搜档网
当前位置:搜档网 › 分部积分方法及例题

分部积分方法及例题

定积分典型例题20例答案(供参考)

定积分典型例题20例答案 例1 求2 1lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111 n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 = ?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=, 故321(1)3f x x -= ,令3126x -=得3x =,所以1(26)27 f =.

分部积分的计算方法

§7.2分部积分法与换元积分法 (一) 教学目的:熟练掌握第一、二换元积分法与分部积分法. (二) 教学内容:第一、二换元积分法;分部积分法. ———————————————————————— 如何计算不定积分 ?xdx 2cos ?我们知道, ?+=C x xdx sin cos ,那么是否有 C x xdx +=?2sin 2cos ?显然不对。 计算不定积分,仅有直接积分法还是不行的。如?xdx 2cos 、?xdx ln 、? xdx tan 等积分就不能直接积分,下面探讨其它的计算不定积分的方法。 一、换元积分法 1.凑微分法 定理1(第一换元积分法)若函数)(x u φ=在[a,b]可导,且βφα≤≤)(x ,],[βα∈?u ,有 )()(x f x F =',则函数)()]([x x f φφ'存在原函数)]([x F φ,即 C x F dx x x f +='?)]([)()]([φφφ **具体应用此定理计算不定积分时,其过程是这样的: ???+====+======'==C x F C u F du u f x d x f dx x x f x u x u )]([)()()()]([)()]([) ()(φφφφφφφ 例7.求 ? +dx x 3 5 分析:我们有公式 ? +=C x dx x 34 3 4 3 ,而上述积分中被积函数根号里面还要加5,不能直接用公式。 为了能用公式计算,进行凑微分: )5(+=x d dx 解: C x C u du u x d x dx x x u x u ++====+=====++=+? ?? +=+=34 53 4 3 5 3 3 )5(4 343)5(55 例8.求? +dx x )85sin( 分析:为了能应用公式计算,进行凑微分:)85(51 += x d dx 解:???+=====++=+udu x d x dx x x u sin 5 1)85()85sin(51 )85sin(85 C x C u x u ++-====+-=+=)85cos(5 1 cos 5185 一般地,在计算积分的时候,有时为了化为能用公式计算,我们常根据需要作下面的凑微分公式: (1))()(1 )(b ax d b ax f a dx b ax f ++= +

定积分典型例题11254

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

定积分高考试题

定积分与微积分 一、知识回顾: 1.用定义求定积分的一般方法是: ①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和: 1 ()n i i b a f n ξ=-∑; ④取极限: () 1 ()lim n b i a n i b a f x dx f n ξ→∞ =-=∑? 2.曲边图形面积:()b a S f x dx =?; 变速运动路程2 1 ()t t S v t dt =? ; 变力做功 ()b a W F r dr = ? . 3.定积分有如下性质: 性质1 =?b a dx 1 性质2 =? b a dx x kf )( (其中k 是不为0的常数) (定积分的线性性质) 性质3 ?=±b a dx x f x f )]()([2 1 (定积分的线性性质) 性质4 ??? +=c a b c b a dx x f dx x f dx x f )()()( 其中(b c a <<) 4.定积分的计算(微积分基本定理) (1)(牛顿——莱布尼兹公式)若)(x f 是区间],[b a 上的连续函数,并且)()(x f x F =',那么有 二、常考题型: 一选择题 1.由直线与曲线y=cosx 所围成的封闭图形的面积为( ) A 、 B 、1 C 、 D 、 2.由曲线y=x 2 ,y=x 3 围成的封闭图形面积为( ) A 、 B 、 C 、 D 、 ? -==b a b a a F b F x F dx x f ) ()()()(

3.由曲线y=,直线y=x ﹣2及y 轴所围成的图形的面积为( ) A 、 B 、4 C 、 D 、6 4. ? +1 )2(dx x e x 等于( ) A 、1 B 、e ﹣1 C 、e D 、e 2 +1 5. ? 4 2 1 dx x dx 等于( ) A 、﹣2ln2 B 、2ln2 C 、﹣ln2 D 、ln2 6. dx x ?--2 2 )cos 1(π π等于( ) A 、π B 、2 C 、π﹣2 D 、π+2 7. 已知则? -= a a xdx 2 1 cos (a >0),则?a xdx 0cos =( ) A 、2 B 、1 C 、 D 、 8. 下列计算错误的是( ) A 、 ?- =π π 0sin xdx B 、 ? = 1 32dx x C 、 ?? -=22 2 cos 2cos π ππ xdx xdx D 、 ?- =π π0sin 2 xdx 9 计算dx x ? -2 24的结果是( ) A 、4π B 、2π C 、π D 、 10. 若 0)32(0 2=-? dx x x k ,则k 等于( ) A 、0 B 、1 C 、0或1 D 、以上均不对 11.下列结论中成立的个数是( ) ①∑?=?= n i n n i dx x 133 1 031;②∑?=?-=n i n n i dx x 131031)1( ;③∑?=∞→?=n i n n n i dx x 1331031lim 。 A .0 B .1 C .2 D .3 12.根据定积分的定义,?202 dx x =( ) A . ∑=?-n i n n i 1 21)1( B . ∑=∞→?-n i n n n i 121)1(lim C . ∑=?n i n n i 122)2( D . ∑=∞→?n i n n n i 122 )2(lim 13.变速直线运动的物体的速度为v(t),初始t=0时所在位置为0s ,则当1t 秒末它所在的位置 为 ( ) A . ? 1 )(t dt t v B .dt t v s t ? + 1 0)( C .00 1 )(s dt t v t -? D .dt t v s t ?-1 0)(

定积分典型例题56177

定积分典型例题 例1 求332 1lim )n n n →∞+. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘入和式中各 项.于是将所求极限转化为求定积分.即 3321lim )n n n →∞+=3 1lim )n n n n →∞+=03 4 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ? 等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π. 例18 计算 2 1 ||x dx -? . 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1 ||x dx -? =02 1 ()x dx xdx --+?? =220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算 2 20 max{,}x x dx ? . 分析 被积函数在积分区间上实际是分段函数 212 ()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717 max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且1 ()3()f x x f t dt =+? ,则()________f x =. 分析 本题只需要注意到定积分 ()b a f x dx ? 是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而 1 ()f t dt ? 是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且1 1 (3)()x a dx f t dt a +==??. 所以

定积分典型例题

定积分典型例题 例 1 求 Iim J 2(^n τ +Q2n 2 +H ∣ +V ∏3). n _.: ∏ 分析将这类问题转化为定积分主要是确定被积函数和积分上下限?若对题目中被积函数难以想到, 可采取如下方法:先对区间[O, 1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 1 III 1 解 将区间[0, 1] n 等分,则每个小区间长为.汉=丄,然后把—=丄1的一个因子-乘入和式中 n n n n n 各项?于是将所求极限转化为求定积分?即 n i ?^贰+痢+山+疔)=曲(£ +£ +川+晋)=MdX=扌? 例 2 £ J 2x 一 X d X __________ . 解法1由定积分的几何意义知, °?2x -χ2dx 等于上半圆周(x_1) y =1 (y_0) 与X 轴所围成的图形的面积?故 2? 2^x 2dx = _ ? ■° 2 解法2本题也可直接用换元法求解?令 x_1 = sint (—巴

分部积分法word版

4.3 分部积分法 前面介绍的基本积分法和换元积分法的共同特点是经过适当的变形或变换,将不易计算的不定积分转化为易于计算的另一种不定积分,达到化难为易,化未知为已知的目的. 现在我们介绍另一种求不定积分的方法——分部积分法,用于求两种不同类型函数乘积的不定积分,这是与两个函数乘积的导数法则对应的积分方法. 设函数)(x u u =,)(x v v =具有连续导数,因为两个函数乘积的导数公式为 v u v u uv '+'=')( 或 v u uv v u '-'=')( 于是,对上式两边求不定积分,得 ???'-'='vdx u dx uv dx v u )( 即 ??'-='vdx u uv dx v u (4.3.1) 或 ??-=vdu uv udv (4.3.2) 上述公式叫做分部积分公式. 例如: C e xe dx e xe de x dx xe x x x x x x +-=-==??? 【注】:(1)分部积分法主要用于解决被积函数是两类不同类型函数的乘积的不定积分。如 dx xe x ?,dx x x ?sin ,dx x x ?ln ,dx x e x ?sin 等等。 (2)关键是选择合适的u 和dv ,选取原则: (a )v 要容易求出。(b ) du v ?比dv u ?容易求出。 例如: x x x x de x e x x d e dx xe ??? -=??? ??=222212 1 21 不合适。 (3)步骤:运用分部积分公式求不定积分?dx x f )(的主要步骤是把被积函数)(x f 分解为两部分因式相乘的形式,其中一部分因式看作u,另一部分因式看作v ',而后套用公式,这样就把求不定积分?'dx v u 的问题转化为求不定积分?'vdx u 的问题. ()dx x f ? ()()dx x v x u ?'= 确定()x u 和() x v '

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

分部积分法教案

分部积分法 教学目的:使学生理解分部积分法,掌握分部积分法的一般步骤及其应用。 重点:分部积分法及其应用 难点:在分部积分法中,要恰当的选取U和v 教学方法:讲练法 0回顾 上几节课我们学习了不定积分的求法,要求我们①熟记基本初等函数积分公式表②熟练、一换元积分法(凑微法)③熟练、灵活的运用第二换元积分法。 凑微法:实质是在被积函数中凑出中间变量的微分; f(x)dx f [ (x)] '(x)dx f[ (x)]d[ (x)] 令u (x) f (u)du F(u) C F[ (x)] C 第二换元积分法:关键是通过适当的变量替换x (t),使得难求的积分易求 f (x)dx 令x (t) f[ (t)]'⑴dt f[ (t)]d (t) F[ (t)] C F(x) C 1引入 用我们已经掌握的方法求不定积分x cosxdx 分析:①被积函数为两函数的乘积不是基本的积分公式。 ②凑微法失效。x cosx ③第 — 1类换兀积分法 解:不妨设cosx t则x arccost 原方程t arccost 1-dt 更为复杂 -1 t 所以凑微法和第二换元积分法都失效。 反之考虑,两函数乘积的积分不会,但两函数乘积的求导我们会,比如:(假设u、已知: (u v)' u'v uv' 灵活的运用第v为两个函数)

对上式两边积分得:uv u'vdx uv'dx 观察上式发现被积函数也是两函数乘积的形式,注意:uv'dx中v'为导数形式。 故,我们可以尝试来解一下上面的积分。 x cosxdx 先要化的和要求积分的形式一样 x(sin x)'dx xsi nx x'si nxdx xsinx cosx C 真是:山重水复疑无路,柳暗花明又一村。通过上面的方法,我们顺利的解决两函数乘积的积分。其实上面的公式正是这一节课要讲述的“分部积分法”。 2公式 2.1定理设函数u u(x)和v v(x)及都具有连续的导数,则有分部积分公式: uv'dx uv u'vdx (或udv uv vdu) 说明:①两函数的积分等于将其中一个放在d里后,里外相乘减去换位的积分。 ②内外积减去换位“积”。 ③步骤:a放d中,b、套公式。 2.2例1求不定积分x sinxdx 解:x sin xdx x sin xdx xd(cos x)①放d中 xcosx cos xdx②套公式 xcosx sin x C 3 U、V的选取问题 例2求不定积分e x xdx 解:e x xdx x 1 2、 e d(-x ) 2 1 2 x 1 2. x x e x de 2 2 1 2 x 1 x 2 , x e e x dx 2 2 移项得: uv'dx uv u'vdx

定积分在高考中的常见题型

定积分在高考中的常见题 型 Last revision on 21 December 2020

定积分在高考中的常见题型解法 贵州省印江一中(555200) 王代鸿 定积分作为导数的后续课程,与导数运算互为逆运算,也是微积分基本概念之一,同时为大学数学分析打下基础。从高考题中来看,定积分是高考命题的一种新方向,在高考复习中要求学生了解定积分的定义,几何意义,掌握解决问题的方法。 一、利用微积分基本定理求定积分 1、微积分基本定理:一般地,如果)(x f 是区间[]b a ,上的连续函数,并且)()(x f x F =',那么?-=b a b F a F dx X f )()()(.这个结论叫做微积分基本定理(又叫牛顿-莱布尼兹公式)。 2、例题讲义 例1、计算?+e dx x x 1)21( 解:因为 x x x x 21 )ln 2+='+( 所以?+e dx x x 1)21(=22212)11(ln )(ln |ln e e e x x e =+-+=+)( 【解题关键】:计算?b a dx X f )(的关键是找到满足)()(x f x F ='的函数)(x F 。 跟踪训练:1计算?+2 0)cos (π dx x e x 二、利用定积分的几何意义求定积分。 1、定积分的几何意义 :设函数y=f(x)在 []b a ,上y=f(x)非负、连续,由直线x=a,x=b, y=0及曲线y=f(x) 所围成的曲边梯形面积 S=?b a dx X f )(

2、例题讲义: 例2、求由曲线12+=x y ,直线2y x =-及y 轴所围成的图形的面积S 等于=___________ 解: 联立方程组 (如图所示) ? ??-=+=11x y x y 解得???==34y x S =BCD OBCE AOB S S S 曲边梯形曲边梯形++? =dx x x dx x )1(11112 14210--++++????)()( = 412231023|)22 132(|)3221x x x x x +-+++( =3 8 【解题关键】:将曲边梯形进行分割成几个容易求面积的图形,再求面积 和 例3、求dx x ?+402)2-4( 的值 解:令)0()2(42≥+-=y x y 则有)0()2(42 2≥+-=y x y 及)()(04222≥=++y y x 右图所以π221)2-1402==+?A S dx x 圆( 【解题关键】:将被积函数转化为熟悉的曲线方程,利用曲线图形的特点 求其定积分。 练习:由直线21=x ,x=2,曲线x y 1=及x 轴所围图形的面积为( ) A. 415 B. 417 C. 2ln 21 D. 2ln 2 三、利用变换被积函数求定积分

定积分的应用练习题,DOC

欢迎阅读 题型 1.由已知条件,根据定积分的方法、性质、定义,求面积 2.由已知条件,根据定积分的方法、性质、定义,求体积 内容 一.微元法及其应用 二.平面图形的面积 1.直角坐标系下图形的面积 2.边界曲线为参数方程的图形面积 3. 极坐标系下平面图形的面积 三.立体的体积 1.已知平行截面的立体体积 2.旋转体的体积 四.平面曲线的弦长 五.旋转体的侧面积 六.定积分的应用 1.定积分在经济上的应用 2.定积分在物理上的应用 题型 题型I微元法的应用 题型II求平面图形的面积

题型III 求立体的体积 题型IV 定积分在经济上的应用 题型V 定积分在物理上的应用 自测题六 解答题 4月25日定积分的应用练习题 一.填空题 1. 求由抛物线线x x y 22+=,直线1=x 和x 轴所围图形的面积为__________ 2.抛物线x y 22=把圆822≤+y x 分成两部分,求这两部分面积之比为__________ 3. 由曲线y x y y x 2,422==+及直线4=y 所围成图形的面积为 4.曲线3 3 1x x y - =相应于区间[1,3]上的一段弧的长度为 5. 双纽线θ2sin 32=r 相应于2 2 π θπ ≤ ≤- 上的一段弧所围成的图形面积为 . 6.椭圆)0,0(1sin 1cos b a t b y t a x ???+=+=所围成的图形的面积为 二.选择题 1. 由曲线22,y x x y ==所围成的平面图形的面积为( ) A . 31 B . 32 C . 21 D . 2 3 2. 心形线)cos 1(θ+=a r 相应于ππ2≤≤x 的一段弧与极轴所围成的平面图形的面积为( ) A . 223a π B . 243a π C . 2 8 3a π D . 23a π 3. 曲线2 x x e e y -+=相应于区间],0[a 上的一段弧线的长度为 ( ) A . 2 a a e e -+ B . 2a a e e -- C . 12++-a a e e D .12-+-a a e e 4. 由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。

定积分应用方法总结(经典题型归纳)

定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物理问题等. 1.定积分的运算性质 1212(1)()()(). (2)[()()]()(). (3)()()()(). b b a a b b b a a a b c b a a c kf x dx k f x dx k f x f x dx f x dx f x dx f x dx f x dx f x dx =±=±=+????????为常数其中a。 例题:1.2352 2(+5x )0 x dx -=?(同步训练P32 第3题) 2. a a a (cos -5sin 2)(cos -5sin )24a a a x x x dx x x x dx dx a ---+=+=? ?? 3) (2007枣庄模拟)已知f(x)为偶函数,且60 ()8 f x dx =? ,则6 6 ()f x dx -? 等于( B ) A.0 B.4 C.8 D.16 (同步训练P30 第6题) 4.利用定积分求曲边多边形的面积 在直角坐标系中,要结合具体图形来定: 方法总结:求由两条曲线围成的图形的面积的解题步骤 (1)画出图形,(2)求出交点的横坐标.定出积分的上、下限; (1)(); (2)()(); (3)()()()(); (4)[()()]b a b b a a c b c b a c a c b a S f x dx S f x dx f x dx S f x dx f x dx f x dx f x dx S f x g x dx == =-=+=-=-?? ??????

定积分的典型例题

定积分典型例题 例1 求 2 1lim n n →∞ .分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被 积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把 2 111n n n = ?的一个因子1n 乘入和式中各项.于是将所求 极限转化为求定积分.即 2 1lim n n →∞ = 1lim n n →∞ = 34 = ? . 例2 ? =_________. 解法1 由定积分的几何意义知, ? 等于上半圆周2 2(1) 1x y -+= (0y ≥) 与 x 轴所围成的图形的面积.故 ? =2 π. 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π-≤≤ ),则 ? = tdt =2 tdt =2 20 2 cos tdt π ? =2 π 例3 比较 12 x e dx ? ,2 1 2x e dx ?,12 (1)x dx +?.分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无 法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0 x >时,()0f x '>,()f x 在(0,)+∞上单调 递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 12 2 1 ()()f x dx f x dx =-? ?,从而有 2 11 12 2 2 (1)x x x dx e dx e dx +>> ??? . 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ =++ 得1x e x >+.注意到 12 2 1 ()()f x dx f x dx =-??.因此 2 11 12 2 2 (1)x x x dx e dx e dx +>> ? ?? . 例4 估计定积分2 02 x x e dx -? 的值.分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值. 解 设 2 ()x x f x e -=, 因为 2 ()(21) x x f x e x -'=-, 令()0f x '=,求得驻点12 x = , 而 0 (0)1f e ==, 2 (2)f e =, 1 4 1 ()2 f e -=, 故 1 2 4 (),[0,2]e f x e x -≤≤∈,从而2 122 4 22x x e e dx e - -≤ ≤? ,所以 2 102 4 2 22x x e e dx e - --≤ ≤-? . 例5 设 ()f x ,()g x 在[,]a b 上连续,且()0g x ≥,()0f x >.求lim (b a n g x →∞ ? . 解 由于()f x 在[,]a b 上连续,则()f x 在[,]a b 上有最大值M 和最小值m .由()0f x >知0M >,0m >.又 ()0g x ≥()b a g x dx (b a g x ≤ ? ()b a g x dx .由于1n n →→,故lim (b a n g x →∞ ? = ()b a g x dx ? . 例6求sin lim n p n n x dx x +→∞ ? , ,p n 为自然数.分析 这类问题如果先求积分然后再求极限往往很困难,解决此类问题的常用 方法是利用积分中值定理与夹逼准则.

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

定积分典型例题20例答案

定积分典型例题20例答案 例 1 求lim 丄(循2 丁2『L Vn 3) ? n n 分析将这类问题转化为定积分主要是确定被积函数和积分上下限. 若对题目中被积函 数难以想到,可采取如下方法:先对区间 [0, 1] n 等分写出积分和,再与所求极限相比较来 找出被积函数与积分上下限. 解 将区间[0, 1] n 等分,则每个小区间长为 % -,然后把1丄的一个因子-乘 n n n n n 入和式中各项?于是将所求极限转化为求定积分?即 lim A (习n 2 ^2n 2 L Vn 3) = lim -(^— L ^—) = VXdx - ? n n n nn,n ,n ° 4 2 -- ------ r 例 2 o (2x x dx = ___________ ? 2 . ________ 解法1由定积分的几何意义知, ° . 2x x 2dx 等于上半圆周(x 1)2 y 2 1 ( y 0) 与x 轴所围成的图形的面积.故 2 ,2x x 2dx = _ ? 0 2 '1 sin 2 tcostdt = 2。 2 J sin 2t costdt =2 : cos 2 tdt^ 2 2 x 2 2 x 例 3 (1)若 f (x) x e 七 dt ,则 f (x) = ________; (2)若 f (x) 0 xf (t)dt ,求 f (x)= 分析这是求变限函数导数的问题,利用下面的公式即可 (1) f (x) =2xe x e x 可得 x f (x) = 0 f (t)dt xf (x) ? x 1 例 4 设 f(x)连续,且。f(t)dt x ,贝U f (26) = _________________ O A x 1 解 对等式0 f(t)dt x 两边关于x 求导得 3 2 f(x 1) 3x 1, 解法2本题也可直接用换元法求解.令 x 1 = Sint ( 2 t 2),则 d v(x) dx u(x) f(t)dt f[v(x)]v(x) f[u(x)]u (x) ? (2) 由于在被积函数中 x 不是积分变量,故可提到积分号外即 x f (x) x 0 f (t)dt ,则 x 2dx =

高中数学高考总复习定积分与微积分基本定理习题及详解

高中数学高考总复习定积分与微积分基本定理 习题及详解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

定积分与微积分基本定理习题 一、选择题 1. a =??02x d x ,b =??0 2e x d x ,c =??0 2sin x d x ,则a 、b 、c 的大小关系是( ) A .a

相关主题