搜档网
当前位置:搜档网 › UART串口MP3方案

UART串口MP3方案

UART串口MP3方案
UART串口MP3方案

UART串口MP3芯片方案

一、简介

UART接口基本上是单片机[MCU]的标配外设,它以其控制简单,成熟稳定等特性,被广泛的应用在很多控制领域,如我们的电脑主板,工业用的PLC等等。所以使用UART串口作为我们MP3方案的接口,无疑是一个前所未有的亮点。另外我们支持外部设备,如:TF 卡、U盘、SPIFLASH,无需用户编写驱动,全部串口控制,非常的简单。

二、分析

KT403A MP3音频解码芯片是一个提供串口控制的语音芯片,完美的集成了MP3、WA V、WMA的硬解码。同时软件支持SD卡驱动和USB驱动,支持FA T16、FA T32文件系统。通过简单的串口指令即可完成播放指定的音乐,以及如何播放音乐等功能,无需繁琐的底层操作,使用方便,稳定可靠是此款产品的最大特点。同时USB直接枚举SPIFLASH成U盘,也是一个很大的亮点功能

VS1003和KT403A对比

序列VS1003KT403A

支持的格式MP3、WMA、WAV MP3、WAV

控制方式SPI送数据串口指定播放

封装LQFP48、BGA49SSOP24

价格10元以上不超过5元

上市时间2003年2012年

特点外接MCU,通过MCU来送音频数据供芯片来解码播

放,需要MCU完成读取SD卡或者其它存储介质

VS1003只完成解码,并输出声音

外接MCU,通过串口直接控制KT540B

SD卡、U盘、FLASH,均由KT540B自己完成,无需用

户关心

音质18位的DAC24位DAC

音效足够应用一般的场合,和电脑音质相当和电脑的音质相当

外围复杂度外围的器件非常多外围4个电容即可工作,无需晶振供电电压 3.6V-5V 3.6V-5V

电流待机电流低于1MA待机电流高于5MA

三、下面就分软件和硬件,这两个方面来全面的剖析我们的方案

1、方案框图

2、硬件参考电路说明

四、通讯指令

我们的通讯分为以下两大块

?控制指令

?查询芯片的参数以及状态

3.2.1控制指令

CMD命令对应的功能参数(16位) 0x01下一曲

0x02上一曲

0x03指定曲目(NUM)详见3.4.1

0x04音量+

0x05音量-

0x06指定音量详见3.4.2

0x08单曲循环指定曲目播放详见3.4.3

0x09指定播放设备详见3.4.4

0x0A进入睡眠--低功耗详见3.4.5

0x0B唤醒睡眠

0x0C模块复位任何状态有效

0x0D播放

0x0E暂停

0x0F指定文件夹文件名播放详见3.4.6

0x13插播广告详见3.4.7

0x14单个文件夹支持1000首曲目保留

0x15停止插播播放背景音乐详见3.4.9

0x16停止详见3.4.9

0x17指定文件夹循环播放详见3.4.10

0x18指定根目录随机播放详见3.4.11

0x19对当前播放的曲目设置为循环播放详见3.4.12

0x1A开启和关闭芯片的DAC输出详见3.4.13

0x21组合播放详见3.4.14

0x22指定音量同时指定文件播放详见3.4.15

0x25多文件夹插播详见3.4.16

3.2.2查询指令

这里是查询芯片的状态和相关的参数

CMD命令详解(查

询)对应的功能参数(16位)

0x3C保留

0x3D保留

0x3E保留

0x3F查询在线的设备详见3.5.1

0x40返回错误,请求重发

0x41应答

0x42查询当前状态详见3.4.10

0x43查询当前音量

0x44查询当前EQ保留

0x45保留该版本保留此功能

0x46保留该版本保留此功能

0x47查询UDISK文件总数U盘内部的总文件数[MP3/WAV文件] 0x48查询TF文件总数TF卡内部的总文件数[MP3/WAV文件] 0x49查询FLASH的总文件数FLASH内部总文件数[MP3/WAV文件] 0x4B查询UDISK的当前曲目物理顺序

0x4C查询TF的当前曲目物理顺序

0x4D查询FLASH的当前曲目物理顺序

0x4E查询指定文件夹的曲目总数详见3.5.3

0x4F查询当前设备的总文件夹数详见3.5.4

4.7USB更新语音说明[业内首创功能]

我们的模块可以使用手机充电线直接更新语音,方便、灵活。这里分两种设备

?USB更新SPIFLASH的语音模式

?USB更新TF卡内的语音模式

其实SPIFLASH和TF卡,在插入USB连接电脑,原则上是一致的,使用的都是MASSSTORAGE协议。但是目前技术上面,暂时还没办法实现插上USB连接电脑,同时显示TF卡和SPIFLASH的盘符功能。这里就分为两种操作,针对芯片说明

1、芯片一上电检测到USB连接电脑,则进入SPIFLASH的读卡器功能

2、芯片上电没检测到USB连接电脑,进入正常工作模式。如果有USB连接至电脑,则进入TF卡读卡器模式。如果此时没有TF卡在线,则还是进入SPIFLASH的盘符模式。

4.7.1USB更新SPIFLASH的语音详细说明

我们的模块可以使用手机充电线直接更新语音,方便、灵活。我们的优势如下

?可以按照客户的要求,更正下载语音的窗口信息

?无需安装任何软件,直接更新,也不需要专用下载器

?对音质无任何压缩和损坏,保证更高的音质体验

1、插上我们模块的USB之后,可以以SPIFLASH作为存储介质的U盘,如下图

(1)、可以从上图看到FLASH的总容量为15.8M字节。已经使用的空间为15.4M字节。虚拟出来的设备的文件系统的为FAT格式。FAT文件系统占的存储空间为442K

(2)、进入设备之后,如下图

可以很清晰的看到设备里面的文件,以及文件名称。可以像操作U盘或者读卡器一样操作FLASH.只是速度会比他们慢。至于为什么后面会详细解释。

(3)、无论用户使用多大容量的FLASH,我们模块都是支持的,并且内部已经做了自动识别,无需用户操心,用户也仅仅需要根据自己的需求来确定FLASH的容量和型号。

(4)、目前经过我们反复的测试和验证,SPIFLASH支持最大的容量为32M字节的,但是32M 字节的flash市场上很难够买到,并且成本比较高。

五、注意事项点

芯片上电的工作流程图

1、我司提供的所有模块的串口部分的操作,均是一样的协议,所以不用担心不同模块的不兼容

2、如果对串口的操作,有任何不明白的,请一定联系我们,索取串口编程参考例程。

3、我们产品的更新,也一定会按照当前的协议版本,做到向下兼容。

四、总结

尽管市场很大,需求也不尽相同,只能知晓客户最终的需求,才能寻找最合适的方案来设计产品,但是我们只有知晓更多性价比更高的方案,才能组在产品开发的关头信手拈来,这样才能加快产品的推向市场

cc2530串口UART0通信实验(20200627130016)

/********************* 头文件*************************************************/ #include #include /********************* 宏定义*************************************************/ #define uint unsigned int #define uchar unsigned char // --------------- LED 控制端口------------------------------- // #define GLED P1_0〃绿色LED定义 #define RLED P1_1〃红色LED定义 // --------------- 按键输入端口------------------------------- // #define KEY1 P0_0 /********************* 全局变量**********************************************/ unsigned char Uart0_Rx; unsigned char Text_Data[]=" 海舟物联网教育!\r\n"; /********************* 函数声明***********************************************/ void Delay(uint); void Init_LED(void); void Init_Uart0(void); void Init_Sysclk(void); void Uart0_TX_Data(unsigned char *Data,int len); /****************************************************************************** * 函数名称: void Delay(uint n) * 函数功能: 软件延时函数 * 入口参数: * 出口参数: * 备注: ******************************************************************************/ void Delay(uint n) { uint i; for(i=0;i

UART串口通信设计实例

2.5 UART串口通信设计实例(1) 接下来用刚才采用的方法设计一个典型实例。在一般的嵌入式开发和FPGA设计中,串口UART是使用非常频繁的一种调试手段。下面我们将使用Verilog RTL编程设计一个串口收发模块。这个实例虽然简单,但是在后续的调试开发中,串口使用的次数比较多,这里阐明它的设计方案,不仅仅是为了讲解RTL编程,而且为了后续使用兼容ARM9内核实现嵌入式开发。 串口在一般的台式机上都会有。随着笔记本电脑的使用,一般会采用USB转串口的方案虚拟一个串口供笔记本使用。图2-7为UART串口的结构图。串口具有9个引脚,但是真正连接入FPGA开发板的一般只有两个引脚。这两个引脚是:发送引脚TxD和接收引脚RxD。由于是串行发送数据,因此如果开发板发送数据的话,则要通过TxD线1 bit接着1 bit 发送。在接收时,同样通过RxD引脚1 bit接着1 bit接收。 再看看串口发送/接收的数据格式(见图2-8)。在TxD或RxD这样的单线上,是从一个周期的低电平开始,以一个周期的高电平结束的。它中间包含8个周期的数据位和一个周期针对8位数据的奇偶校验位。每次传送一字节数据,它包含的8位是由低位开始传送,最后一位传送的是第7位。

这个设计有两个目的:一是从串口中接收数据,发送到输出端口。接收的时候是串行的,也就是一个接一个的;但是发送到输出端口时,我们希望是8位放在一起,成为并行状态(见图2-10)。我们知道,串口中出现信号,是没有先兆的。如果出现了串行数据,则如何通知到输出端口呢?我们引入“接收有效”端口。“接收有效”端口在一般情况下都是低电平,一旦有数据到来时,它就变成高电平。下一个模块在得知“接收有效”信号为高电平时,它就明白:新到了一个字节的数据,放在“接收字节”端口里面。

uart串口资料

Application Note Specifications subject to change without notice, contact your sales representatives for the most recent information. UART 功能使用方法 1 適用產品:SM59R16A 2 / SM59R08A2 2 UART 使用概述: 2.1 提供兩組串通訊列埠 (UART0, UART1) 2.2 每一組UART 分別有獨立的緩衝記憶體,且傳送及接收則是共用. UART0 使用S0BUF UART1 使用S1BUF 當執行資料接收時,必須在前一筆資料完成執行工作後,否則會造成資料流失的問題;可由送傳中斷旗標或接收中斷旗標判斷是否完成執行工作的狀態. 2.3 當使用串通訊列埠時,系統時脈來源建議使用外部晶振.由於內部晶振頻率的誤差約為+5%,當 使用串通訊列埠時,系統時脈必須要求晶振頻率的誤差約為+2%. 3 以下說明與UART 相關的特殊控制暫存器及特殊狀態暫存器 Special Function Register (SFR) Mnemonic Description Direct Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 RESE T Serial interface 0 and 1 PCON Power control 87h SMOD MDUF - PMW - - STOP IDLE 00h BRGS Baud rate generator switch D8h BRS - - - - - - - 00h S0CON Serial Port 0 control register 98h SM0 SM1 SM20REN0TB80 RB80 TI0 RI0 00h S0RELL Serial Port 0 reload register low byte AAh S0REL .7 S0REL .6 S0REL .5 S0REL .4 S0REL .3 S0REL .2 S0REL .1 S0REL .0 00h S0RELH Serial Port 0 reload register high byte BAh - - - - - - S0REL .9 S0REL .8 00h S0BUF Serial Port 0 data buffer 99h S0BUF[7:0] 00h S1CON Serial Port 1 control register 9Bh SM - SM21REN1TB81 RB81 TI1 RI1 00h S1RELL Serial Port 1 reload register low byte 9Dh S1REL .7 S1REL .6 S1REL .5 S1REL .4 S1REL .3 S1REL .2 S1REL .1 S1REL .0 00h S1RELH Serial Port 1 reload register high byte BBh - - - - - - S1REL .9 S1REL .8 00h S1BUF Serial Port 1 data buffer 9Ch S1BUF[7:0] 00h

dsp实验-UART串口通信实验

实验八、UART串口通信实验 一、实验目的 1. 了解RS232通信接口的基本原理; 2. 熟悉通信接口芯片(TL16C550C)在DSP I/O空间寄存器的地址映射 及工作原理; 3.了解异步通信中串口模式选择、设置数据传输格式、设置波特率、建立连接、传输数据和断开连接等功能。 二、实验设备 1. 集成开发环境CCS 2. 实验开发板TMS320VC5402DSK、RS232接口电缆线及附件 3.程序“串口调试程序v2.2.exe” 三、实验内容及步骤 实验操作流程参照前面实验。 1 在汇编环境调试Uart:(实现字符或文件的发送和回发功能) a. 实验代码main.s54、uartasm.cmd和uart_init.s54、dsp_init.s54 以及uartasm.h54,c5402_dsk.gel(说明同前)。 b. 串口调试程序“串口调试程序v2.2.exe” , 汇编调试中Build option设置情况与CODEC实验中的汇编调试设置及出错情况相同。 c. 程序文件介绍: 1)“uart.h54”定义了一些寄存器的地址以及函数类型。 2)“dsp_init.s54”与dsp工作有关的寄存器ST1、PMST、IMR、IFR和SWWSR,并且清除INTM位以及设定时钟模式。 3)“uart_init.s54”先检测UART模块是否工作正常,然后设定UART模块的寄存器,如CNTL1、CNTL2、LCR、MSB&LSB(设定波特率)、FCR、IER 等。 4)“main.s54”主程序查看标志位,检测是否UART存在有效接收数据。若有,则执行一定的处理,包括亮LED以及将接收的数据从UART回发。 d. 执行程序时,只要发送数据时,可在串口调试程序的接收窗口立即看到回发的数据。 e. 程序中UART工作参数设置如下: 1)波特率9600(或更低)、无数据校验、字符长度8比特、停止位1、

UART串行口简介

UART异步串行口 UART异步串行口简介 数据通信的基本方式可分为并行通信与串行通信两种: 并行通信:是指利用多条数据传输线将一个资料的各位同时传送。它的特点是传输速度快,适用于短距离通信,但要求通讯速率较高的应用场合。 串行通信:是指利用一条传输线将资料一位位地顺序传送。特点是通信线路简单,利用简单的线缆就可实现通信,降低成本,适用于远距离通信,但传输速度慢的应用场合。 UART 异步串行口的传输格式 异步通信以一个字符为传输单位,通信中两个字符间的时间间隔是不固定的,然 而在同一个字符中的两个相邻位代码间的时间间隔是固定的。 通信协议(通信规程):是指通信双方约定的一些规则。在使用异步串口传送一个 字符的信息时,对资料格式有如下约定:规定有空闲位、起始位、资料位、奇偶校验位、停止位。通讯时序图如下: 开始前,线路处于空闲状态,送出连续“1”。传送开始时首先发一个“0”作为 起始位,然后出现在通信线上的是字符的二进制编码数据。 每个字符的数据位长可以约定为5 位、6 位、7 位或8 位,一般采用ASCII 编码。后面是奇偶校验位,根据约定,用奇偶校验位将所传字符中为“1”的位数凑成奇 数个或偶数个。也可以约定不要奇偶校验,这样就取消奇偶校验位。 最后是表示停止位的“1”信号,这个停止位可以约定持续1 位、1.5 位或2 位 的时间宽度。 至此一个字符传送完毕,线路又进入空闲,持续为“1”。经过一段随机的时间后,下一个字符开始传送才又发出起始位。 每一个数据位的宽度等于传送波特率的倒数。微机异步串行通信中,常用的波特 率为110,150,300,600,1200,2400,4800,9600 ,19200,38400,115200等。 S3C2410的异步串行口 1

UART串口初始化函数

UART串口初始化函数.txt每个女孩都曾是无泪的天使,当遇到自己喜欢的男孩时,便会流泪一一,于是坠落凡间变为女孩,所以,男孩一定不要辜负女孩,因为女孩为你放弃整个天堂。朋友,别哭,今夜我如昙花绽放在最美的瞬间凋谢,你的泪水也无法挽回我的枯萎~~~/**************************************************************************** ***************** 函数名:UART串口初始化函数 调用:UART_init(); 参数:无 返回值:无 结果:启动UART串口接收中断,允许串口接收,启动T/C1产生波特率(占用) 备注:振荡晶体为12MHz,PC串口端设置 [ 4800,8,无,1,无 ] /******************************************************************************* ***************/ void UART_init (void){ EA = 1; //允许总中断(如不使用中断,可用//屏蔽) ES = 1; //允许UART串口的中断 TMOD = 0x20; //定时器T/C1工作方式2 SCON = 0x50; //串口工作方式1,允许串口接收(SCON = 0x40 时禁止串口接收)TH1 = 0xF3; //定时器初值高8位设置 TL1 = 0xF3; //定时器初值低8位设置 PCON = 0x80; //波特率倍频(屏蔽本句波特率为2400) TR1 = 1; //定时器启动 } /******************************************************************************* ***************/ /******************************************************************************* ************** 函数名:UART串口初始化函数 调用:UART_init(); 参数:无 返回值:无 结果:启动UART串口接收中断,允许串口接收,启动T/C1产生波特率(占用) 备注:振荡晶体为11.0592MHz,PC串口端设置 [ 19200,8,无,1,无 ] /******************************************************************************* ***************/ void UART_init (void){ EA = 1; //允许总中断(如不使用中断,可用//屏蔽) ES = 1; //允许UART串口的中断 TMOD = 0x20; //定时器T/C1工作方式2 SCON = 0x50; //串口工作方式1,允许串口接收(SCON = 0x40 时禁止串口接收)

SPI、I2C、UART三种串行总线的原理、区别及应用

简单描述: SPI 和I2C这两种通信方式都是短距离的,芯片和芯片之间或者其他元器件如传感器和芯片之间的通信。SPI和IIC是板上通信,IIC有时也会做板间通信,不过距离甚短,不过超过一米,例如一些触摸屏,手机液晶屏那些很薄膜排线很多用IIC,I2C能用于替代标准的并行总线,能连接的各种集成电路和功能模块。I2C 是多主控总线,所以任何一个设备都能像主控器一样工作,并控制总线。总线上每一个设备都有一个独一无二的地址,根据设备它们自己的能力,它们可以作为发射器或接收器工作。多路微控制器能在同一个I2C总线上共存这两种线属于低速传输; 而UART是应用于两个设备之间的通信,如用单片机做好的设备和计算机的通信。这样的通信可以做长距离的。UART和,UART就是我们指的串口,速度比上面三者快,最高达100K左右,用与计算机与设备或者计算机和计算之间通信,但有效范围不会很长,约10米左右,UART优点是支持面广,程序设计结构很简单,随着USB的发展,UART也逐渐走向下坡; SmBus有点类似于USB设备跟计算机那样的短距离通信。 简单的狭义的说SPI和I2C是做在电路板上的。而UART和SMBUS是在机器外面连接两个机器的。 详细描述: 1、UART(TX,RX)就是两线,一根发送一根接收,可以全双工通信,线数也比较少。数据是异步传输的,对双方的时序要求比较严格,通信速度也不是很快。在多机通信上面用的最多。 2、SPI(CLK,I/O,O,CS)接口和上面UART相比,多了一条同步时钟线,上面UART 的缺点也就是它的优点了,对通信双方的时序要求不严格不同设备之间可以很容易结合,而且通信速度非常快。一般用在产品内部元件之间的高速数据通信上面,如大容量存储器等。 3、I2C(SCL,SDA)接口也是两线接口,它是两根线之间通过复杂的逻辑关系传输数据的,通信速度不高,程序写起来也比较复杂。一般单片机系统里主要用来和24C02等小容易存储器连接。 SPI:高速同步串行口。3~4线接口,收发独立、可同步进行 UART:通用异步串行口。按照标准波特率完成双向通讯,速度慢 SPI:一种串行传输方式,三线制,网上可找到其通信协议和用法的 3根线实现数据双向传输 串行外围接口 Serial peripheral interface UART:通用异步收发器 UART是用于控制计算机与串行设备的芯片。有一点要注意的是,它提供了

UART串口通信实验报告

实验四 UART 串口通信 学院:研究生院 学号:1400030034 姓名:张秋明 一、 实验目的及要求 设计一个UART 串口通信协议,实现“串 <-->并”转换功能的电路,也就是 “通用异步收发器”。 二、 实验原理 UART 是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实 现全双工传输和接收。在嵌入式设计中,UART 用来主机与辅助设备通信,如汽 车音响与外接AP 之间的通信,与PC 机通信包括与监控调试器和其它器件,如 EEPROM 通信。 UART 作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一 位接一位地传输。 其中各位的意义如下: 起始位:先发出一个逻辑” 0的信号,表示传输字符的开始。 资料位:紧接着起始位之后。资料位的个数可以是 4、5、6、7、8等,构成 一个字符。通常采用ASCII 码。从最低位开始传送,靠时钟定位。 奇偶校验位:资料位加上这一位后,使得“ 1的位数应为偶数(偶校验)或奇数 (奇校验),以此来校验资料传送的正确性。 停止位:它是一个字符数据的结束标志。可以是 1位、1.5位、2位的高电 平。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能 在通信中两台设备间出现了小小的不同步。 因此停止位不仅仅是表示传输的结束, 并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步 的容忍程度越大,但是数据传输率同时也越慢。 空闲位:处于逻辑“ 1状态,表示当前线路上没有资料传送。 波特率:是衡量资料传送速率的指标。表示每秒钟传送的符号数(symbol )。 一个符号代表的信息量(比特数)与符号的阶数有关。例如资料传送速率为 120 字符/秒,传输使用256阶符号,每个符号代表8bit ,则波特率就是120baud,比 特率是120*8=960bit/s 。这两者的概念很容易搞错。 三、 实现程序 library ieee; use ieee.std 」o gic_1164.all; end uart; architecture behav of uart is en tity uart is port(clk : in std_logic; rst_n: in std 」o gic --系统时钟 --复位信号 rs232_rx: in std 」o gic rs232_tx: out std 」o gic --RS232接收数据信号; --RS232发送数据信号;); use ieee.std_logic_ un sig ned.all;

UART串口通信实验报告

实验四UART串口通信 学院:研究生院学号:1400030034姓名:张秋明 一、实验目的及要求 设计一个UART串口通信协议,实现“串<-->并”转换功能的电路,也就是“通用异步收发器”。 二、实验原理 UART是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输和接收。在嵌入式设计中,UART用来主机与辅助设备通信,如汽车音响与外接AP之间的通信,与PC机通信包括与监控调试器和其它器件,如EEPROM通信。 UART作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一位接一位地传输。 其中各位的意义如下: 起始位:先发出一个逻辑”0”的信号,表示传输字符的开始。 资料位:紧接着起始位之后。资料位的个数可以是4、5、6、7、8等,构成一个字符。通常采用ASCII码。从最低位开始传送,靠时钟定位。 奇偶校验位:资料位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送的正确性。 停止位:它是一个字符数据的结束标志。可以是1位、1.5位、2位的高电平。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。 空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。 波特率:是衡量资料传送速率的指标。表示每秒钟传送的符号数(symbol)。一个符号代表的信息量(比特数)与符号的阶数有关。例如资料传送速率为120字符/秒,传输使用256阶符号,每个符号代表8bit,则波特率就是120baud,比特率是120*8=960bit/s。这两者的概念很容易搞错。 三、实现程序 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; entity uart is port(clk : in std_logic; --系统时钟 rst_n: in std_logic; --复位信号 rs232_rx: in std_logic; --RS232接收数据信号; rs232_tx: out std_logic --RS232发送数据信号;); end uart; architecture behav of uart is

UART串口编程

UART串口编程 首先明确一点:我们学习的串口是异步串口。在传输时,他们各自有各自的时钟。就是我们说的波特率。 我们学习的RS232与UART的区别是,UART使用标准的TTL/COMS电平进过一个芯片使它的高低电平从TTL中0与3.3V 变成了低电平5v到15v 高电平-3v到-12v。 首先说一下串口的数据帧格式。它由一个开始位,数据位,校验位和停止位组成。 平时数据处于1状态。 当要开始发送时,从UART改变TxD数据变成0状态1个位的时间,在接受端到0之后的1.5位的时间,接收端开始接受数据。 数据位分为5,6,7,8。四种类型的数据位。之后就是校验位站1位,可以设置也可以不设置。最后的是停止位。可以是1位,1.5位,2位。这个是高电平1。 UART可以用中断或DMA来工作。它有3个单独的通道。它由4部分组成,发送器,接收器,波特率发生器,控制逻辑组成。 这些部分的设置都是通过寄存器来实现的。

发送的过程是这样的,UART只能通过shifter一位一位的来发数据。它先把要发的数据放到它的缓存FIFO里,当然缓存也可以取消。然后放入shifter里面来发出去。接受也是一样的。通过缓存来接受,然后再通过接受的shifter来接。 具体继电器的设置主要由以下几个: ULCON 逻辑数据桢格式控制器 UCON 串口的控制继电器 UFCON FIFO控制寄存器 UMCON 串口MODEN控制器(可以控制AFC 自动流控制) 以下是状态寄存器,用来确定状态的,比如说shifter发送器的状态,接收器的状态。 UTRSTAT 接受发送控制器 UERSTAT 错误状态寄存器 UFSTAT FIFO状态寄存器 最后一个单独的设置寄存器,它用来设置波特率 UBRDIV 波特率发生器 以下来写个简单的串口例子。 它不使用FIFO 中断而直接用shifter收发,采用轮询的方式来检测数据是否发送或被接受。然后通过minicom向开发板发送1表示亮灯,发送2表示熄灯。 文件总共是7个一个crt0.smain.caddr.huart.huart.cuart.ldsmakefile crt0.s 是关闭watchdog 并跳转到mian 之后用个deadloop。 .text .globl _start _start: ldr r0, =0x53000000 @ WATCHDOG close mov r1, #0x0 str r1,[r0]

实验四 UART串口通信实验报告

实验四UART串口通信 一、实验目的及要求 设计一个UART串口通信协议,实现“串<-->并”转换功能的电路,也就是“通用异步收发器”。 二、实验原理 UART是一种通用串行数据总线,用于异步通信。该总线双向通信,可以实现全双工传输和接收。在嵌入式设计中,UART用来主机与辅助设备通信,如汽车音响与外接AP之间的通信,与PC机通信包括与监控调试器和其它器件,如EEPROM通信。 UART作为异步串口通信协议的一种,工作原理是将传输数据的每个字符一位接一位地传输。 其中各位的意义如下: 起始位:先发出一个逻辑”0”的信号,表示传输字符的开始。 资料位:紧接着起始位之后。资料位的个数可以是4、5、6、7、8等,构成一个字符。通常采用ASCII码。从最低位开始传送,靠时钟定位。 奇偶校验位:资料位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验),以此来校验资料传送的正确性。 停止位:它是一个字符数据的结束标志。可以是1位、1.5

位、2位的高电平。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。 空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。 波特率:是衡量资料传送速率的指标。表示每秒钟传送的符号数(symbol)。一个符号代表的信息量(比特数)与符号的阶数有关。例如资料传送速率为120字符/秒,传输使用256阶符号,每个符号代表8bit,则波特率就是120baud,比特率是120*8=960bit/s。这两者的概念很容易搞错。 三、实现程序 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_arith.all; use ieee.std_logic_unsigned.all; entity uart is port(clk : in std_logic; --系统时钟rst_n: in std_logic; --复位信号 rs232_rx: in std_logic; --RS232接收

UART串口初始化函数

/******************************************************************************* ************** 函数名:UART串口初始化函数 调用:UART_init(); 参数:无 返回值:无 结果:启动UART串口接收中断,允许串口接收,启动T/C1产生波特率(占用) 备注:振荡晶体为12MHz,PC串口端设置 [ 4800,8,无,1,无 ] /******************************************************************************* ***************/ void UART_init (void){ EA = 1; //允许总中断(如不使用中断,可用//屏蔽) ES = 1; //允许UART串口的中断 TMOD = 0x20; //定时器T/C1工作方式2 SCON = 0x50; //串口工作方式1,允许串口接收(SCON = 0x40 时禁止串口接收)TH1 = 0xF3; //定时器初值高8位设置 TL1 = 0xF3; //定时器初值低8位设置 PCON = 0x80; //波特率倍频(屏蔽本句波特率为2400) TR1 = 1; //定时器启动 } /******************************************************************************* ***************/ /******************************************************************************* ************** 函数名:UART串口初始化函数 调用:UART_init(); 参数:无 返回值:无 结果:启动UART串口接收中断,允许串口接收,启动T/C1产生波特率(占用) 备注:振荡晶体为11.0592MHz,PC串口端设置 [ 19200,8,无,1,无 ] /******************************************************************************* ***************/ void UART_init (void){ EA = 1; //允许总中断(如不使用中断,可用//屏蔽) ES = 1; //允许UART串口的中断 TMOD = 0x20; //定时器T/C1工作方式2 SCON = 0x50; //串口工作方式1,允许串口接收(SCON = 0x40 时禁止串口接收)TH1 = 0xFD; //定时器初值高8位设置 TL1 = 0xFD; //定时器初值低8位设置 PCON = 0x80; //波特率倍频(屏蔽本句波特率为9600)

实验七 UART串口通信

实验七UART串口通信 一、实验目的 1.能够理解UART串口通信的基本原理和通信过程。 2.学会通过配置寄存器,实现串口通信的基本操作过程。 二、实验内容 通过对单片机编程来实现UART串口通信的基本过程,通过串口调试助手发送数据到单片机,并在数码管上显示出来。 三、实验参考原理 3.1 串行通信的初步认识 通信按照基本类型可以分为并行通信和串行通信。并行通信时数据的各个位同时传送,可以实现字节为单位通信,但是因为通信线多占用资源多,成本高。比如我们前边用到的 P0 = 0xfe;一次给P0的8个IO口分别赋值,同时进行信号输出,类似于有8个车道同时可以过去8辆车一样,这种形式就是并行的,我们习惯上还称P0、P1、P2和P3为51单片机的4组并行总线。 而串行通信,就如同一条车道,一次只能一辆车过去,如果一个0xfe这样一个字节的数据要传输过去的话,假如低位在前高位在后,那发送方式就是0-1-1-1-1-1-1-1-1,一位一位的发送出去的,要发送8次才能发送完一个字节。 在STC89C52上,有两个引脚,是专门用来做UART串口通信的,一个是P3.0一个是P3.1,还分别有另外的名字叫做RXD和TXD,这两个引脚是专门用来进行UART通信的,如果我们两个单片机进行UART串口通信的话,那基本的演示图如图3-1所示。 图3-1 单片机之间UART通信示意图 图中,GND表示单片机系统电源的参考地,TXD是串行发送引脚,RXD是串行接收引脚。两个单片机之间要通信,首先电源基准得一样,所以我们要把两个单片机的GND相互连起来,然后单片机1的TXD引脚接到单片机2的RXD引脚上,即此路为单片机1发送而单片机2接收的通道,单片机1的RXD引脚接到单片机2的TXD引脚上,即此路为单片机2发送而单片机2接收的通道。这个示意图就体现了两个单片机各自收发信息的过程。 当单片机1想给单片机2发送数据时,比如发送一个0xE4这个数据,用二进制形式表示就是0b11100100,在UART通信过程中,是低位先发,高位后发的原则,那么就让TXD 首先拉低电平,持续一段时间,发送一位0,然后继续拉低,再持续一段时间,又发送了一位0,然后拉高电平,持续一段时间,发了一位1......一直到把8位二进制数字0b11100100

UART是什么-串口工作过程分析

UART是什么?串口工作过程分析 一、UART是什么 UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter),通常称作UART,是一种异步收发传输器,是设备间进行异步通信的关键模块。UART负责处理数据总线和串行口之间的串/并、并/串转换,并规定了帧格式;通信双方只要采用相同的帧格式和波特率,就能在未共享时钟信号的情况下,仅用两根信号线(Rx 和Tx)就可以完成通信过程,因此也称为异步串行通信。 若加入一个合适的电平转换器,如SP3232E、SP3485,UART 还能用于RS-232、RS-485 通信,或与计算机的端口连接。UART 应用非常广泛,手机、工业控制、PC 等应用中都要用到UART。 UART使用的是异步,串行通信。串行通信是指利用一条传输线将资料一位位地顺序传送。特点是通信线路简单,利用简单的线缆就可实现通信,降低成本,适用于远距离通信,但传输速度慢的应用场合。异步通信以一个字符为传输单位,通信中两个字符间的时间间隔多少是不固定的,然而在同一个字符中的两个相邻位间的时间间隔是固定的。数据传送速率用波特率来表示,即每秒钟传送的二进制位数。例如数据传送速率为120字符/秒,而每一个字符为10位(1个起始位,7个数据位,1个校验位,1个结束位),则其传送的波特率为10×120=1200字符/秒=1200波特。数据通信格式如下图: 其中各位的意义如下:起始位:先发出一个逻辑”0”信号,表示传输字符的开始。数据位:可以是5~8位逻辑”0”或”1”。如ASCII码(7位),扩展BCD码(8位)。小端传输校验位:数据位加上这一位后,使得“1”的位数应为偶数(偶校验)或奇数(奇校验) 停止位:它是一个字符数据的结束标志。可以是1位、1.5位、2位的高电平。空闲位:处于逻辑“1”状态,表示当前线路上没有资料传送。注:异步通信是按字符传

基于FPGA的UART串口接收模块设计.doc

UART串口接收模块设计 实验目标:实现FPGA接收其他设备通过UART协议发送过来的数据。 知识点: 1、URAT通信协议工业环境下数据接收实现。 2、In system sources and probes editor(ISSP)调试工具的使用。 UART发送端发送一个字节数据时序图: 对于其中的每一位进行采样,一般情况下每一位数据的中间点是最稳定的,因此一般应用中, : 采集中间时刻时的数据即可,如下图所示 但是在工业应用中,往往有非常强的电磁干扰,只采样一次就作为该数据的电平判定,是不保险的,有可能恰好采集到被干扰的信号而导致结果出错,因此需要使用多次采样求概率的方式进行。 以下为改进型的单bit数据接收方式示意图: 12345678910111213141516 在这张图中,将每一位数据又平均分成了16小段,对于Bit_x这一位数据,考虑到数据在刚刚发生变化和即将发生变化的这一时期,数据极有可能不稳定的(用红色标出的两段),在这两个时间段采集数据,很有可能得到错误的结果,因此这两段时间的电平无效,采集时直接忽略。而中间这一时间段(用绿色标出),

数据本身是比较稳定的,一般都代表了正确的结果。但是也不排除该段数据受强电磁干扰而出现错误的电平脉冲,因此对这一段电平,进行多次采样,并求高低电平发生的概率,6次采集结果中,取出现次数多的电平作为采样结果。例如,采样6次的结果分别为1/1/1/1/0/1/,则取电平结果为1,若为0/0/1/0/0/0,,则取电平结果为0,当6次采样结果中1和0各占一半(各3次),则可判断当前通信线路环境非常恶劣,数据不具有可靠性。 串口发送模块包含两个主要组件: 1、起始位检测进程(低电平,下降沿) 2、波特率产生模块 3、数据接收模块 串口接收模块整体结构图: 波特率时钟计算:

STM32串口中断接收方式详细比较

串口中断接收方式详细比较 串口调试,以前也调过,只是没这么深入的琢磨过,最近又在弄,感觉串口很基本,也很有学问,要是出现BUG可能导致系统奔溃。。。现在贴出来,欢迎拍砖指正!!! 本例程通过PC机的串口调试助手将数据发送至STM32,STM32通过SP3232芯片采用中断接收方式完成,然后接收数据后将所接收的数据又发送至PC机,具体下面详谈。。。 实例一: void USART1_IRQHandler(u8 GetData) { u8 BackData; if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) //中断产生 { USART_ClearITPendingBit(USART1,USART_IT_RXNE); //清除中断标志. GetData = UART1_GetByte(BackData); //也行GetData=USART1->DR; USART1_SendByte(GetData); //发送数据 GPIO_SetBits(GPIOE, GPIO_Pin_8 ); //LED闪烁,接收成功发送完成 delay(1000); GPIO_ResetBits(GPIOE, GPIO_Pin_8 ); } } 这是最基本的,将数据接收完成后又发送出去,接收和发送在中断函数里执行,main 函数里无其他要处理的。 优点:简单,适合很少量数据传输。 缺点:无缓存区,并且对数据的正确性没有判断,数据量稍大可能导致数据丢失。 实例二: void USART2_IRQHandler() { if(USART_GetITStatus(USART2,USART_IT_RXNE) != RESET) //中断产生 { USART_ClearITPendingBit(USART2,USART_IT_RXNE); //清除中断标志 Uart2_Buffer[Uart2_Rx_Num] = USART_ReceiveData(USART2); Uart2_Rx_Num++; } if((Uart2_Buffer[0] == 0x5A)&&(Uart2_Buffer[Uart2_Rx_Num-1] == 0xA5)) //判断最后接收的数据是否为设定值,确定数据正确性 Uart2_Sta=1; if(USART_GetFlagStatus(USART2,USART_FLAG_ORE) == SET) //溢出

uart串口通信实验报告

串口通信实验报告 基本实验:16位的乘法器 设计思想:乘法器根据以往学过数电的设计经验,应该是移位相加的方法,设被乘数为[15:0]a,乘数为[15:0]b,则从b的最高位开始算起,c初值为0,为b最高位为1,则c就等于c+a;接下来,若b的次高位为1,则c左移一位加a,若为0则c左移一位就可以了,这样的步骤做到b的最低位那么c的值就是a*b,当然最好c是中间寄存器,这样结果才不会出现中间值。 实验的源码: module muti(clk,rst,ready,a,b,c); input clk; input rst; input [15:0]a; input [15:0]b; output [31:0]c; output ready; reg [31:0]c; reg ready; reg [31:0]temp; reg [5:0]n; always @(posedge clk or posedge rst) begin if(rst) begin c<=0; ready<=1; temp<=0; n<=32; end else if(ready) begin temp<=0; n<=32; ready<=0; end else if(n) begin if(b[n-1]) begin temp<=(temp<<1)+a; n<=n-1; end

begin temp<=temp<<1; n<=n-1; end end else begin c<=temp; n<=32; ready<=1; end end endmodul 测试代码: `timescale 1ns/1ns module tb; reg clk; reg [15:0]a; reg [15:0]b; reg rst; wire ready; wire [31:0]c; always #10 clk=~clk; initial begin rst<=1; clk<=0; a=0; b=0; #10 rst=0; #21 a=21;b=32; #650 a=3;b=4; #700 $stop; end muti muti_unit( .a(a), .b(b), .rst(rst), .clk(clk), .ready(ready), .c(c)); endmodule

ARM9(S3C2440)之三串口UART

三 ARM9(S3C2440)的串口UART——理论知识 转载自:骨Zi里德骄傲 概述 S3C2440A 的通用异步收发器(UART)配有3 个独立异步串行I/O(SIO)端口,每个都可以是基于中断或基于DMA 模式的操作。换句话说,UART 可以通过产生中断或DMA 请求来进行CPU 和UART 之间的数据传输。 UART 通过使用系统时钟可以支持最高115.2Kbps 的比特率。如果是外部器件提供UEXTCLK 的UART,则UART可以运行在更高的速度。每个UART 通道包含两个的64 字节的FIFO 给发送和接收。 S3C2440A 的UART 包括了可编程波特率,红外(IR)发送/接收,插入1 个或2 个停止位,5 位、6 位、7 位或8 位的数据宽度以及奇偶校验。 每个UART 包含一个波特率发生器、发送器、接收器和一个控制单元,如图11-1 所示。波特率发生器可以由PCLK、FCLK/n 或UEXTCLK(外部输入时钟)时钟驱动。发送器和接收器包含了64 字节FIFO 和数据移位器。 将数据写入到FIFO 接着在发送前复制到发送移位器中。随后将在发送数据引脚(TxDn)移出数据。与此同时从接收数据引脚(RxDn)移入收到的数据,接着从移位器复制到FIFO。 UART 操作 下述章节描述了UART 的操作,包括了数据发送,数据接收,中断发生,波特率发生,环回(Loopback)模式,红外模式和自动流控制。 数据发送 可编程发送数据帧。由1 个起始位、5 至8 位数据位、1 个可选奇偶校验位以及1 至2 个停止位组成,是由行控制寄存器(ULCONn)指定。发送器也可以产生单帧发送期间强制串行输出为逻辑0 状态的断点状态。此模块在完成发送当前发送字后发送断点信号。在发出断点信号后,其不断发送数据到Tx FIFO(非FIFO 模式情况下Tx保持寄存器)中。 数据接收 与发送类似,接收数据帧也是可编程的。由1 个起始位、5 至8 位数据位、1 个可选奇偶校验位以及1 至2 个停止位组成,是由行控制寄存器(ULCONn)指定。接收器能够检测出溢出(overrun)错误、奇偶校验错误、帧错误和断点状态,每个都可以设置一个错误标志。 –溢出错误表明新数据在读出旧数据前覆盖了旧数据。 –奇偶校验错误表明接收器检测出一个非预期奇偶校验字段。 –帧错误表明接收到的数据没有有效的结束位。 –断点状态表明RxDn 的输入保持为逻辑0 状态的时间长于单帧传输时间。 当其在3 字时间期间(此间隔在字宽位的设置随后)并且在FIFO 模式中Rx FIFO 为非空时不接收任何数据时 发生接收超时状态。 波特率发生 每个UART 的波特率发生器为发送器和接受器提供串行时钟。波特率发生器的源时钟可以选择S3C2440A 的 内部系统时钟或UEXTCLK。换句话说,分频由设置UCONn 的时钟选项选择。波特率时钟是通过16 和由UART

相关主题