搜档网
当前位置:搜档网 › 嵌入式系统课程设计(基于ARM的温度采集系统设计) 精品

嵌入式系统课程设计(基于ARM的温度采集系统设计) 精品

嵌入式系统课程设计(基于ARM的温度采集系统设计) 精品
嵌入式系统课程设计(基于ARM的温度采集系统设计) 精品

基于ARM的温度采集系统

1.1设计目的

1、注重培养综合运用所学知识、独立分析和解决实际问题的能力,培养创新意识和创新能力,并获得科学研究的基础训练。

2、了解所选择的ARM芯片各个引脚功能,工作方式,计数/定时,I/O口,中断等的相关原理,并巩固学习嵌入式的相关内容知识。

3、通过软硬件设计实现利用ARM芯片对周围环境温度信号的采集及显示。

1.2设计意义

嵌入式系统是以应用为中心,以计算机技术为基础,且软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗有严格要求的专用计算机系统。它一般由以下几部分组成:嵌入式微处理器、外围硬件设备、嵌入式操作系统。嵌入式系统是面向用户、面向产品、面向应用的,它必须与具体应用相结合才会具有生命力、才更具有优势。因此嵌入式系统是与应用紧密结合的,它具有很强的专用性,必须结合实际系统需求进行合理的裁减利用。嵌入式系统是将先进的计算机技术、半导体技术和电子技术和各个行业的具体应用相结合后的产物,这一点就决定了它必然是一个技术密集、资金密集、高度分散、不断创新的知识集成系统。嵌入式系统必须根据应用需求对软硬件进行裁剪,满足应用系统的功能、可靠性、成本、体积等要求。所以,如果能建立相对通用的软硬件基础,然后在其上开发出适应各种需要的系统,是一个比较好的发展模式。目前的嵌入式系统的核心往往是一个只有几K到几十K微内核,需要根据实际的使用进行功能扩展或者裁减,但是由于微内核的存在,使得这种扩展能够非常顺利的进行。

数据采集(DAQ),是指从传感器和其它待测设备等模拟和数字被测单元中自动采集非电量或者电量信号,送到上位机中进行分析,处理。数据采集系统是结合基于计算机或者其他专用测试平台的测量软硬件产品来实现灵活的、用户自定义的测量系统。被采集数据是已被转换为电讯号的各种物理量,如温度、水位、风速、压力等,可以是模拟量,也可以是数字量。采集一般是采样方式,即隔一定时间(称采样周期)对同一点数据重复采集。采集的数据大多是瞬时值,也可是某段时间内的一个特征值。准确的数据量测

是数据采集的基础。数据量测方法有接触式和非接触式,检测元件多种多样。不论哪种方法和元件,均以不影响被测对象状态和测量环境为前提,以保证数据的正确性。

传统的温度采集系统由于存在响应慢、精度低、可靠性差、效率低、操作繁琐等弊端,已经不能完全适应现代化工业的高速发展。随着嵌入式技术的迅猛发展,设计高速度、高效率、低成本、高可靠性、操作方便的温度采集系统成为当务之急。基于ARM的温度采集系统就成为了解决传统温度采集系统各种弊端的优先选择方案。

二、设计方案

2.1设计要求

1、查阅相关文献资料,熟悉所选ARM芯片及温度传感器

2、总体设计方案规划

3、系统硬件设计,熟悉AD转换原理及过程,温度传感器与ARM芯片的硬件接口实现及温度显示。

4、系统软件设计,包括温度的AD转换及显示的软件实现,用C语言编程

5、设计心得体会及总结

2.2方案论证

有许多客观需求促进了ARM处理器的设计改进。首先,便携式的嵌入式系统往往需要电池供电。为降低功耗,ARM处理器已被特殊设计成较小的核,从而延长了电池的使用时间。高的代码密度是嵌入式系统的又一个重要需求。由于成本问题和物理尺寸的限制,嵌入式系统的存储器是很有限的。所以,高的代码密度对于那些只限于在板存储器的应用是非常有帮助的。

另外,嵌入式系统通常都是价格敏感的,因此一般都使用速度不高、成本较低的存储器。 ARM 内核不是一个纯粹的RISC体系结构,这是为了使它能够更好的适应其主要应用领域--嵌入式系统。在某种意义上,甚至可以认为ARM 内核的成功,正是因为它没有在RISC的概念上沉入太深。现在系统的关键并不在于单纯的处理器速度,而在于有效的系统性能和功耗。

在本系统的设计过程中,根据嵌入式系统的基本设计思想,系统采用了模块化的设计方法,并且根据系统的功能要求和技术指标,系统遵循自上而下、由大到小、由粗到细的设计思想,按照系统的功能层次,在设计中把硬件和软件分成若干功能模块分别设计和调试,然后全部连接起来统调。

三、硬件设计

3.1设计思路

本设计的基于ARM 的嵌入式数据采集和显示装置的原理框图如图3-1 所示。由图可见,本系统采用“电源部分+ARM 核心控制模块+温度采集模块”实现所需功能。并考虑到系统的可扩展性和延伸性,本系统采用主从CPU 协同工作,实现了数据的实时采集、传输与显示,具有处理速度快、精度高、人机交互界面友好、稳定性高、扩展性好等优点。

本设计的基于ARM 的嵌入式数据采集和显示装置的原理框图如图3-1 所示。由图可见,本系统采用“电源部分+ARM 核心控制模块+温度采集模块”实现所需功能。

电源部分

图3-1 系统原理框图

多路温度

传感器 协控制器

RS-232 ARM 处理器 LCD 显示器

Flash ROM 存储器 SD RAM 存储器 键 盘

电源电路

ARM 核心控制模块 温度采集模块

3.2系统电路设计

3.2.1 电源电路设计

本系统的电源电路由两部分组成:系统总电源电路和RAM核心模块电源电路。如图3-2:+12V恒定直流电源经电容滤波,分别进入7809和7805稳压,得到+9V 和+5V的稳定电压输出后分别供给ARM核心控制模块和其余电路部分使用。图中IN4148是为了防止输出端并接高于本稳压模块的输出电压而烧坏7809和7805而特别设计,达到了可靠性电源设计目的。另外,由于系统正常工作电流较大,因此使用时均应在7809和7805上加散热片散热。由图可见,系统采用双电源供电,提供了系统正常工作所需的电源电压。另外,由于考虑到便携目的,本系统采用+12V铅蓄电池提供系统所需的恒定直流电源。

图3-2 系统电源电路原理图

如图3-2:I/O 口提供了相应的稳定直流电源。其中的IN4004是为了防止电源输入反接烧坏集成稳压块而设计的。由于S3C44B0x采用2.5V作为ARM 内核电

源,使用3.3V作为I/O 口电压,故ARM核心控制模块电源需要另外单独设计,其电源电路如图3-2所示。由系统总电源电路提供的+9V稳压电源作为输入,分别经AS1117-5.0、AS1117-3.3、 AS1117-2.5稳压后,输出5.0V、3.3V和2.5V 恒定电源,为RAM 内核和I/O口提供了相应的稳定直流电源。其中的IN4004是为了防止电源输入反接烧坏集成稳压块而设计的。

3.2.2温度采集电路设计

温度采集模块电路采用AT89S52单片机作为模块的协控制器。对于温度传感器的选用DS18B20,因为DS18B20是Dallas公司最新单总线数字温度传感器,该传感器集温度变换、A/D转换于同一芯片,输出直接为数字信号,大大提高了电路的效率。由于现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性,且提高了CPU的效率。AT89S52单片机的P0 口与8路温度传感器相连,用于采集温度数据;另外,模块提供RS-232串行口与RAM核心控制模块通信,达到数据传输的目的。温度采集模块电路原理图如图3-3。

图3-3 温度采集电路原理图

四、软件设计

4.1设计思路

本系统软件设计是在CodeWarrior for ADS 开发环境下完成的。本温度数据采集与显示装置的主体由S3C44B0x 核心控制模块和温度数据采集模块构成,所以系统软件也是围绕这两个模块来编写的。而又由于系统采用了S3C44Box 和AT89S52两个CPU 协同工作,所以软件的编写需要对这两个CPU 分别编写,以实现所要求的功能。程序流程图如图4-1。

图4-1程序流程图

开始

ARM 初始化

硬件装置初始化

通信初始化

LED 显示初始化

键盘初始化

扫描键盘

有键按下

处理数值

相应显示

数据获取 数据处理

数据显示 Y

N

由该流程图可看出,刚上电时,S3C44B0x要先进行ARM 内部的初始化,以使ARM进入相应的状态和模式;然后初始化硬件装置,以使硬件系统可以正常支持温度数据采集;接着通信初始化,以确定温度采集模块与ARM核心控制模块连接正常,并通过UART复位温度数据采集模块,确保其进入正常温度数据采集状态;然后初始化LCD显示和键盘,在LCD上显示相应的菜单列表,供用户通过键盘选择操作;至此,系统初始化完成,并进入正常主程序循环状态。

在正常主程序循环状态中,首先扫描键盘,以快速的响应用户的按键操作;若没有键值按下,则ARM立即进行数据的采集、处理与显示,以实现实时数据采集与显示等功能。

其主程序包括温度采集程序、ARM获取温度子程序、温度处理和转换子程序。当ARM 处理器接收到正确的温度数据后,立即进行相应的温度数据处理与转换,变成可被LCD直接显示的正确温度值。

4.2程序清单

温度处理与转换子程序如下:

//存放读取到的当前温度值,未转换

Static U16 a-temp-now[8]={8*0}

//存放经精度计算后的实际温度值,高8位整数部分,低8位小数部分

static U16 b-temp-now[8]={8*0};

//存放8路转换后温度值,分别为百位,十位,个位,小数位

static U8 temp-convent-all[32]={32*0};

//-------------------------------

//温度处理与转换子程序

//----------------------------------

void temp-change(void)

{

U8 negtive=0x00; //存放数的符号,若为正=0;若为负,=0xff U8 j=0;

U8 *pt=temp-convent-all;

U16 *p1=a-temp-now;

U16 *p3=b-temp-now;

U16 temp=0;

for(j=0;j<8;j++)

{

negative =0x00;

temp=*p1;

//若温度为负值,进行相应处理

if((temp&0xf80) !=0)

{

temp=(~temp)+1;//转为正的原码

negative=0xff; // 同时置符号为0xff

}

//根据精度消除无关数据

switch(a-temp-prec)

{

case 0x1f: //精度为9位,则清除最低3位无效位 {

temp=temp&0xfff8;break;

}

case 0x3f: //精度为10位,则清除最低2位无效位 {

temp=temp&0xfffc;break;

}

case 0x5f: //精度为11位,则清除最低1位无效位 {

temp=temp&0xfffe;break;

}

case 0x7f: //精度为12位

{

break;

}

}

//换算成实际温度,并扩大10倍,去掉小数部分

temp=(U16)((float)(temp)*0.625);

//折算放入b-temp-now 数组中

//高8位放整数部分,低8位放小数部分,最高位放符号位if(negtive== 0xff) //若为负值

{

*p3=((temp/10)<<8)|(temp%10)|0x8000;

}

else

{

*p3=((temp/10)<<8)|(temp%10)&0x7fff;

}

if(negative==0xff) //若为负值

{(*pt++)=0x80;}

温度数据采集系统

第三章系统硬件设计 温度数据采集系统和接收显示硬件电路主要包含温度数据采集、发送、接收和显示等模块,温度数据采集采用数字式温度传感器DS18B20,数据的发送和接收采用无线数据收发模块PTR2000,整个系统采用单片机STC89C52进行各模块的协调控制,下面对各个模块进行介绍。 3.1 数字温度传感器DS18B20 3.1.1 DS18B20 的性能特点 DS18B20 是由DALLAS 半导体公司生产的单线型智能数字温度传感器,是新一代适配微处理器的智能温度传感器,广泛应用于工业、农业等领域,具有体积小、接口方便和传输距离远的特点,在一根通信线上可以挂很多个DS18B20,很方便。具有以下特点: (1)具有独特的1-Wire 接口,只需要一个端口引脚就可以进行通信; (2)具备多节点能力,能够简化分布式温度检测应用中的设计; (3)不需要外部元件; (4)可以直接从数据线供电,电源电压范围在3~5.5V; (5)在待机状态下可以不消耗电源电量; (6)测量温度范围在-55~+125℃; (7)在-10~+85℃时测量精度在±0.5℃; (8)可以用程序设定9~12 位分辨率; (9)用户可根据需要定义温度的上下限报警设置。 DS18B203 脚封装的管脚排列图如图3.1.1 所示。

图 3.1.1 DS18B20 管脚排列图 DS18B20 只有三个引脚。其中,引脚1 和3 分别是GND 和VDD,引脚2 是DQ 端,是用于数据信息的输入和输出。当给DS18B20 加电后,单片机可以通过DQ 端写入命令,并可以读出含有温度信息的数字量。在使用寄生电源情况下,可以向DS18B20 提供电源。 3.1.2 DS18B20 的内部结构 DS18B20的内部框图如图3.1.2所示。 图3.1.2 DS18B20的内部框图 DS18B20主要由64位ROM、温度传感器、非易失性温度报警触发器TH和TL及暂存器四部分组成。64位ROM存储器具有独一无二的序列号,可以看作是该DS18B20的地址系列号,是在出厂前就被光刻好的。暂存器各字节具有不同的意义,0和1字节是用于存储温度传感器数字输出的温度寄存器;2字节和3字节分别是非易失性上限报警触发寄存器(TH)和下限报警触发寄存器(TL);4字节的配置寄存器能够用来设置温度转换的精度; 5、6和7字节作为内部保留使用。DS18B20有两种供电方式,可以使用寄生电源供电,也可以使用外部电源。在使用寄生电源的时候,不用外部电源,而是在总线为高时由DQ端提供电源,同时向内部电容充电,以求在总线拉低时为DS18B20提供电量。上电后,DS18B20进入空闲状态;当MCU向DS18B20发出Convert T [44h]的命令后,DS18B20 向MCU传送转换状态,开始温度测量和A/D转换。温度数据以带符号位的补码形式存储在温度寄存器中,温度寄存器格式如图3.1.3所示。 图3.1.3 DS18B20温度寄存器格式 温度的正负值是由符号为来说明的,正为0,负为1。表3.1给出一部分数字数据与温度的对应关系。 表3.1 DS18B20温度与数据对应关系

基于DS18B20的温度采集显示系统的设计

《单片机技术》课程设计任务书(三) 题目:基于DS18B20的温度采集显示系统的设计 一、课程设计任务 传统的温度传感器,如热电偶温度传感器,具有精度高,测量范围大,响应快等优点。但由于其输出的是模拟量,而现在的智能仪表需要使用数字量,有些时候还要将测量结果以数字量输入计算机,由于要将模拟量转换为数字量,其实现环节就变得非常复杂。硬件上需要模拟开关、恒流源、D/A转换器,放大器等,结构庞大,安装困难,造价昂贵。新兴的IC温度传感器如DS18B20,由于可以直接输出温度转换后的数字量,可以在保证测量精度的情况下,大大简化系统软硬件设计。这种传感器的测温范围有一定限制(大多在-50℃~120℃),多适用于环境温度的测量。DS18B20可以在一根数据线上挂接多个传感器,只需要三根线就可以实现远距离多点温度测量。 本课题要求设计一基于DS18B20的温度采集显示系统,该系统要求包含温度采集模块、温度显示模块(可用数码管或液晶显示)和键盘输入模块及报警模块。所设计的系统可以从键盘输入设定温度值,当所采集的温度高于设定温度时,进行报警,同时能实时显示温度值。 二、课程设计目的 通过本次课程设计使学生掌握:1)单总线温度传感器DS18B20与单片机的接口及DS18B20的编程;2)矩阵式键盘的设计与编程;3)经单片机为核心的系统的实际调试技巧。从而提高学生对微机实时控制系统的设计和调试能力。 三、课程设计要求 1、要求可以从键盘上接收温度设定值,当所采集的温度高于设定值时,进行报警(可以是声音报警,也可是光报警) 2、能实时显示温度值,若用Proteus做要求保留一位小数; 四、课程设计内容 1、人机“界面”设计; 2、单片机端口及外设的设计; 3、硬件电路原理图、软件清单。 五、课程设计报告要求 报告中提供如下内容:

基于LabVIEW的温度测量及数据采集系统设计

LabVIEW技术大作业 题目:基于LabVIEW的温度测量及数据采集系统设计学院(系):信息与通信工程学院 班级:通信133 学号:xxxxxxxxx 姓名:xxxxxx

一、设计背景 LABVIEW最初就是为测试测量而设计的,因而测试测量也就是现在LABVIEW最广泛的应用领域。经过多年的发展,LABVIEW在测试测量领域获得了广泛的承认。至今,大多数主流的测试仪器、数据采集设备都拥有专门的LabVIEW驱动程序,使用LabVIEW可以非常便捷的控制这些硬件设备。同时,用户也可以十分方便地找到各种适用于测试测量领域的LabVIEW工具包。这些工具包几乎覆盖了用户所需的所有功能,用户在这些工具包的基础上再开发程序就容易多了。有时甚至于只需简单地调用几个工具包中的函数,就可以组成一个完整的测试测量应用程序。 二、系统方案 本设计的程序框图和前面板图分别是图1.1和图1.2,“温度测量及数据采集系统.vi”是一个测量温度并将测试数据输出到文件的VI。此VI中的温度是用一个20至40的随机整数来代替的,测试及采集100个温度值,每隔0.25秒测一次,共测定25秒。在数据采集过程中,VI将在前面板的波形图上实时地显示测量结果。采集过程结束后,波形图上显示出温度数据曲线,数组中显示每次的温度测量数据,并在显示控件中显示测试中温度的最大值、最小值和平均值,同时把测量的温度值以文件的形式存盘。

图1.1温度测量及数据采集程序框图 1.2温度测量及数据采集前面板图

二、系统各模块介绍 2.1循环模块 For循环用于将某段程序循环执行指定的次数, 是总数接线端,指定For循环内部代码执行的次数。如将0或负数连接至总数接线端,For循环不执行。 是计数接线端,表示完成的循环次数。第一次循环的计数为0。 本设计使用for循环将循环内的程序循环100次。

课程设计(论文)基于mcs51系列单片机的数字温度监测装置设计

课程设计说明书 基于MCS-51系列单片机的 数字温度监测装置设计 学生班级: 学生姓名: 起止日期: 指导教师:

目录 一、引言 4 1. 本次课程设计的重要意义4 2. 温度传感器的发展4 二、设计内容及性能指标 5 三、系统方案总体概述 5 四、系统主要器件选择 6 (一)单片机的选择 6 1.主要性能参数6 2.功能特性概述7 3.引脚功能说明8 4.端口引脚第二功能9(二)温度传感器的选择10 1.总述10 2.温度传感器的选择11 2.1 DS18B20简介11 2.2 DS18B20内部结构11 2.3 DS18B20测温原理15 五、系统整体设计 17(一)系统硬件电路设计17 1.硬件电路设计总体概述17 2.CPU机器基本外围电路设计18 2.1单片机电路18 2.2晶振控制电路18 2.3 继电器电路19 2.4 锁存器74LS373引脚功能及工作原理19 2.4.1 74LS373引脚功能20 2.4.2 74LS373工作原理20 2.4.3 Intel2764引脚功能23 3.前向通道设计23 3.1温度检测电路23 3.2电源输入部分电路24 4.后向通道设计及人机通道设计25 4.1 后向通道设计25 4.1.1 LED显示电路25 4.1.1.1 LED显示器的结构25 4.1.1.2 LED显示器的工作原理26 4.1.1.3 LED 显示设计方案27 4.2键盘27 4.3温度报警电路28 4.4复位电路28

5.抗干扰措施29 5.1干扰产生的后果29 5.2抗干扰设计的基本原则30 5.3硬件抗干扰设计31 5.4软件的抗干扰设计32(二)系统软件设计33 1.概述33 2.主程序模块33 3. 部分程序清单34 3.1 温度传感器的驱动程序34 3.2 LED共阳极显示子程序36 六、附录 36 七、致谢 37 参考文献

基于labview温度监测系统

课题基于labview的温度监测系统班级 12电信 学号 201210350120 姓名邹临昌 时间 2015.12 .12-2016.1.12 景德镇陶瓷学院

摘要:本课题介绍了虚拟仪器概况及其发展背景;通过对虚拟仪器的学习和研究,运用软件工具,实现温度显示系统的模拟。实现系统软件设计思路是:利用LabVIEW中的各种控件,实现温度数据采集显示。利用虚拟仪器的优越性实现了基于操作系统下的交通终端服务系统的展示部分。 关键字:labVIEW,温度,数据采集 引言 美国国家仪器公司推出的LabVIEW不仅是一个图形化编程语言,而且是一个广泛应用于虚拟测控系统的虚拟仪器平台,它与数据采集卡一起构成虚拟测试仪器,其测试系统的构建可以通过图形化的语言描述,组态容易,设计简单,广泛应用于测量与控制。 LabVIEW是虚拟仪器领域中最具有代表性的图形化编程开发平台[1] ,是目前国际上首推并应用最广的数据采集和控制开发环境之一,主要应用于仪器控制、数据采集、数据分析、数据显示等领域,并适用于多种不同的操作系统平台。与传统程序语言不同,LabVIEW采用强大的图形化语言(G 语言)编程,面向测试工程师而非专业程序员,编程非常方便,人机交互界面直观友好,具有强大的数据可视化分析和仪器控制能力等特点。使用LabVIEW 开发环境,用户可以创建32位的编译程序,从而为常规的数据采集、测试、测量等任务提供了更快的运行速度。LabVIEW是真正的编译器,用户可以创建独立的可执行文件,且该文件能够脱离开发环境而单独运行。

1.1虚拟仪器的优势 1.经济实惠 2.方便适用 3.提高测试效果 4.开放且灵活 远程虚拟仪器的优势在于不受地域限制,功能可由用户自己定义,且构建容易,所以使用面极为广泛,是科研、开发、测量、检测、计量、测控等领域不可多得的好工具,更值得一提的是它可应用在高危险的区域进行在线的数据采集和检测[5]。使测量人员的工作不但摆脱了地理位置和条件的限制,还可以通过Intcrnet把所采集到的数据自动地转送到另一台计算机进行评估。

单片机课程设计——温度采集电路

单片机课程设计报告 ————温度采集电路设计与仿真 一、设计目的 1、通过单片机课程设计,熟练掌握C语言与汇编语言的编程方法,将理论联系到实践中去,提高我们的动脑和动手的能力。 2、通过数字采集与控制系统的设计,掌握如何采集数据并在LCD上显示采集的数据合如何控制电机的使用方法,和简单程序的编写,最终提高我们的逻辑抽象能力。 二、设计任务和要求 任务:设计一个能够采集数据和控制电机的系统. 具体要求: (1)通过I/O口扩展5个按键 (2)单片机的P口外接8个拨码开关,作为8位数据输入 (3)通过I/O口外接DS18B20温度传感器,进行温度采集 (4)外接一步进电机,作为控制部分 (5)外接一LCM1602液晶屏,进行数据显示 (6)在PROTEUS软件中设计实现上述功能的电路,然后编写源程序实现如下功能: 按下按键“1”时在液晶屏上显示“DAN PIAN JI KE CHENG SHE JI”。 按下按键“2”时在液晶屏上显示自己的学号和姓名(拼音)。 按下按键“3”时进行温度采集并显示在液晶屏上。 按下按键“4”时通过拨码开关采集8位数据并显示在液晶屏上,数据大于200控制步进电机反转,小于50步进电机正转。 按下按键“5”时步进电机停止转动。 三、设计原理分析 1、显示“DAN PIAN JI KE CHENG SHE JI”与自己的学号和姓名(拼音)直接定义字符串然后送入1602LCD显示。 2、采集温度通过DS18B20温度传感器将采集的温度通过硬件电路转送入单片机内部,单片机内部将采集的温度转换成字符串然后送入1602LCD显示。 3、通过控制ULN2003来控制电机的正反转。(ULN2003是另一款电机脉冲分配芯片,由于其结构简单,价格低廉,而且无需外接功率放大电路,因此也常用来作为步进电机的驱动芯片)。 4、该电路系统采用“一线总线”数字传感器DS18B20实现温度的采集,采用液晶显示器进行数据显示。首先启动Proteus并从Proteus元件库中选择需要的元件绘制电路图并设置相应元件的参数值。 5、电路绘制完成以后,打开KeilμVision 2新建一个项目,命名为cewen.uv2。选择Project 菜单下的Select Device forTarget选择A T89C51。然后单击Project菜单下的Optionfor Target ‘Target1’项,选择Debug,使用Proteus VSM Em-ulator仿真。然后新建一个源文件cewen.c,

温度数据采集系统

第三章 系统硬件设计温度数据采集系统和接收显示硬件电路主要包含温度数据采集、发送、接收和显示等模块,温度数据采集采用数字式温度传感器 DS18B20,数据的发送和接收采用无线数据收 发模块PTR2000,整个系统采用单片机STC89C52进行各模块的协调控制,下面对各个模块进行介绍。 3.1 数字温度传感器DS18B20 3.1.1 DS18B20 的性能特点 DS18B20 是由 DALLAS 半导体公司生产的单线型智能数字温度传感器,是新一代适配微处理器的智能温度传感器,广泛应用于工业、农业等领域,具有体积小、接口方便和传输距离远的特点,在一根通信线上可以挂很多个 DS18B20,很方便。具有以下特点:(1)具有独特的 1-Wire 接口,只需要一个端口引脚就可以进行通信;(2)具备多节点能力,能够简化分布式温度检测应用中的设计;(3)不需要外部元件; (4)可以直接从数据线供电,电源电压范围在 3~5.5V ;(5)在待机状态下可以不消耗电源电量;(6)测量温度范围在-55~+125℃;(7)在-10~+85℃时测量精度在±0.5℃;(8)可以用程序设定 9~12 位分辨率;(9)用户可根据需要定义温度的上下限报警设置。DS18B203 脚封装的管脚排列图如图 3.1.1 所示。、管路敷设技术通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

温度传感器课程设计

: 温度传感器课程设计报告 专业:电气化 年级: 13-2 学院:机电院 { 姓名:崔海艳 学号:35 … ^ -- 目录

1 引言 (3) 2 设计要求 (3) 3 工作原理 (3) 4 方案设计 (4) … 5 单元电路的设计和元器件的选择 (6) 微控制器模块 (6) 温度采集模块 (7) 报警模块 (9) 温度显示模块 (9) 其它外围电路 (10) 6 电源模块 (12) 7 程序设计 (13) — 流程图 (13) 程序分析 (16) 8. 实例测试 (18) 总结 (18) 参考文献 (19) \

。 1 引言 传感器是一种有趣的且值得研究的装置,它能通过测量外界的物理量,化学量或生物量来捕捉知识和信息,并能将被测量的非电学量转换成电学量。在生活中它为我们提供了很多方便,在传感器产品中,温度传感器是最主要的需求产品,它被应用在多个方面。总而言之,传感器的出现改变了我们的生活,生活因使用传感器也变得多姿多彩。 温度控制系统广泛应用于社会生活的各个领域,如家电、汽车、材料、电力电子等,常用的控制电路根据应用场合和所要求的性能指标有所不同,在工业企业中,如何提高温度控制对象的运行性能一直以来都是控制人员和现场技术人员努力解决的问题。这类控制对象惯性大,滞后现象严重,存在很多不确定的因素,难以建立精确的数学模型,从而导致控制系统性能不佳,甚至出现控制不稳定、失控现象。传统的继电器调温电路简单实用,但由于继电器动作频繁,可能会因触点不良而影响正常工作。控制领域还大量采用传统的PID控制方式,但PID控制对象的模型难以建立,并且当扰动因素不明确时,参数调整不便仍是普遍存在的问题。而采用数字温度传感器DS18B20,因其内部集成了A/D转换器,使得电路结构更加简单,而且减少了温度测量转换时的精度损失,使得测量温度更加精确。数字温度传感器DS18B20只用一个引脚即可与单片机进行通信,大大减少了接线的麻烦,使得单片机更加具有扩展性。由于DS18B20芯片的小型化,更加可以通过单跳数据线就可以和主电路连接,故可以把数字温度传感器DS18B20做成探头,探入到狭小的地方,增加了实用性。更能串接多个数字温度传感器DS18B20进行范围的温度检测 2 设计要求

专业课程设计温度的采集与控制(软件)2

专业课程设计说明书课程设计名称:专业课程设计 课程设计题目:温度的采集与控制(2)学院名称:信息工程学院 专业:电子信息工程班级: 学号:姓名: 评分:教师: 20 年月日

专业课程设计任务书2012-2013学年第二学期分散1周第17 周- 19 周集中

摘要 随着现代信息技术的飞速发展,温度测量控制系统在工业、农业及人们的日常生活中扮演着一个越来越重要的角色,它对人们的生活具有很大的影响,所以温度采集控制系统的设计与研究有十分重要的意义。 本次设计的目的在于学习基于51单片机的温度采集控制系统设计的基本流程。本设计采用单片机作为数据处理与控制单元,为了进行数据处理,单片机控制数字温度传感器,把温度信号通过单总线从温度传感器传递到单片机上。单片机数据处理之后,发出控制信息改变报警和控制执行模块的状态,同时将当前温度信息发送到LED进行显示。本系统可以实现温度信号采集与显示,通过进行温度数据的运算处理,发出控制信号达到控制蜂鸣器和继电器的目的。 关键词:温度温度采集温度控制

目录 第一章系统组成及工作原理 (1) 1.1 设计要求 (1) 1.2 系统组成 (1) 1.3 工作原理 (1) 第二章硬件电路设计 (2) 2.1 温度转换电路 (2) 2.2 A/D转换电路 (2) 2.3 控制电路 (3) 2.4 单片机最小系统 (3) 第三章软件设计 (5) 3.1 主程序流程图 (5) 3.2 7279初始化程序INIT7279 (6) 3.3 发送字节程序STFS (7) 3.4 延时程序 (9) 3.5 中断程序 (10) 3.6 AD采样程序 (12) 3.7 数值转换程序 (13) 3.8 7279送显程序 (14) 第四章实验、调试和测试结果分析 (16) 4.1 主要仪器和工具 (16) 4.2 调试过程及测试结果 (16) 结论 (18) 参考文献 (19) 附录 (20)

8通道温度数据采集系统

8通道温度数据采集系统 一、设计题目与要求: 设计一个8通道温度数据采集系统,系统误差小于1%;其中4路测量范围0-200?C ,选用Pt100热电阻;另4路测量范围0-600?C ,选用K 分度热电偶。 二、设计过程: 1、画出系统组成框图; 2、完成硬、软件功能分配和完成芯片选型; (1)运算放大器采用单电源,低功耗,精密四运算放大器MAX479 (2)AD 转换芯片采用带有8位A/D 转换器、8路多路开关的ADC0809 (3)硬件主要的功能是把采集到的温度信号转换成电信号,再经过运算放大器放大信号,传递给AD 转换芯片把模拟信号转换成数字信号,最后传给单片机处理信号并显示温度。 (4)软件主要的功能是对ADC0809 AD 转换芯片控制读取数据,读到单片机里对数据的处理转换成对应的温度值并显示。 3、ADC0809原理和应用: ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D 转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D 转换器进行转换。三态输出锁器用于锁存A/D 转换完的数字量,当OE 端为高电平时,才可以从三态输出锁存器取走转换完的数据。 ADC0809引脚图 IN0-IN7:8条模拟量输入通道 ADC0809对输入模拟量要求:信号单极性,电压 范围是0-5V ,若信号太小,必须进行放大;输 入的模拟量在转换过程中应该保持不变,如若模 拟量变化太快,则需在输入前增加采样保持电路。 地址输入和控制线:4条 ALE 为地址锁存允许输入线,高电平有效。当ALE 线为高电平时,地址锁存与译码器将A ,B ,C 三条地址线的地址信号进行锁存,经译码后被选 中的通道的模拟量进转换器进行转换。A ,B 和C 为地址输入线,用于选通IN0-IN7上的一路模 拟量输入。 数字量输出及控制线:11条 ST 为转换启动信号。当ST 上跳沿时,所有内部

数字式温度计设计课程设计

课程设计说明书 课程设计名称:单片机课程设计 课程设计题目:数字式温度计的设计学院名称:电气信息学院 专业班级:15电力(3)班 学生学号:1504200623 学生姓名:曾高 学生成绩: 指导教师:易先军 课程设计时间:2017.10.30 至2017.11.5

格式说明(打印版格式,手写版不做要求) (1)任务书三项的内容用小四号宋体,1.5倍行距。 (2)目录(黑体,四号,居中,中间空四格),内容自动生成,宋体小四号。 (3)章的标题用四号黑体加粗(居中排)。 (4)章以下的标题用小四号宋体加粗(顶格排)。 (5)正文用小四号宋体,1.5倍行距;段落两端对齐,每个段落首行缩进两个字。 (6)图和表中文字用五号宋体,图名和表名分别置于图的下方和表的上方,用五号宋体(居中排)。(7)页眉中的文字采用五号宋体,居中排。页眉统一为:武汉工程大学本科课程设计。 (8)页码:封面、扉页不占页码;目录采用希腊字母Ⅰ、Ⅱ、Ⅲ…排列,正文采用阿拉伯数字1、2、3…排列;页码位于页脚,居中位置。 (9)标题编号应统一,如:第一章,1,1.1,……;论文中的表、图和公式按章编号,如:表1.1、表1.2……;图1.2、图1.2……;公式(1.1)、公式(1.2)。

课程设计任务书 一、课程设计的任务和基本要求 (一)设计任务(从“单片机课程设计题目”汇总文档中任选1题,根 据所选课题的具体设计要求来填写此栏) 1. 用DS18B20设计一款能够显示当前温度值的温度计; 2. 通过切换按钮可以切换华氏度和摄氏度显示; 3. 测量精度误差在正负0.5摄氏度以内。 (二)基本要求 1.有硬件结构图、电路图及文字说明; 2.有程序设计的分析、思路说明; 3.有程序流程框图、程序代码及注释说明; 4.完成系统调试(硬件系统可以借助实验装置实现,也可在Proteus 软件中仿真模拟); 5.有程序运行结果的截屏图片。

基于单片机的数字温度计设计课程设计

摘要 温度的检测与控制是工业生产过程中比较典型的应用。本设计以AT89C52单片机为核心,采用DS18B20温度传感器检测温度,由温度采集、温度显示,温度报警等功能模块组成。基于题目基本要求,本系统对温度采集和温度显示系统行了重点设计。本系统大部分功能能由软件实现,吸收了硬件软件化的思想。实际操作时,各功能在开发板上也能完美实现。本系统实现了要求的基本功能,其余发挥部分也能实现。 关键字:AT89C52单片机、DS18B20温度传感器、数码管显示、温度采集

目录 一.绪论 .............................................................................................................

二.设计目的..................................................................................................... 三.设计要求..................................................................................................... 四.设计思路..................................................................................................... 五.系统的硬件构成及功能................................................................. 5.1主控制器............................................................................................... 5.2显示电路............................................................................................... 5.3温度传感器.......................................................................................... 六.系统整体硬件电路................................................................................. 七.系统程序设计 .......................................................................................... 八.测量及其结果分析 ................................................................................... 九.设计心得体会............................................................................................ 十.参考文献..................................................................................................... 附录1 源程序 附录2 元件清单及PCB图 一.绪论

温湿度采集系统设计

目录 第1章设计意义及要求 (1) 1.1 设计意义 (1) 1.2 设计要求 (1) 第2章硬件设计 (2) 2.1 AT89S52芯片介绍 (2) 2.2 液晶显示器LCD1602 (3) 2.2.1 液晶显示原理 (3) 2.2.2 液晶显示器分类 (3) 2.2.3 显示原理 (3) 2.2.4 LCD1602的基本参数及引脚功能 (4) 2.3 温湿度模块DHT11介绍 (6) 2.3.1 DHT11概述 (6) 2.3.2 DHT11传感特性说明 (7) 2.3.3 DHT11封装信息 (8) 2.3.4 串行接口(单线双向) (8) 第3章设计实现 (11) 3.1 设计框图及流程 (11) 3.2 设计结果及分析 (11) 第4章设计总结 (13) 参考文献 (14) 附录 (15)

第1章设计意义及要求 1.1 设计意义 最近几年来,随着科技的飞速发展,单片机领域正在不断的走向社会各个角落,还带动传统控制检测日新月异更新。在实时运作和自动控制的单片机应用到系统中,单片机如今是作为一个核心部件来使用,仅掌握单片机方面知识是不够的,还应根据其具体硬件结构,以及针对具体应用对象特点的软件结合,加以完善。 现代社会越来越多的场所会涉及到温度与湿度并将其显示。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,例如:冬天温度为18至25℃,湿度为30%至80%;夏天温度为23至28℃,湿度为30%至60%。在此范围内感到舒适的人占95%以上。在装有空调的室内,室温为19至24℃,湿度为40%至50%时,人会感到最舒适。如果考虑到温、湿度对人思维活动的影响,最适宜的室温度应是工作效率高。18℃,湿度应是40%至60%,此时,人的精神状态好,思维最敏捷。所以,本课程设计就是通过单片机驱动LCD1602,液晶显示温湿度,通过此设计,可以发现本设计有一定的扩展性,而且可以作为其他有关设计的基础。如何高效、稳定地对数据(包括温度、湿度光线、压力等项目)进行实时采集对于现代的企业、工厂、研究所等对数据精度要求较高的单位具有非常重要的意义。 1.2 设计要求 本系统设计采用温度和湿度作为采集对象,是以单片机为核心的温度、湿度采集、数字显示系统,用液晶显示出当前温度、湿度的信息。以此了解AT89S52芯片为核心外接温度传感器和湿度传感器模块在液晶显示屏上显示当前的温度和湿度的过程。

传感器课程设计(基于labview的pt100温度测量系统)

目录 第一章方案设计与论证 (2) 第一节传感器的选择 (2) 第二节方案论证 (3) 第三节系统的工作原理 (3) 第四节系统框图 (4) 第二章硬件设计 (4) 第一节PT100传感器特性和测温原理 (5) 第二节信号调理电路 (6) 第三节恒流源电路的设计 (6) 第四节TL431简介 (8) 第三章软件设计 (9) 第一节软件的流程图 (9) 第二节部分设计模块 (10) 总结 (11) 参考文献 (11)

第一章方案设计与论证 第一节传感器的选择 温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的。在接触式和非接触式两大类温度传感器中,相比运用多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器,其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。 热电阻传感器可分为金属热电阻式和半导体热电阻式两大类,前者简称热电阻,后者简称热敏电阻。常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等。近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司DS18B20,MAXIM公司的MAX6576、MAX6577,ADI公司的AD7416等,这些芯片的显著优点是与单片机的接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,而ADI公司的AD7416的数字接口则为近年也比较流行的I2C总线,这些本身都带数字接口的温度传感器芯片给用户带来了极大的方便,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要。 热电偶是目前接触式测温中应用也十分广泛的热电式传感器,它具有结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传等优点。常用的热电偶材料有铂铑-铂、铱铑-铱、镍铁-镍铜、铜-康铜等,各种不同材料的热电偶使用在不同的测温范围场合。热电偶的使用误差主要来自于分度误差、延伸导线误差、动态误差以及使用的仪表误差等。

基于单片机的多通道的温度数据采集系统

摘要 由于数据采集系统的应用越来越广、其所涉及到的对信号的测量方式和涉及到的信号源的类型也将越来越多、因为对测量的要求也就越来越高,现在国内已有不少用于数据的测量与采集的系统,可很多系统存在着功能单一、采集速率比较低、操作非常复杂,并且对测试的环境要求较很高等问题。人们急切需要一种应用范围广、价格低廉的数据采集系统。 在分析了各种类型单片机的特点及其与PC机的各类通信技术的基础后,本人设计了由单片机控制的温度采集系统,并且通过串口通信的方式实现了单片机与PC机间的通信,实现了数据传送并将数据在PC机上进行显示或存储,完成了此次设计。 基于单片机的多通道的温度数据采集系统是由将来自温度传感器的信号进行放大、滤波、采样保持等分步处理之后,输入到A/D转换器转换为数字信号后由单片机进行采集的,然后再利用单片机与PC机之间的通信将数据传送至PC 机进行数据的存储处理及显示等,实现了数据的采集与处理等,此设计可广泛应用于工控、仪器仪表、机电智能化及智能家居等诸多的应用领域。 联系扣扣:2825772782 关键词:单片机;温度数据采集;多通道

Abstract S ince the wide range of data acquisition system, which involves the measurement signal and the type of signal source more and more, Surveyors are increasingly high requirements of the domestic now have a lot of data acquisition and measurement system But there are many single function systems, collecting less access, low collection rate, complicated operations, and the demands of the test environment and other issues.It requires abroad scope of application, high reliability and low-cost data acquisition system. Based on the analysis of the characteristics of different types of SCM and SCM and PC communication technology, SCM control of the collection system designed and adopted MCU serial communication between PC and communications, Data transmission and display of data stored on the PC.Single completed the multi-channel data acquisition system design and implementation. Based on SCM′s multi-channel data acquisition system is adopted will come from the sensor signal amplification, linear filtering, After processing maintain synchronous sampling, which converted to digital signal input A/D conversion by SCM Acquisition, Then, SCM and PC to PC communications data to the data storage, post-processing and display. a powerful data processing, visual shows, friendly interface and high performance-price ratio, a wide range of features. can be widely used in industrial control equipment, instruments, and electrical engineering integration, intelligent home and many other fields. Key words Multi-channel Data Acquisition Microcontroller

数电课程设计-温度计实验报告(提交版)

一、设计项目名称 温度采集显示系统硬件与软件设计 二、设计内容及要求 1,根据设计要求,完成对单路温度进行测量,并用数码管显示当前温度值系统硬件设计,并用电子CAD软件绘制出原理图,编辑、绘制出PCB印制版。 要求: (1)原理图中元件电气图形符号符合国家标准; (2)整体布局合理,注标规范、明确、美观,不产生歧义。 (3)列出完整的元件清单(标号、型号及大小、封装形式、数量) (4) 图纸幅面为A4。 (4)布局、布线规范合理,满足电磁兼容性要求。 (5)在元件面的丝印层上,给出标号、型号或大小。所有注释信息(包括标号、型号及说明性文字)要规范、明确,不产生歧义。 2.编写并调试驱动程序。 功能要求: (1)温度范围0-100℃。 (2)温度分辨率±1℃。 (3)选择合适的温度传感器。 3.撰写设计报告。 提示:可借助“单片机实验电路板”实现或验证软件、硬件系统的可靠性。 温度传感器 摘要:温度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用,利用新型单总线式数字温度传感器 实现对温度的测试与控制得到更快的开发,随着时代的进步和发展,单 片机技术已经普及到我们生活,工作,科研,各个领域。一种数字式温 度计以数字温度传感器DS18B20作感温元件,它以单总线的连接方式, 使电路大大的简化。传统的温度检测大多以热敏电阻为传感器,这类传 感器可靠性差,测量温度准确率低且电路复杂。因此,本温度计摆脱了 传统的温度测量方法,利用单片机STC89C52对传感器进行控制。这样

易于智能化控制。 关键词:数字测温;温度传感器DS18B20;单片机STC89C52; 一.概述 传感器从功能上可分为雷达传感器、电阻式传感器、电阻应变式传感器、压阻式传感器、热电阻传感器、温度传感器、光敏传感器、湿度传感器、生物传感器、位移传感器、压力传感器、超声波测距离传感器等,本文所研究的是温度传感器。 温度传感器是最早开发,应用最广泛的一类传感器。温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。这些呈现规律性变化的物理性质主要有半导体。温度传感器是温度测量仪表的核心部分,品种繁多。 随着科学技术的发展,测温系统已经被广泛应用于社会生产、生活的各个领域,在工业、环境监测、医疗、家庭多方面均有应用。从而使得现代温度传感器的发展。微型化、集成化、数字化正成为发展的一个重要方向。 二.硬件设计 1.DS18B20 DS1820 单线数字温度计特性 ? 独特的单线接口仅需一个端口引脚进行通讯 ? 简单的多点分布应用 ? 无需外部器件 ? 可通过数据线供电 ? 零待机功耗 ? 测温范围-55~+125℃,以 0.5℃递增 ? 温度以 9 位数字量读出 ? 温度数字量转换时间 200ms (典型值) ? 用户可定义的非易失性温度报警设置 ? 报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件 ? 应用包括温度控制、工业系统、消费品、温度计或任何热感测系统 DS1820温度传感器外观图(a )和引脚图(b ) ①引脚1接地 ②引脚2数字信号输入/输出 ③引脚3接高电平5V 高电平

基于单片机的温度采集系统设计课程设计

基于单片机的温度采集系统设计课 程设计 摘要 单片机己在各行业得到广泛应用,为适应更多的应用领域,厂家釆取了在一块单片机芯片上集成多种功能部件和大容量存储器的方法。因而,整个应用系统不需要扩展,而体积变小、可靠性增高,使单片机成为真正意义上的单片机系统。 第一章单片机概述 单片机是单片微型计算机的简称,有时称为微控制器,是将计算机的主要功能单元集成在一个芯片中而构成的器件。由于单片机在一个芯片上集成诸多功能,因此就单项功能而言,通常都没有普通计算机强大,如计算机速度不够快、字长较短、外部可扩展接口的数量少且规模小等。但是,单片机具有体积小、价格便宜和技术成熟等优点,是各种电子产品的重要组成部分, 在国民经济的各个领域发挥着重要作用。 早期的单片机都是8位或4位的。其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提

高了数百倍。目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端⑷的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的WindOWS和LinUX操作系统。 单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电 子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有-2部单片机。而个人电脑中也会有为数不少的单片机在工作。汽至上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。 单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。 单片机内部也用和电脑功能类似的模块,比如CPU,内存,并行总线,还有和硬盘作用相同的竝蛊件,不同的是它的这些部件性能都相对我们的家用电脑弱很多,不过价钱也是低的,一般不超过10元即可……用它来做一些控制电器一类不是很复杂的工作足矣了。我们现在用的全自动滚筒洗衣机、排烟罩、VCD等等的家电里面都可以看到它的身影!……它主要是作为控制部分的核心部件。 它是一种在线式实时控制计算机,在线式就是现场控制,需要的是有较强的抗干扰能力,较低的成本,这也是和离线式计算机的(比如家用PC)的主要区别。

相关主题