管理员 FI: 财务相关操作 PL:计划相关操作 PUR:采购相关操作 QA:质量相关操作 TE:技术相关操作 1.3 角色及权限设定完成后,数据库管理员需通过邮件通知用户并发送数据库链接。

SAP系统操作手册及问题解决方案

SAP系统操作手册及问题解决方案 会计期间关闭 首先要打开相应的会计年度和记帐期间(OB52)。其次,维护FI的Number Range(FBN1)和CO 中的Number Range(KANK)。特别是CO Number range中的COIN业务一定要分配Number range 新建工厂后新建订单Shipping Point找不到 有一个shippingpointdetermine,一点要维护 路径: 后勤执行--装运--基本装运功能--装运点和收货点确认--分配装运点 原来是物料类型的问题 新建工厂并分配后,migo初始化库存,系统提示出错 No stock posting possible for this material 后来发现是物料类型定义里面数量更新没有打上勾 物流通用--主数据--基础设置--物料类型--定义物料类型属性 再次经过验证不是这里的问题,而是shippingpointdetermine没有定义的缘故 Business Area Account Assignment 4.1.7上的Business Area Account Assignment可把我害惨了,我配置完Sales Area后,由于没有Assignment到BusinessArea,所以系统老是提醒我没有Define这鬼东西,后来自己研究之后才发现4.6C和4.7.1之间的细微差别,4.6C在这里是自动Assign的,但4.7.1是需要自己Assign的。 路径:

sap customizing implementation guide-->enterprise structure-->assignment-->sales and distribution-->business area account assignment-->define rules by sales area SAP学习手册IV 请教各位,我已经在测试系统里,归档了销售订单以及其发票,会计凭证和交货单,但是我想看看归档的效果,请问R3系统有可以查看到归档数据的功能吗?另外,交货单还对应一张物料凭证,我就是直接归档交货单了,不知道是不是应该先归档物料凭证再归档交货单?因为归档发票的时候,需要先归档发票对应的会计凭证,再归档发票。否则系统不让通过。 怎样做归档的资料在本论坛前几天我发的帖子里有人提供了,基本上是STEP BY STEP的教,很详细。你去那下载吧。只是归档不同的数据要选择不同的归档对象就可以了。如归档销售订单用的归档对象是SD_VBAK, 归档交货单用RV_LIKP, 归档销售发票用:SD_VBRK, 归档会计凭证用: FI_DOCUMNT我提的问题是如何查看已经被归档的数据?在每个归档对象中,都有一个管理功能,你选择一下,就可以查看该归档对象所归档的全部内容,系统按日期排列但是我归档的销售订单,数量字段都显示为空。其实这些订单都有数量。不知道是没有把数量字段拷贝到归档文件,还是读取程序有误没有显示数量字段。请帮我再看看好吗?选择某一次归档会话,点击“√”:然后系统显示这次会话归档的销售订单清单,但是奇怪的是,所有的销售订单数量字段为空,如下图: 为何计量单位显示为****** 导致无法使用,如何解决? 计量单位是在后台设置的。系统中有一个基本计量单位,你现在所看到的计量单位是自己定义的。可以任意设置,只要填对两者的换算关系就行了。物料主数据的单位,不是在你当前语言环境下创建的吧, 看看你的物料主数据是否在英文环境下被建立,没有建立中文单位. 请教!怎么删掉SM37中Active状态的进程?有几个进程的状态是ACTIVE 而且执行的时间已经很长了。现在想把进程DELETE,可是用什么方法都无法办到。SM50吧,但是在sm37里不是有stop这个功能么?在SM50中看不到这个进程。而且STOP和CANCEL都用了,可是还是么有用啊! 选择好,然后CANCEL,再DELETE,不就OK了嘛不管是CANCEL还是DELETE 都没有效果啊! 可能是这支程式坏掉了,找更高权限的管理员清吧, 试一下check status,不行就重启应用, menu job->status check 不行的话,可能表里有不良数据,要么重启,sm65, check table consistency。要么,直接查一个个表,比较麻烦,改坏掉就不好了 我装了一台测试机,想进行数据操作时,发现时间上有问题,请各位高手指点,界面如下: F-60试试看。 你第一次开物料账可以用OMSY把物料账开到当前时间,以后就用MMPV开物料账而会计账就是你所说的F-60以上三个代码我试过了,可水平实在太差,还是搞不定,能不能帮忙确认讲解一下! 1.OMSY: 我的界面如下,我将第一条记录改为2005后,其它记录却不能修改!

SAP主数据维护管理规定

S A P主数据维护管理规定 The latest revision on November 22, 2020

备件主数据维护管理办法 第一章总则 第一条备件主数据是ERP系统中备件管理、备件供应的集成信息,是进行备件物料管理的基本条件,为了保证及时、准确地收集和维护备件主数据,满足ERP系统正常运行和备件业务运转对数据的需求,特制定本办法。 第二条本办法中主数据是指ERP系统(SAP/R3)中支持系统有效运行的备件静态数据,主要包括:物料主数据、供应商主数据、货源清单、采购信息记录。 第三条备件主数据维护原则: 一、唯一性:相同的主数据在系统中要求有唯一编码,唯一的描述,避免存在数据冗余; 二、完整性:主数据信息保持完整,要能够满足相关部门的业务运作需求; 三、准确性:主数据要符合相应的编码规则和技术规范,能够清楚准确地表达主数据的含义; 四、时效性:主数据申请维护过程中,要充分体现时效性原则,提高工作效率,及时满足申请部门的需求。 第四条本办法适用于xxERP项目上线的总公司、xx公司、xx公司有关部门和生产厂。 第二章应用主数据内容和信息收集维护职责分工第五条备件应用主数据内容:

一、模块内主数据(MMBJ模块):货源清单、采购信息记录、 二、跨模块主数据(MM;MMBJ;SD模块):物料主数据、供应商主数据。 第六条备件模块内和跨模块主数据由XX总公司设备部备件处负责组织收集相关信息,并进行系统维护。 第七条模块内主数据信息收集维护职责分工: 一、货源清单由设备部备件处计划科负责组织收集相关信息,并进行系统维护; 二、采购信息记录由设备部备件处价格科负责组织收集相关信息,并进行系统维护。 第八条跨模块主数据信息收集维护职责分工: 一、物料主数据由设备部备件处计划科负责组织收集基本视图、分类视图、销售视图、采购视图、库存视图、财务成本视图中的相关信息。 二、供应商主数据由设备部备件处质量管理科负责组织收集采购视图中供应商的相关信息; 第三章备件物料主数据维护管理 第九条备件物料主数据维护工作流程: 一、各单位备件员根据生产现场备件变化情况,做以下主数据维护工作:

SAP用户权限管理配置及操作手册

SAP用户权限管理配置及操作手册 SAP用户权限管理配置及操作手册 SAP用户权限管理配置及操作手册 Overview 业务说明 Overview SAP的每个用户能够拥有的角色是有数量限制的,大概是300多点,具体不记得了。 如果只在S_TCODE和菜单中设置了某个事务代码,而没有设置权限对象,此时将不能真正拥有执行该事务代码的权限。 SAP的权限检查机制: SAP进入一个t-code,要检查两个东西 1)S_TCODE 2) 表TSTCA 里面和这个T-cdoe相对应的object。有些tcode在tstca里面没有对应的object,就会导致直接往S_TCODE中加事务代码不能使用的情况。 SAP权限架构 概念 权限对象Authorization object SAP在事务码(T-code)的基础上通过权限对象对权限进行进一步的细分,例如用户有创建供应商的权限,但是创建供应商的事务码中有单独的权限对象,那么就可以通过权限对象设置不同的用户可以操作不同的供应商数据。 角色-Role 同类的USER使用SAP的目的和常用的功能都是类似的﹐例如业务一定需要用到开S/O的权限。当我们把某类USER需要的权限都归到一个集合中﹐这个集合就是“职能”(Role)。 所谓的“角色”或者“职能”﹐是sap4.0才开始有的概念﹐其实就是对user的需求进行归类﹐使权限的设定更方便。(面向对象的权限!!) 分为single role 和composite role两种﹐后者其实是前者的集合。

角色模板-Template Role Role的模板﹐一般是single role.但这个模板具有一个强大的功能﹐能通过更改模板而更改所有应用(sap称为Derive“继承”)此模板的Role(sap称之为adjust) 参数文件-Profile 参数文件相当于指定对应的权限数据及权限组的定义。 每个角色下会产生一个附属的参数文件。 真正记录权限的设定的文件﹐从sap4.0开始是与Role绑定在一起的。虽然在sap4.6c还可以单独存在﹐但按sap的行为推测﹐以后将不能“一个人活着” 用户-User 就是通常说的账号(User ID)。 通常的用户类型有 a.dialog (就是正常的用户) https://www.sodocs.net/doc/2d16457999.html,munication c.system d.service e.reference. Table No. Table name Short Description Memo USR01 User master record (runtime data) USR02 Logon Data (Kernel-Side Use) 用户的登录信息 USR03 User address data USR05 User Master Parameter ID USR06 Additional Data per User USR07 Object/values of last authorization check that failed USR08 Table for user menu entries

sap角色权限设置手册V1.0

SAP角色权限设置及测试手册 (一)从Source Role拷贝生成Common Role (2) (二)直接创建生成Common Role (2) (三)创建/调整Common Role所授权的事务代码 (3) (四)从Common Role继承生成Local Role (4) (五)创建/调整授权范围 (5) (六)创建用户 (9) (七)对用户授权 (11) (八)SU53问题权限问题查看 (13)

(一)从Source Role拷贝生成Common Role 1.PFCG进入权限角色维护界面,输入Source Role名称,点击复制按钮 2.将到角色中输入Common Role名称,点击复制所有 (二)直接创建生成Common Role 1.PFCG进入权限角色维护界面,输入Common Role名称,点击创建角色按钮 2.输入角色名称,并保存

1.PFCG进入权限角色维护界面,点击修改按钮 配,即完成对事务代码的授权调整

1.PFCG进入权限角色维护界面,输入Local Role名称,点击创建角色按钮 说明:继承得到的Local Role,其事务代码必与其Common Role一致

(五)创建/调整授权范围 1.PFCG进入权限角色维护界面后,切换到权限页面,点击更改授权数据 在新弹出页面点击是以确定

2.点击组织级别,修改组织级别数据为本经营单元相关组织ID并保存 新增一行:选中需新增的行所在的位置,可点击右侧 删除一行:选中该行,可点击下方 说明: 对应Common Role,为保证该Role只用于本经营单元,请务必保证: SD按公司代码+销售组织做了对应组织级别授权(如本例,要操作混凝土下所有销售数据,则须授权1100混凝土公司+1100混凝土国内销售组织、1120混凝土海 外销售组织) MM按公司代码+工厂+采购组织+采购组做了对应组织级别授权 PP按公司代码+工厂做了对应组织级别授权 FI按公司代码做了对应组织级别授权 CO按公司代码+成本中心+内部订单做了对应组织级别授权 3.修改已有权限对象、权限字段的值 点击待修改权限字段前的修改图标,在新弹出窗口中修改赋值,保存即可

SAP项目用户操作手册CO结

SAP用户操作手册-CO月结 作者: 日期: 2011.06.02 版本: 10

教程目录 SAP用户操作手册-CO月结 (1) 1.概述 (3) 2费用报销 (3) 3非生产性成本中心费用结转 (4) 4关闭当月报工期间 OKP1 (4) 5生产性成本中心费用分割 KSS2 (5) 6生产性成本中心实际作业价格计算 KSII (8) 7生产订单作业价格重估 CON2 (11) 8生产性成本中心尾差处理 (20) 9打开在制品期间 KKA0 (22) 10计算在制品 KKAO (23) 11计算差异 KKS1 (27) 12生产订单结算 CO88 (32) 13生产订单结算结果审核及尾差调整 F-02 (45) 14关闭生产订单 COHV (47) 15差异分析 (50) 16关闭CO期间 OKP1 (50) 17将期间费用结转入损益类科目 F-02 (51)

1. 概述 CO模块月结是CO模块重点工作之一,主要目的是将当月产品生产成本全部转入生产订单,进而确定当月在制品和生产差异,同时对差异进行分析处理。主要工作步骤包括: ●关闭当月报工期间 ●生产性成本中心费用分割 ●生产性成本中心实际作业价格计算 ●生产订单作业价格重估 ●生产性成本中心尾差处理 ●打开在制品期间 ●计算在制品 ●计算生产订单差异 ●生产订单结算 ●生产订单结算结果审核及尾差调整 ●生产订单关闭 ●差异分析 ●关闭CO期间 ●将期间费用结转入损益科目 CO月结前提 在进行CO月结前,必须确定以下几项内容: ?所有的费用报销业务已经完成账务处理 ?费用分摊分配操作已经完成,辅助生产成本中心余额为0 ?当月所有生产性成本中心的生产报工已经完成 ?当月的所有收发料业务处理完毕 ?库存盘点业务处理完成 (原文:《 CO-080 CO月结流程》) 2 费用报销 费用报销系日常工作,必须在CO或FI月结前完成,详细操作步骤请参见《SAP项目用户操作手册- FI-020会计凭证管理》

客户主数据维护流程

****** 海量免费资料尽在此 第二章-SD02_客户主数据维护流程 1.流程说明 1.1.总述: 该流程描述了客户主数据的维护过程。客户主数据为创建订单的先决条件,客户主数据中的内容必须完全正确,并将作为后续单据中的各项信息的来源。 1.2.流程重点: 数据维护范围,客户数据扩展方法 在系统中,由于存在总公司、分公司两份订单,为了在总公司订单中实现:总公司订单的售达方为分公司、送达方为直接顾客,所以 1、责任中心助理在自己的销售组织下创建客户主数据的同时,还必须在总公司 的销售组织 下创建该客户主数据(用COPY 的方法,并且用一个客户编号,客户编号人工 编排)产销接单人员必须维护分公司-这个特殊的顾客的主数据。 2、市场处人员在创建KEY ACCOUNT时,必须注意扩展到各销售组织的完成。 3、为维护客户主数据的保密性,在系统中的“一般数据“、“公司代码数据”及 “销售数据”中须在“权限组”栏位KEY IN 自己的责任中心编号,已作到本 责任中心客户仅自己可以查阅。 1.3.操作要点: 1、维护新客户时须先查询该客户是否存在(因市场处亦会维护KEY ACCOUNT)。 2、维护装运条件时,注意分公司与总公司的区别,若维护错,会影响后续下单。 3、参照创建总公司顾客主数据时,公司代码不要输,因为责任中心助理无总公司f001的权限。

2.流程图 3.系统操作 3.1.操作范例 新建和扩展一个直销客户 3.2.系统菜单及交易代码 后勤→销售和分销→主数据→商业伙伴→客户→创建→完成 交易代码:XD01 3.3.说明 每个顾客主数据包含三个部分,即: 一般数据:记录一些基本信息,如地址、电话等; 销售范围数据:包含与销售处理功能相关的信息,维护时必须指定销售组织/分销渠道; 公司代码数据:包含与财务处理功能相关的信息,维护时必须指定公司代码。 交易代码XD01〈完成〉指同时维护上述三部分信息 3.4.系统屏幕及栏位解释

SAP权限工具PFCG使用手册【SAP顾问联盟】

SAP权限工具PCFG使用手册 本文旨在描述SAP权限管理员使用PFCG工具对角色的建立和分配,以及对授权对象的增加和修改. 1角色的建立和分配 2.1 以SAP权限管理员的用户登录SAP R/3系统。 2.2 选择:Tools->Administration->User maintenance->Roles (T_Code: PFCG).如图一: (图一) 2.3 输入角色所需名称,点击按钮,如图二:

(图二) 2.4 在Description一栏中输入相关描述信息,保存后,点击按钮,如图三: 直接加入你所 需要的T_code 在标准菜单中 选择T-code 2.5 单击“Copy menus”中的“From the SAP menu”,将出现添加选择事务对话框,在SAP 标准菜单中选定要给该角色的管理职能(如图四),完成后,单击“transfer”完成配置。

(图四) 2.6 系统回到图三界面,菜单旁的红色标志会变为绿色,表明菜单选项完成配置,单击Authorizations图标,显示权限对话框(如图五)单击“change authorization data”。 (图五)

2.7 显示角色权限维护对话框(如图六),管理员对该角色的所有权限进行核查和维护,然后进 行保存配置信息,最后单击对话框的生成图标生成相关配置信息文档。权限配置完成 (图六) 2.8 在图五对话框中,单击用户图标,显示添加用户对话框(如图七),单击“选择”出现现有 用户信息(如图八)选定相应用户,单击“复制”,完成,对所做操作进行保存,完成添加用户操作。 (图七)

SAP采购主数据维护流程

【最新资料,Word版,可自由编辑!】

业务流程名称:采购主数据维护 流程编号及版本号 编号:BPD-MM03 版本:V1.0 业务流程定义文件签署表 业务流程定义文件是描述未来在SAP R/3中处理业务的详细流程定义,其定义的业务流程及其中所涉及的SAP功能已得到以下项目组成员的接受并已签署。

1. 业务流程目的: 采购主数据维护主要指采购价格的维护,以及系统中的货源清单和配额分配的维护。 2. 业务流程的相关原则: 2.1采购主数据存储了进行采购业务所需用的数据。包含以下三种数据: (1)信息记录–主要包含采购价格、价格条件(交货费用、关税等)、交货提前期及一些采购控制字段; (2)货源清单–主要指物料的合格供应商清单,指定哪些供应商或者框架协议是可用的; (3)配额分配–主要维护采购物料时的不同供应商的订单分配的配额比例; 2.2采购主数据维护的组织级别: (1)信息记录–在采购组织级别,根据不同的采购组织,为不同的工厂维护信息纪录; (2)货源清单–维护在工厂的级别,即对同一物料,可以在不同的工厂维护不同的货源清单; (3)配额分配- 在工厂级别维护,同一物料在不同的工厂可以维护不同的供应商配额分配; 2.3采购主数据维护的范围: 本流程中采购主数据维护的范围是:进行库存采购的物料的采购主数据、进行外协加工采购的物料的采购主数据及供应商寄存采购的物料的采购主数据。 2.4 采购主数据维护的注意事项: (1)采购主数据的维护应由各公司采购部门专门的维护员负责,保证维护权限的集中; (2)采购主数据的维护必需由采购员提交申请表,经过采购部门主管系统外审核签字后才能录入系统;

SAP客户主数据维护流程V110

业务流程名称:客户主数据维护流程 流程编号及版本号 编号:BPD-SD-01 版本:V1.0 业务流程定义文件签署表 业务流程定义文件是描述未来在SAP R/3中处理业务的详细流程定义,其定义的业务流程及其中所涉及的SAP功能已得到以下项目组成员的接受并已签署。

1. 业务流程目的: 描述在SAP系统中客户主数据的维护流程,包括客户主数据的创建、更新、冻结和解冻。 客户主数据维护范围包括光电科技公司、SMT公司和显示公司的销售客户。 客户主数据的构成: ?客户主数据由基本数据、公司数据(财务数据)和销售数据构成。客户基本数据包括客户名称、地址和联系人等,它独立于不同的公司代码,是各公司共有的数据。 ?公司数据包括客户的统驭科目和付款条件等,它是基于某个公司代码的数据视图。 ?销售数据包括销售地区、销售办公室、销售组、客户组、货币、发货工厂和信用控制范围等,它是基于指定的销售区域(销售组织、分销渠道和产品组)的数据视图。 2. 业务流程的相关原则: 2.1 客户主数据维护原则 客户主数据维护的基本原则是客户的业务由谁主导,谁负责客户主数据的维护。 客户主数据采用部分集中的维护原则,即所有客户的基本数据的维护由本部文档中心负责,客户公司数据(财务数据)和销售数据由各公司财务部负责维护。客户的冻结/解冻由各公司营销部负责,客户的冻结不会影响到其它公司。 新客户经过评估后、由营销部填写客户主数据维护申请表,经各公司营销主管审批后,由本部文档中心负责检查客户是否已经存在,并建立客户的基本数据。建立客户的基本数据后,由本部文档中心负责通知各公司财务部建立客户的公司数据和销售数据。 已存在客户的信息变更经过评估后、由营销部填写客户主数据维护申请表,经各公司营销主管审批后,涉及客户基本信息变更的由本部文档中心负责维护并通知各公司,其它信息变更由相关公司的财务部负责维护。 2.2 客户分类 SMT公司和显示公司都基本存在内销和外销业务,客户基本分为内销客户和外销客户。内销客户和外销客户在系统中采用不同的编码范围。如果外销客户在国内建立法人公司,成为内销客户时,需要在SAP中建立新的内销客户。 在系统中可维护客户不同的业务伙伴,包括售达方、送达方、开票方和付款方等。 2.3 客户编码

SAP BI用户权限管理手册

SAP培训:https://www.sodocs.net/doc/2d16457999.html, SAP BI用户权限管理手册 V1.0

SAP培训:https://www.sodocs.net/doc/2d16457999.html, 1目录 SAP BI用户权限管理手册 (1) 1简介 (2) 2BI后台权限管理 (2) 2.1建立权限对象 (2) 2.2创建角色并分配权限 (6) 2.3角色分配给用户 (8) 3EP权限管理 (11) 3.1创建角色 (11) 3.2添加Query (15) 3.3创建用户及映射 (17) 4测试 (19) 5结束语 (23)

SAP培训:https://www.sodocs.net/doc/2d16457999.html, 1简介 SAP BI是一个庞大而复杂的系统,它包括有企业数据仓库,商务智能平台,业务浏览器套件等主要模块。同时还提供了系统的管理和维护功能。在整个SAP商务智能系统中,有数据收集用户,有分析和使用数据的用户,有查询和读取报表的用户等,不同的用户所授予的权限是不同的,这就要求有灵活的权限控制方法。 本文主要结合陕西电网ERP项目开发实例,阐述了BI中用户权限设置方面的内容。从BI后台对权限对象的划分,创建角色,权限分配给用户,到EP(Enterprise Portal 企业级门户)中创建相应的角色,添加Query,创建用户及映射做了大致的过程描述。 本文所有实例都在BI 7.0下完成,并测试通过。 2BI后台权限管理 在整个BI后台权限管理中,可以大致分为3个步骤,1.建立权限对象,2.创建角色并分配权限,3.将角色分配给用户,通过这3个步骤,可以将需求中所要求的不同用户所具有的相应权限设置出来,从而达到权限设置的目的。 2.1建立权限对象 1. 首先启动SAP的登陆客户端,输入账号和密码。“客户端”一栏显示为“200”,这个数字代表现在的登陆的是开发系统,如下图所示。

(完整版)SAP主数据维护管理办法

备件主数据维护管理办法 第一章总则 第一条备件主数据是ERP系统中备件管理、备件供应的集成信息,是进行备件物料管理的基本条件,为了保证及时、准确地收集和维护备件主数据,满足ERP系统正常运行和备件业务运转对数据的需求,特制定本办法。 第二条本办法中主数据是指ERP系统(SAP/R3)中支持系统有效运行的备件静态数据,主要包括:物料主数据、供应商主数据、货源清单、采购信息记录。 第三条备件主数据维护原则: 一、唯一性:相同的主数据在系统中要求有唯一编码,唯一的描述,避免存在数据冗余; 二、完整性:主数据信息保持完整,要能够满足相关部门的业务运作需求; 三、准确性:主数据要符合相应的编码规则和技术规范,能

够清楚准确地表达主数据的含义; 四、时效性:主数据申请维护过程中,要充分体现时效性原则,提高工作效率,及时满足申请部门的需求。 第四条本办法适用于xxERP项目上线的总公司、xx公司、xx公司有关部门和生产厂。 第二章应用主数据内容和信息收集维护职责分工 第五条备件应用主数据内容: 一、模块内主数据(MMBJ模块):货源清单、采购信息记录、 二、跨模块主数据(MM;MMBJ;SD模块):物料主数据、供应商主数据。 第六条备件模块内和跨模块主数据由XX总公司设备部备件处负责组织收集相关信息,并进行系统维护。 第七条模块内主数据信息收集维护职责分工: 一、货源清单由设备部备件处计划科负责组织收集相关信息,并进行系统维护; 二、采购信息记录由设备部备件处价格科负责组织收集相关信息,并进行系统维护。 第八条跨模块主数据信息收集维护职责分工:

一、物料主数据由设备部备件处计划科负责组织收集基本视图、分类视图、销售视图、采购视图、库存视图、财务成本视图中的相关信息。 二、供应商主数据由设备部备件处质量管理科负责组织收集采购视图中供应商的相关信息; 第三章备件物料主数据维护管理 第九条备件物料主数据维护工作流程: 一、各单位备件员根据生产现场备件变化情况,做以下主数据维护工作: (一)对新投产设备、更新改造设备增加的新的备件项目;对在用设备发生的备件项目,按标准机械备件、非标准机械备件(其中:天车备件、皮带机备件、偶合器要与其它非标专用件分开)、小型机械备件、电气备件、计控备件、机车备件、汽车备件、生产工具专业(以下简称各专业)分别提出新增备件物料主数据项目明细; (二)对新投产设备、更新改造设备增加的新的备件项目,在收集物料主数据时,要避免同一物料,多个图纸编号造成的物料不唯一性;

sap权限设定(完整版)

权限设定操作手册 权限维护

1.注意 1.1.用户、角色、事务代码、授权对象的关系 -用户:由几个角色组成 -角色:由一系列事务代码搭建 -事务代码:需要系统规定的必要授权对象才能运行 -授权对象:由它的参数来定义 1.2.权限设定须谨慎 -权限设定非常重要,并且权限的排错查询非常繁琐、耗时,因此在做权限设定时一定要谨慎,每次更改都要记录。 1.3.测试环境下修改 -除非特殊情况,权限设定不允许在正式环境直接更改。 -一般都是在测试环境修改、测试成功后,再传到正式环境。 1.4.拒绝不合理权限要求 -Basis不是决定用户权限范围的人,而是实际管理中大大小小业务流的管理者。 -所以,变更权限设定,务必要求用户提供经过领导签核的申请表。 -对于用户不合理的权限要求,顾问有责任拒绝。

2.角色维护 2.1.作业说明 -基本 由权限的大架构有User ID(用户),Role(角色),Profile(权限参数文件)三层,可知权限的设定也会有相应的三层。 -目的 SAP中的权限管理可以通过建立若干角色的方式进行,角色的定义为SAP中单个或者多个事务代码(T-Code)组成的一个角色定位。 角色是指在业务中事先定义的执行特殊职能的工作。 可以为单个的用户的需求去创建角色,也可以通过事务代码创建角色,然后分配给各个需要这些角色的用户。 -创建角色主要有三种方式: 手工创建。适合所有新建角色的需求,主要对应权限追加; 继承。主要对应设定派生角色; 复制。主要对应设定基本的角色。 -继承与复制创建角色的区别: 用继承的方式建立新角色,继承后,只需要填写Org.level,Object就全部标识为绿灯。 用复制的方式建立新角色,需要在Object里填入值,Object才能全部标识为绿灯。 以上是两者操作上最大的区别。

SA采购主数据维护流程P

【最新资料,Word版,可自由编辑!】 业务流程名称:采购主数据维护 流程编号及版本号 编号:BPD-MM03 版本:V1.0 业务流程定义文件签署表 业务流程定义文件是描述未来在SAP R/3中处理业务的详细流程定义,其定义的业务流程及其中所涉及的SAP功能已得到以下项目组成员的接受并已签署。 项目中职务姓名签字日期 谢芳 TCL部品(光电科技) 关键用户 王晓峰 TCL部品(光电科技) 流程所有人 TCL光机关键用户李庞晋 阎晓莉 赵心亚 TCL光机流程所有人朱林 TCL显示关键用户王妙荣 TCL显示流程所有人戴谋新 IBM顾问刘庆 TCL项目经理林雪梅 IBM项目经理夏玲芳

1. 业务流程目的: 采购主数据维护主要指采购价格的维护,以及系统中的货源清单和配额分配的维护。 2. 业务流程的相关原则: 2.1采购主数据存储了进行采购业务所需用的数据。包含以下三种数据: (1)信息记录–主要包含采购价格、价格条件(交货费用、关税等)、交货提前期及一些采购控制字段; (2)货源清单–主要指物料的合格供应商清单,指定哪些供应商或者框架协议是可用的; (3)配额分配–主要维护采购物料时的不同供应商的订单分配的配额比例; 2.2采购主数据维护的组织级别: (1)信息记录–在采购组织级别,根据不同的采购组织,为不同的工厂维护信息纪录; (2)货源清单–维护在工厂的级别,即对同一物料,可以在不同的工厂维护不同的货源清单; (3)配额分配- 在工厂级别维护,同一物料在不同的工厂可以维护不同的供应商配额分配; 2.3采购主数据维护的范围: 本流程中采购主数据维护的范围是:进行库存采购的物料的采购主数据、进行外协加工采购的物料的采购主数据及供应商寄存采购的物料的采购主数据。 2.4 采购主数据维护的注意事项: (1)采购主数据的维护应由各公司采购部门专门的维护员负责,保证维护权限的集中; (2)采购主数据的维护必需由采购员提交申请表,经过采购部门主管系统外审核签字后才能录入系统; (3)采购主数据维护员录入采购价格后,定期从系统中打印出所维护的价格,经人工检查后由采购主管签字确认后存档; (4)对于部品事业本部的战略性供应商与物料的采购主数据维护,不在本流程中体现,参考相应的外部流程。 3. 业务流程所带来的相关规则和政策改变 3.1相关的规则和政策改变 ?规范了采购主数据的维护流程; ?各公司必须制定相应的采购主数据维护制度,明确维护的审批政策、维护的时效、单 据的传递与管理及相关责任人等 3.2 对组织结构调整的要求

主数据维护流程规章制度说明

主数据维护流程规章制度说明 目录 主数据维护流程规章制度说明 (1) 目的 (2) 责任 (2) 适用范围 (2) 术语和定义 (2) 主数据维护管理流程 (2) 制度说明简介 (2) 1用户权限维护 (3) 1.1权限维护流程 (3) 1.2表格填写说明 (3) 2职责维护 (3) 2.1 职责维护流程 (3) 2.2表格填写说明 (3) 2.3注意事项 (3) 3物料数据维护 (4) 3.1物料维护流程 (4) 3.2注意事项 (4) 3.3表格填写说明 (4) 4供应商维护 (4) 4.1供应商维护流程 (4) 4.2表格填写说明 (5) 5 审批链维护 (6) 5.1审批链维护流程 (6) 5.2表格填写说明 (6) 6 关键用户 (6) 7非深圳地区维护补充说明 (7) 8表格更新说明 (7) 9附录 (7) 9.1用户权限维护申请表 (7) 9.2职责维护申请表 (9) 9.3物料维护Excel表 (10) 9.4供应商维护申请表 (10) 9.5审批链维护申请表 (10)

目的 规范主数据维护的流程和表格填写说明,确保ERP主数据的准确性以及所有数据维护都有源可溯,所有主数据维护都将依照此规章制度执行。 责任 所有涉及ERP主数据维护的用户,遵守此规章流程申请将数据维护到ERP系统中。 适用范围 所有需要提交ERP数据维护的生产、行政、财务、采购及流程信息化的同事。术语和定义 无 主数据维护管理流程 制度说明简介 主数据维护流程规章制度旨在规范主数据维护的流程,确保ERP主数据的准确性以及所有数据维护都有源可溯,所有主数据维护都将依照此规章制度执行。此规章制度将分别说明各个主数据的流程和表格填写规范等。 1、用户权限维护 2、职责维护 3、物料数据维护 4、供应商维护 5、审批链维护

SAP角色权限设置

SAP角色权限设置 一、MM模块角色规范要求 (2) 二、角色建立 (2) 1、新角色新建 (2) 2、新角色复制 (8) 3、角色批量比较 (10) 三、角色传输 (11) 四、角色维护注意点 (15) 1、主数据 (15) 2、采购管理 (16) 3、库存管理 (17) 4、用户权限查看 (19)

一、MM模块角色规范要求 角色名规范:MM_WERKS_FUNC_ACTVT。如:MM_SBSX_PO_MATN。 角色描述规范:MM WERKS FUNC作业描述。如:MM SBSX PO维护。 作业缩写规范:维护MA TN—包含了创建与更改权限。创建CREA,更改为CHANGE,显示DISP,审批REL。 建议在角色进行用户分配时,如果有创建、更改、审批权限时,就不需要再分配显示权限,一般在设置时,创建、更改或审批权限都包含有显示权限。在设置审批权限时需要给对应的更改权限,否则单独把该权限分配给用户,用户是无法正常操作的。 二、角色建立 使用事务码PFCG进入操作界面 1、新角色新建 输入需要新建的角色

点按钮, 输入规范的角色描述后,进入菜单屏幕,

从选择角色需要的路径, 选择相应的维护路径后,点左下角的返回到菜单界面, 然后进入权限界面,进行权限参数维护,权限参数名建议点键自动生成,

然后点进入具体参数设置,首先维护组织级别, 然后点左下角保存按钮,可先打开技术名称, 对需要人工添加的授权对象,点,然后维护授权对象名称,

系统将在相应的路径下添加该对象, 对于不需要的路径,点该路径右边,该路径将变为未激活。 在所有路径进行相应维护后,点保存,然后再点, 点,参数文件已生成,返回到原始界面,至此角色已维护好,最后一步工作是进行用户分配,

客户主数据维护流程

第二章-SD02_客户主数据维护流程 1.流程说明 1.1.总述: 该流程描述了客户主数据的维护过程。客户主数据为创建订单的先决条件,客户主数据中的内容必须完全正确,并将作为后续单据中的各项信息的来源。 1.2.流程重点: 数据维护范围,客户数据扩展方法 在系统中,由于存在总公司、分公司两份订单,为了在总公司订单中实现:总公司订单的售达方为分公司、送达方为直接顾客,所以 1、责任中心助理在自己的销售组织下创建客户主数据的同时,还必须在总公司的销售组织 下创建该客户主数据(用COPY 的方法,并且用一个客户编号,客户编号人工编排)产销接 单人员必须维护分公司-这个特殊的顾客的主数据。 2、市场处人员在创建KEY ACCOUNT时,必须注意扩展到各销售组织的完成。 3、为维护客户主数据的保密性,在系统中的“一般数据“、“公司代码数据”及“销售数据” 中须在“权限组”栏位KEY IN 自己的责任中心编号,已作到本责任中心客户仅自己可以查 阅。 1.3.操作要点: 1、维护新客户时须先查询该客户是否存在(因市场处亦会维护KEY ACCOUNT)。 2、维护装运条件时,注意分公司与总公司的区别,若维护错,会影响后续下单。 3、参照创建总公司顾客主数据时,公司代码不要输,因为责任中心助理无总公司f001的权限。

2.流程图 3.系统操作 3.1.操作范例 新建和扩展一个直销客户 3.2.系统菜单及交易代码 后勤→销售和分销→主数据→商业伙伴→客户→创建→完成 交易代码:XD01 3.3.说明 每个顾客主数据包含三个部分,即: 一般数据:记录一些基本信息,如地址、电话等; 销售范围数据:包含与销售处理功能相关的信息,维护时必须指定销售组织/分销渠道; 公司代码数据:包含与财务处理功能相关的信息,维护时必须指定公司代码。 交易代码X D01〈完成〉指同时维护上述三部分信息 3.4.系统屏幕及栏位解释 栏位名称栏位说明资料范例 1110 科目组用于财务帐的客户科目分配,目前定义的科目组为:1110:国内直销; 1120:国外直销;1120:国外直销;1210:国内经销;1220:国外经销; 1310:国内收货方;1320:国外收货方;1410:分公司;1510:国内关联企 业;1520:国外关联企业;1610:国内OEM销售;1620:国外OEM销售; 客户客户编号,外部手工给号(规则:首位2开头,2-3位为分公司代码后两 位,4-6位为联络处代码(对于联络处)或责任中心代码后三位(对于责 任中心),7-10位为流水号。 F011 公司代码所属分公司的代码:(总部:F001;浦西分公司:F011;广州分公 司:F015) 责任中心助理在将客户扩展至总公司时不需KEY IN公司代码数据 (F001) 销售组织指顾客主数据所在销售组织,编号与分公司代码一致F011 分销渠道10:直销;20经销;30出口;40总公司销售到分公司10

相关主题