搜档网
当前位置:搜档网 › 可归结为解不等式(组)的几种问题(含答案)-

可归结为解不等式(组)的几种问题(含答案)-

可归结为解不等式(组)的几种问题(含答案)-
可归结为解不等式(组)的几种问题(含答案)-

可归结为解不等式(组)的几种问题

不等式(组)是初中代数的重要内容,应用十分广泛,在学习时,我们不仅要掌握其性质和解法,更要注意它们在解题中的功能。

1.求字母的取值范围

例1若代数式32

8x -的值小于3-x 的值,求x 的取值范围。 解由题意得32

83x x -<- 解得x <225

例2若关于x 的方程

221x a x +-=-的解是正数,则a 的取值范围是_________。 解将已知方程去分母得22x a x +=-

所以依题意,的取值应满足,且所以且x a a x x a x a =->≠->=-≠13

202

13

201322()()()

解得且所以的取值范围是且a a a a a <≠-<≠-24

24

例3若点()12-+a a ,在第二象限,则a 的取值范围是_________。

解依题意得1020

-<+>???a a

解得即的取值范围是a a a >>1

1

例4. 解不等式-≤-<2312

4x 分析:实际是两个一元一次不等式-≤-2312x 和312

4x -<连写在一起,也可称做两边夹不等式,它实质是不等式组,可转化为不等式组求解。

解法1:原不等式即

-≤--

242x x ()

()

解(1),得 x ≥-1

解(2),得 x <3

所以此不等式组的解为-≤<13x

即原不等式的解为-≤<13x 。

解法2:对不等号“≤”和“<”连接的三部分同时用不等式的性质。

各端都乘2,得 -≤-<4318x

各端都加1,得 -≤<339x

各端都除以3,得-≤<13x

所以原不等式的解为-≤<13x

2.化简

例5化简

()()

()()a a a a a a a ----?--+-12333

21

解根据二次根式的定义,得2010->-≥a a ,

即,所以原式a a a a a a a a

a ≤-≤-<=----?--+-1320

1233321()()()() =-?---?--+-=1233210a a a a a

a () 3.解整数问题

例6若方程组x y x y a

+=-+=???2532的解x,y 都是负数,则整数a 的值是________。

解由已知方程组解得x a y a =+--35,

因为,所以解得即整数x y a a a a <<+<--

305053

4

例7若x,y 是两个不同的自然数,且1125

x y +=,则x+y 的值等于_______。 解由于x,y 地位相同

不妨设,则

由,得,由,得,0112511112525251110251212<<<=+<+<<=+>>>x y y x

x y x x x

x x y y x x

即所以,将,分别代入已知等式中,知

当且仅当,时符合要求2

12

53434315<<====x x x x y

所以x y +=18

4.比较大小

例8已知a>b>c>d>0,且x ab cd y ac bd z ad bc =

+=+=+,,,则x ,

y ,z 的大小关系是( )

A.x>y>z

B.x>z>y

C.x

D.x

则因为又,,,所以,则m n p q

x y mn pq mp nq m q n p y z mp nq mq np m n p q m q n p m n p q

x y y z x y z

>>>-=+-+=---=+-+=-->>>>->->>>()()()()

()()()()

00

故选(A )

5.解不定方程

例9方程3211x y +=在正整数范围内的解是________。

解由已知方程得y x =-12

113()

因为所以,即,,相应地,,所以满足条件的解是;y x x x y x y x y >-><====???==???0

11303

23123

4212

11431

1122 6.求值

例10已知x,y,z 为三个非负有理数,且满足3252x y z x y z ++=+-=,,若s x y z =+-2,则s 的最大值与最小值之和是________。

解已知两等式可化为3252x y z x y z

+=-+=+??? 所以,因为,,所以,,x z y z

x y z z z z =-=+≥≥≥≤≥-≥131********

即这时,当时,;当时,所以最大值最小值最大值最小值01

3

21314330313

25≤≤

=-++-=-====+=z s z z z z z s z s s s ()() 7.应用题

例11某校男生有若干名住校,若每间宿舍住4名,还剩下20名未住下;若每间宿舍住8名,则一间宿舍未住满,且无空房。该校共有住校男生________名。

解设该校有男生宿舍x 间,则住校男生有()420x +人。

因为每间宿舍住8名,则一间宿舍未住满,且无空房,所以x 间宿舍中一定有一间住的学生人数至少为1人,至多为7人。

即解得所以,即该校共有住校男生名

()()()()420811420817

514634

642044

44x x x x x x x +--≥+--≤???≤≤=+=

练习题

1.若方程组323x y x y a +=??-=-+?的解满足0,0,x y >??>?

则a 的取值范围是( ) A.a>-3 B.-6

2.用120根火柴,首尾相接围成一个三条边互不相等的三角形,?已知最大边是最小边的3倍,则最小边用了( )

A.20根火柴

B.19根火柴

C.18或19根火柴

D.19或20根火柴

3.长度分别为3cm,7cm,?xcm?的三根木棒围成一个三角形,?则x?的取值范围是_______.

4.方程组12x y x y a +=??-=?

的解为x,y,且x>0,y<0,则a 的取值范围是________. 5.求同时满足2(x+2)+1>-3和

73+2x<8-4x 的非负整数解.

6.x 取哪些数时,代数式

2x -23(5-4x)的值大于-16

且不大于3.

7.求不等式-≤-

153

2

5

x

的整数解。

8.某工厂生产的一种产品,每10件的成本是35元,引进先进技术后,成本可以降低10%~

15%,求改进后每件产品的成本在多少元之间?

9.某种植物适宜生长在温度为18℃~20℃的山地,已知山区海拨每升高100m气温下降

0.55℃,现测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?

10.喷灌是一种先进的田间灌水技术,雾化指标P?是它的技术要素之一,当喷嘴的直径为

d(mm),喷头的工作压强为h(kPa)时,雾化指标P=100h

d

,对果树喷灌时要求3000≤P≤

4000,若d=4mm,求h的范围.

11.仔细观察下图,认真阅读对话.

根据对话的内容,试求出饼干和牛奶的标价各是多少元?

答案:

1.C

2.C

3.a>12

4.-2

6827, 非负整数解为0,1,2 5.1

6.2.975元至3.15元

7.解:各端都乘以2,得

-≤-≤25310x

各端都减5,得-≤-≤735x

各端都除以-3,得

-≤≤123213

x (注意:不等式两边同除以负数不等号改变) 在这个范围内的整数解为:-1012,,,。

8.4cm

9.363.64m ~727.27m

10.120≤h ≤160

11.?设饼干的标价为每盒x 元,牛奶的标价为每袋y 元,

则100.9100.0810x y x y x +>??+=-??

由②得y=9.2-0.9x.④

把④代入①,得9.?2-?0.9x+x>10,

解得x>8,

把③综合得8

又∵x 是整数,

∴x=9,

把x=9代入④得y=9.2-0.9×9=1.1(元)

答:一盒饼干标价9元,一袋牛奶标价1.1元.

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

解不等式的方法归纳

解不等式的方法归纳 (总5页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

解不等式的方法归纳 一、知识导学 1. 一元一次不等式ax>b (1)当a>0时,解为a b x >; (2)当a <0时,解为a b x <; (3)当a =0,b ≥0时无解;当a =0,b <0时,解为R . 2. 一元二次不等式:(如下表)其中a >0,x 1,x 2是一元二次方程ax 2+bx+c=0 的两实根,且x 1<x 2(若a <0,则先把它化正,之后跟a >0的解法一样) 3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的f(x)值的符号变化规律,写出不等式的解集. 4.分式不等式:先整理成 )()(x g x f >0或)()(x g x f ≥0的形式,转化为整式不等式求解,即: ) ()(x g x f >0?f(x)·g(x)>0 ) ()(x g x f ≥0?0)x (g )x (f 0)x (g 0)x (f >或????≠= 然后用“根轴法”或化为不等式组求解. 类型 解集 ax 2+bx+c >0 ax 2+bx+c ≥0 ax 2+bx+c <0 ax 2+bx+c ≤0 Δ>0 {x |x <x 1或x > x 2} {x |x ≤x 1或x ≥x 2} {x |x 1<x <x 2} {x |x 1≤x ≤x 2} Δ=0 {x |x ≠-a b 2,x ∈R} R Ф {x |x=-a b 2} Δ<0 R R Φ Φ

含绝对值的不等式解法典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.?? ?123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m .

完整word版,一元一次不等式典型例题

一元一次不等式典型例题 类型一:一元一次不等式的解集问题 1.若不等式﹣3x+n>0的解集是x<2,则不等式﹣3x+n<0的解集是. 2.已知实数x、y满足2x﹣3y=4,并且x≥﹣1,y<2,现有k=x﹣y,则k的取值范围是. 3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为________ 4.若关于x的一元一次方程x﹣m+2=0的解是负数,则m的取值范围是_______类型二:一元一次不等式组无解的情况 1.若关于x的一元一次不等式组无解,则a的取值范围是. 2.已知不等式组无解,则a的取值范围是 3.已知关于x的不等式组无解,则a的取值范围是 类型三:明确一元一次不等式组的解集求范围 1.若不等式的解集为x>3,则a的取值范围是 2.若关于x的不等式的解集为x<2,则a的取值范围是. 3.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是________ 4.若不等式组的解集为﹣1<x<1,那么(a+1)(b﹣1)的值等于 5.已知不等式组的解集为﹣1<x<2,则(m+n)2008= 类型四:一元一次不等式组有解求未知数的范围

1.若有解,则a的取值范围是 2.若关于x的不等式组有实数解,则a的取值范围是 3._______ 类型五:一元一次不等式组有整数解求范围 1.不等式组有3个整数解,则m的取值范围是. 2.不等式组有3个整数解,则m的取值范围是. 3.已知关于x的不等式组仅有三个整数解,则a的取值范围是. 4.关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是. 5.关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是______ 6.已知关于x的不等式组恰好有两个整数解,求实数a的取值范围. 7.已知关于x的不等式组有四个整数解,求实数a的取值范围.

初中解不等式组范文

1.(2008年义乌市)不等式组 83x 41 x ≤2, 0的解集在数轴上表示为 答案 A 3(x 2) ≥ x 4, 20. (2008 年宁波市 )解不等式组 x 1 1. 答案: C ,本题主要考查了求不等式组的解以及不等式组的解集的数轴表示,解第一个不等 式可得 x ≥— 2,解第二个不等式得 以下是江苏董耀波的分类 ( 2008 恩施自治州)如果a<b< 答案: C 2x 5 x, 2008 黄冈市)解不等式组 5x 4 3x 2. 答案:解:由( 1)得 x < 5, 由( 2)得 x ≥ 3. ∴不等式组的解集为: 3≤x < 5. ( 2008 襄樊市)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋 友喜欢奥运福娃,就特意购买了一些送给这个小学的小朋友作为节日礼物.如果每班分 10 套,那么余 5 套;如果前面的班级每个班分 13 套,那么最后一个班级虽然分有福娃,但不 足 4 套.问:该小学有多少个班级?奥运福娃共有多少套? 1 A . 0 1 2 B . 1 2 D . 答案:解:解不等式( 1),得 x ≥ 1.解不等式( 2),得 x 3 . 原不等式组的解是 1≤ x 3 . 08 凉山州)不等式组 x ≤ 2 的解集在数轴上表示正确的是( x21 2 0 3 A . 2 0 3 B . 2 0 3 C . 20 D . x < 3,所以原不等式组的解集为— 2≤x < 3,因而选 0, 下列不等式中错误..的是 A. ab > 0 B. a+b< 0 a C. < 1 D. b a-b< 0

答案:解:设该小学有 x 个班,则奥运福娃共有 (10x 5)套. 10x 5 13(x 1) 4, 10x 5 13(x 1). 14 解之,得 x 6 . 3 x 只能取整数, x 5 ,此时 10x 5 55. 答:该小学有 5 个班级,共有奥运福娃 55 套. 提 示:抓住“如果前面的班级每个班分 13 套,那么最后一个班级虽然分有福娃,但不足 4 套”建立不等式组 (2008苏州) 6月 1日起,某超市开始有.偿.提供可重复使用的三种环保购物袋, 每只售价分 别为 1 元、2元和 3 元,这三种环保购物袋每只最多分别能装大米 3 公斤、5公斤和 8公斤.6 月 7 日,小星和爸爸在该超市选购了 3 只环保购物袋用来装刚买的 20 公斤散装大米,他们 选购的 3 只环保购物袋至少..应付给超市 元. 答案: 8 解析:本题分类讨论,可选 2个 3元的,1个 2元的,费用最少为 8元 ( 2008 无锡)不等式 1 x 1 的解集是( ) 2 1 A. x B. x 2 C. x 2 1 D. x 2 2 答案: C 解析: 本题考查不等式解法, 两边同时乘以 -2,得 x 2 ,要注意不等式两边同时乘以一个 负数,不等号要改变方向 . 方法技巧:解不等式的一般步骤是 去分母 ,去括号,移项,合并同类项,系数化为 1 . 解不 等式时要注意: ( 1)去分母时不要漏乘没有分母的项; (2)去括号时不要漏乘; (3)移项要变号; (4)系数化为 1 时如果两边同除以的是负数,要改变不等号的方向。 解析: 本题考查不等式组的解法, 解不等式的一般步骤是先对两个不等式进行编号, 再分别 解不等式,最后根据规则确定不等式组的解集 . 方法技巧:解不等式组的一般步骤是先分别解不等式,再确定两个解集的公共部分。 确定不等式组解集有两种方法: ( 1)数轴表示,在用数轴表示不等式组的解集时要注 意:有等号时用实心圆圈,无等号时用空心圆圈; ( 2)用口诀: 大大取大;小小取小;大 由题意,得 2008 苏州)解不等式组: x 3 0, 2(x 1) 3≥ 3x. 并判断 x 3 是否满足该不等式组. 2 答案:原不等式组的解集是: 3 x ≤1, x 3 满足该不等式组.

解不等式典型例题答案

解不等式典型例题答案 例1 解:(1)原不等式可化为 0)3)(52(>-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5 ,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ???>-<-≠????>-+≠+?>-++2 450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x

2 12 1 310 2730132027301320 )273)(132(222222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或 ∴原不等式解集为),2()1,2 1 ()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法” ∴原不等式解集为),2()1,2 1()31,(+∞??-∞ 例3解法一:原不等式?? ???+<-<-?????+<-≥-?240 424042 222x x x x x x 或 即?? ?>-<<<-?? ?<<--≤≥1 22 2222x x x x x x x 或或或[来源学科网Z|X|X|K] ∴32<≤x 或21<-+<-) 2(42422 x x x x ∴312132<<<-x x x x 故或. 例4解法一:原不等式等价下面两个不等式级的并集: ?????>-+<+-0412,05622x x x x 或?????<-+>+-0 412, 0562 2x x x x ?? ?<-+<--?;0)6)(2(,0)5)(1(x x x x 或? ??>-+>--;0)6)(2(, 0)5)(1(x x x x ; ???<<-<-<><6 ,2, 5,1x x x x 或或 ,51<x .

精选--一元一次不等式组计算题专项练习.doc

1 2x 3 x 3x 1 4, x 5 1 2x, 5x 4x 1 2 x x 2. 3 x 2 4x. 2x 1 x, 2x 3 0 x 2 4x 1. 3x 2 0 2x 3 x 1 8 2x 2 5 1 x, x 3 x 2 4, 2 x 5 3(x 2) x 3 3 x 1 . 1 2x x 1. x 1 x x 1 3 2 3 4 8 1 ( x 2) 2 x 1 3 x 1 1 2 x 2 . 3 0≤ 3 2x ≤ 1 -1< 3x 1 ≤ 4 5 2 3( x 1) 5x 4 ①3x 1 5(x 1) 3x 1 2( x 1) 4 6 5x x 1 ≤ 2x 1 2( x 1) 4x ②x 6 3 2 3 3 3( x 2) 4 5 x x 1 x 3x 1 2

(2008) (本题满分 6 分)解不等式组 2 x 5 x , 5 x 4≥ 3x 2. 3( x 2) < x 8, (2009) (满分 5 分)解不等式组 x ≤ x 1 . 23 (2010) ( 6 分)解不等式组 1 x 1 ≥0 3 3 4( x 1) 1 (2012).( 5分)解不等式组 2x - 1 > 5 ① (2014) ( 5 分)解不等式组: 3x+1 - 1≥x ② ,并在数轴上表示出不等式组的解集. 2 2x 3x 2 (2015).( 5 分)解不等式组: 2x 1 1 x 2 3 2 3 x 1 (2016). (满分 5 分)解不等式 2 ≥ 3(x-1)-4 (2017).解不等式组: 3x 5 2 x ① 3x 2 . ② 1 2

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

不等式的解法·典型例题及详细答案

不等式的解法·典型例题 【例1】?(x+4)(x+5)2(2-x)3<0. 【例2】?解下列不等式: 【例3】?解下列不等式 【例4】?解下列不等式: 【例5】?|x 2-4|<x+2. 【例6】?解不等式1)123(log 2122<-+-x x x . 不等式·典型例题参考答案 【例1】?(x+4)(x+5)2(2-x)3<0. 【分析】?如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况. 原不等式等价于(x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】?用“穿针引线法”解不等式时应注意: ①各一次项中x 的系数必为正; ②但注意“奇穿偶不穿”.其法如图(5-2). 【例2】?解下列不等式: 解:(1)原不等式等价于 用“穿针引线法” ∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞). (2) 【例3】?解下列不等式 解:(1)原不等式等价于 ∴原不等式解集为{x|x ≥5}. (2)原不等式等价于 【说明】?解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变. 【例4】?解下列不等式: 解:(1)原不等式等价于 令2x =t(t >0),则原不等式可化为 (2)原不等式等价于 ∴原不等式解集为(-1,2〕∪〔3,6). 【例5】?|x 2-4|<x+2. 解:原不等式等价于-(x+2)<x 2-4<x+2. 故原不等式解集为(1,3). 这是解含绝对值不等式常用方法. 【例6】?解不等式1)123(log 2122<-+-x x x . 解:原不等式等价于 (1)当a >1时,①式等价于 ② (2)当0<a <1时,②等价于 ③

解不等式组计算专项练习60题有答案

解不等式组专项练习60题(有谜底) 1. 2.. 3.. 4., 5..6.. 7. 8.. 9. 10. 11. 12., 13..14.,15. 16. 17.. 18. 19. 20..21..22..23. 24. 25.,. 26. 27., 28.

29.. 30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值规模. 31..32.. 33.已知:a=,b=,并且2b ≤<a.请求出x的取值规模. 34. 35., 36.,并将其解集在数轴上暗示出来. 37.. 38.,并把解集在数 轴上暗示出来. 39.已知关于x、y 的方程组的解满足x>y>0,化简|a|+|3﹣a|. 40.,并把它的解集在数轴上暗示出来. 41.42. 43.. 44.. 45.. 46.. 47.关于x、y 的二元一次方程组 ,当m为何值时,x>0,y ≤0. 48.并将解集暗示在 数轴上. 49.已知关于x、y 的方程组 的解是一对正数,求m的取值规模. 50.已知方程组的解满足 ,化简.51.. 52. 53..

54..55..56. 57.58.59.60. 解不等式组60题参考谜底: 1、 解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1 ≤x<3. 2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤5 3.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2. 4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为: 1<x<3, 5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,6. 解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此 不等式组的解集为:﹣3<x≤1, 8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不 等式的解集为﹣1≤x<3. 9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4,

专题:解不等式组计算专项练习题(有答案)

解不等式组专项练习题(有答案) 1. 2.. 3.. 4., 5..6.. 7. 8.. 9. 10. 11.12., 13..14., 15. 16. 17.. 18. 19. 20..21.. 22..

23. 24. 25.,. 26. 27., 28. 29.. 30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围. 31.. 32.. 33.已知:a=,b=,并且2b≤<a.请求出x的取值范围.34. 35., 36.,并将其解集在数轴上表示出来. 37.. 38.,并把解集在数轴上表示出来. 39.已知关于x、y 的方程组的解满足x>y >0,化简|a|+|3﹣a|. 40.,并把它的解集在数轴上表示出来. 41. 42.

43..

解不等式组60题参考答案: 1、解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1≤x<3.2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤5 3.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2.4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为:1<x<3, 5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2, 6. 解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1, 8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4, 10.解:,解不等式①得:x<3,解不等式②得:x≥1,不等式组的解集是1≤x<3 11.解:,由①得,x≥﹣;由②得,x<1,故此不等式组的解集为:﹣<x<1, 12.解:∵由①得,x≤3,由②得x>0,∴此不等式组的解集为:0<x≤3, 13.解:解不等式①,得x≥1;解不等式②,得x<4.∴1≤x<4. 14.解:原不等式组可化为,解不等式①得x>﹣3;解不等式②得x≤3.所以-3

必修5数学不等式典型例题解析(整理)

不等式 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a bc d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-), 但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >> 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 11,0<<<则若; ⑤b a a b b a ><<则 若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c ->->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______ (答:12,2??-- ??? ) 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。如 (1)设0,10>≠>t a a 且,比较 2 1log log 21+t t a a 和的大小 (答:当1a >时,11log log 22a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,12 p a a =+-,2 422-+-=a a q ,试比较q p ,的大小 (答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小 (答:当01x <<或43x >时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3 log x =2log 2x ) 三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。如

解不等式的方法归纳

一、知识导学 1. 一元一次不等式 ax>b
(1)当 a>0 时,解为 x b ; a
解不等式的方法归纳
(2)当 a<0 时,解为 x b ; a
(3)当 a=0,b≥0 时无解;当 a=0,b<0 时,解为 R.
2. 一元二次不等式:(如下表)其中 a>0,x1,x2 是一元二次方程 ax2+bx+c=0 的两实根,且
x1<x2 (若 a<0,则先把它化正,之后跟 a>0 的解法一样)
类型 解集
ax2+bx+c>0
ax2+bx+c≥0
ax2+bx+c<0
ax2+bx+c≤0
Δ>0
{x|x<x1 或 x>x2}
{x|x≤x1 或 x≥ x2}
{x|x1<x<x2 }
{x|x1≤x≤x2}
{x|x≠- b ,
Δ=0
2a
R
x R}
Ф
b
{x|x=- }
2a
Δ<0
R
R
Φ
Φ
3.简单的一元高次不等式:可用区间法(或称根轴法)求解,其步骤是: ①将 f(x)的最高次项的系数化为正数; ②将 f(x)分解为若干个一次因式的积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线; ④根据曲线显示出的 f(x)值的符号变化规律,写出不等式的解集.
4.分式不等式:先整理成 f (x) >0 或 f (x) ≥0 的形式,转化为整式不等式求解,即:
g(x)
g(x)
f (x) >0 f(x)·g(x)>0 g(x)
f
(x)
≥0
f (x) 0 g(x) 0

f (x) g(x)>0
g(x)
然后用“根轴法”或化为不等式组求解. 二、疑难知识导析 1.不等式解法的基本思路 解不等式的过程,实质上是同解不等式逐步代换化简原不等式的过程,因而保持同解
精品

不等式经典题型专题练习(含答案)

不等式经典题型专题练习(含答案) 姓名:__________ 班级:___________ 一、解答题 1.解不等式组: ()13x 2x 11{ 2 5233x x -+≤-+≥-,并在数轴上表示不等式组的解集. 2.若不等式组21 { 23x a x b -<->的解集为-1

3.已知关于x ,y 的方程组?? ?=+=+3135y x m y x 的解为非负数,求整数m 的值. 4.由方程组212x y x y a +=?? -=?得到的x 、y 的值都不大于1,求a 的取值范围. 5.解不等式组: 并写出它的所有的整数解.

6.已知关于x、y的方程组 521118 23128 x y a x y a +=+ ? ? -=- ? 的解满足x>0,y>0,求实数a的取 值范围. 6.求不等式组 x20 x 1x3 2 -> ? ? ? +≥- ?? 的最小整数解. 7.求适合不等式﹣11<﹣2a﹣5≤3的a的整数解.

8.已知关于x的不等式组3的整数解共有5个,求a的取值范围. 9.若二元一次方程组 2 { 24 x y k x y -= += 的解x y >,求k的取值范围. 10.解不等式组 5134 1 2 2 x x x x ->- ? ? ? -- ??≤ 并求它的整数解的和. 23 x y m +=- ?①

12.解不等式组?? ???<+-+≤+12312)2(352x x x x ,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集. 14.若方程组2225x y m x y m +=+??-=-? 的解是一对正数,则: (1)求m 的取值范围 (2)化简:42 m m -++

不等式与不等式组精选计算题100道.doc

不等式与不等式组(100 道)用不等式表示: 1、a与 1 的和是正数; 2、x的1 与 y 的 1 的差是非负数;23 3、x的 2 倍与 1 的和大于3; 4、a的一半与 4 的差的绝对值不小于 a . 5、x的 2 倍减去 1 不小于x与 3 的和; 6、a与b的平方和是非负数; 7、 y 的 2 倍加上 3 的和大于- 2 且小于 4; 8、a减去 5 的差的绝对值不大于 解不等式(组),并在数轴上表示它们的解集 9、x 1 (x-1) ≥ 1; 3 2 10、x 4 2 3 11、3x 1 2x 1 2x 8 12、 2x 1 3 2x 3 3x 13、2(3x 1) 3(4 x 5) x 4( x 7) ; 14、x 5x 7 1 7 x 2 ; 2 3 4 15、 x 2 1 3x 1 8 16、 3x 2 x 2 5x 5 2x 7 17、2x 2 3x 1 1 2x 4 x 18、3x 2 2x 8 19、3 2 x 9 4x 20、2(2x 3) 5( x 1) 22、 2 x 2x 1 2 3 23、 x 5 1 3x 2 2 2 24、3x 2 2 x 5 25、 x 4 2 3 26、3( y 2) 1 8 2( y 1) 27、 m m 1 1 3 2 28、3[ x 2( x 2)] x 3(x 2) 29、 3x 2 9 2x 5x 1 3 3 2 30、 3( x 1) 2 3 x 1 8 4 31、 1 [ x 1 ( x 1)] 2 ( x 1) 2 2 5 32、 6x 1 2 x 2 4 33、 6x 1 2x 1 2 x 4 34、5( x 2) 8 6(x 1) 7 35、5 2( x 3) 6 x 4 36、 2x 1 5x 1 1 3 2 37、 x 2 2x 1 2 3 38、3x 2 2 x 8 39、3 2x 9 4 x 40、2( 2 x 3) 5( x 1) 41、19 3( x 7) 0 42、 2 x 2x 1 2 3 43、 x 5 1 3x 2 2 2 44、5( x 2) 8 6(x 1) 7 21、193( x 7) 045、3[ x2( x 2)] x 3(x 2)

高中数学不等式解法15种典型例题

不等式解法15种典型例题 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<- 3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2 450)2)(4(050 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--+-+-x x x x 2 12 1 310 2730 132027301320 )273)(132(2 22222><<+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或∴原不等式解集为),2()1,21()31,(+∞??-∞。 解法二:原不等式等价于 0) 2)(13() 1)(12(>----x x x x 0)2()13)(1)(12(>-?---?x x x x 用“穿根法”∴原不等式解集为),2()1,2 1()31 ,(+∞??-∞ 典型例题三 例3 解不等式242+<-x x 分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义? ??<-≥=)0() 0(a a a a a 二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<,因此本题有如下两种解法. 解法一:原不等式?????+<-<-?????+<-≥-?2 40 4240422 22x x x x x x 或 即? ? ?>-<<<-???<<--≤≥1222222x x x x x x x 或或或 ∴32<≤x 或21<-+<-) 2(42 422x x x x ∴312132<<<-x x x x 故或. 典型例题四 例4 解不等式 04125 62 2<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组: ?????>-+<+-041205622x x x x 或?????<-+>+-0 4120 562 2x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.

高中不等式练习题及答案知识讲解

高中不等式练习题及 答案

收集于网络,如有侵权请联系管理员删除 不等式 1、解不等式:1 211922+-+-x x x x ≥7. 2、解不等式:x 4-2x 3-3x 2<0. 3、解不等式:6 5592+--x x x ≥-2. 4、解不等式:2269x x x -+->3. 5、解不等式:232+-x x >x +5. 6、若x 2+y 2=1,求(1+xy)(1-xy)的最大、最小值。 7、若x,y >0,求y x y x ++的最大值。 8、已知关于x 的方程x 2+(m 2-1)x +m -2=0的一个根比-1小,另一个根比1大, 求参数m 的取值范围。 9、解不等式:log a (x +1-a)>1. 10解不等式38->-x x . 11.解log (2x – 3)(x 2-3)>0 12.不等式04 9)1(220822<+++++-m x m mx x x 的解集为R,求实数m 的取值范围。

收集于网络,如有侵权请联系管理员删除 13.求y x z +=2的最大值,使式中的x 、y 满足约束条件?? ???-≥≤+≤.1,1,y y x x y 14在函数x y 1=的图象上,求使y x 11+取最小值的点的坐标。 15函数4522++= x x y 的最小值为多少? 16.若a -1≤x 2 1log ≤a 的解集是[41,21],则求a 的值为多少?

收集于网络,如有侵权请联系管理员删除 17.设,10<a ,求证:()()1log log 1+>-a a a a 20.已知集合A=??????-<-=?? ??????????? ??<---)26(log )9(log |,212|31231)1(3322x x x B x x x x , 又A ∩B={x|x 2+ax+b <0},求a+b 等于多少?

不等式的典型例题解析

不等式的典型例题解析 【例1】解不等式:(1)2x3-x2-15x>0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“区间法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x<-4或x>2}. 【说明】用“区间法”解不等式时应注意:①各一次项中x的系数必为正;②对于偶次或奇次重根可参照(2)的解法转化为不含重根的不等式,也可直接用“区间法”,但注意“奇穿偶不穿”.其法如图(5-2). 【例2】解下列不等式:

变形 解:(1)原不等式等价于 用“区间法” ∴原不等式解集为(-∞,-2)∪〔-1,2)∪〔6,+∞). 用“区间法”

【例3】解下列不等式: 【分析】无理不等式的基本解法是转化为有理不等式(组)后再求解,但要注意变换的等价性. 解:(1)原不等式等价于 (2)原不等式等价于 ∴原不等式解集为{x|x≥5}. (3)原不等式等价于

【说明】解无理不等式需从两方面考虑:一是要使根式有意义,即偶次根号下被开数大于或等于零;二是要注意只有两边都是非负时,两边同时平方后不等号方向才不变.此外,有的还有其他解法,如上例(3). 原不等式化为 t2-2t-3<0(t≥0)解得0≤t<3 【说明】有些题目若用数形结合的方法将更简便. 【例4】解下列不等式:

相关主题