搜档网
当前位置:搜档网 › 电力系统接地网故障诊断

电力系统接地网故障诊断

电力系统接地网故障诊断
电力系统接地网故障诊断

电力系统接地网故障诊断

【摘要】:电力系统的接地网为运行人员和电气设备的安全可靠提供了重要保障。由于接地网的导体材料都是埋在地底下,会因为各种原因造成地网电气连接性能变坏和接地电阻升高,有的甚至造成更严重的电网事故。本文在此对电力系统接地网的故障进行了分析,从而提高了它的可靠安全性。

【关键词】:电力系统;接地网;故障分析

由于构成变电站的接地网导体是埋在地下的,在施工过程中,会因为施工人员没焊接好或者漏焊、接地短路电流电动力的作用以及地下土壤的侵蚀等各种原因,造成了地网导体和设备接地线腐蚀严重,有的还会断裂,那么,电气连接性能就会变坏,接地电阻也会因此而升高。而且,假如运行设备和主地网没有互相连接也就是出现失地运行,电力系统的接地短路发生故障的时候,会引起电网事故,导致经济受损,也会给社会带来不良影响。根据故障诊断学相关理论我们可以了解到,不管采用哪种方法,有关病态方程和欠定方程这两种方程,都是建立故障诊断方程时的基本方程。可及节点不是无限而是有限的,在电力系统的接地网中,这是欠定方程成为建立故障诊断一个方程的原因所在;因而在故障诊断学里讨论最多的一个问题就是有关欠定方程的求解过程,而长期以来这个问题还是没有得到比较满意的解答。基于此,在这篇文章里,笔者结合多年的工作实践,根据相关理论、原理和技术,诸如矩阵理论、电网理论、能量学原理以及网络优化技术等等,采用多激励法来综合分析和讨论电接地网中的有关故障诊断问题。

1、故障诊断方程的建立

假设在电力接地网的平面结构中,独立节点有m个,支路有a条,并且可及节点有n个,在把有关电容和电感的所产生影响忽略不计时,可以应用以下纯电阻性线性等效替换电力接地网,如图一所示:

图一:电力接地网等效图——线性网络M

对灵敏度矩阵进行求解

应用电网理来分析节点可以得到以下三个式子:

①Im=VmYm ,②Ym=A Ya AT ,③Vm=Ym-1Im

在以上三个式子中,节点关联矩阵用上式的字母A表示,此时节点的电流源,其非激励列向量为零,而其激励列向量用上式的符号Im来表示,至于支路的导纳矩阵则用上式的符号Ya来表示,通常对角阵是这个矩阵的一个特征,若电力接地网当中均压导体在支路上的电阻值用Rk来表示,那么它的倒数就是

电力系统短路计算课程设计

南昌工程学院 课程设计 (论文) 机械与电气工程学院电气工程及其自动化专业课程设计(论文)题目电力系统短路电流计算 学生姓名 班级 学号 指导教师 完成日期2013 年11 月30 日

成绩: 评语: 指导教师: 年月日

南昌工程学院 课程设计(论文)任务书

机械与电气工程学院 10电气工程及其自动化专业班学生: 日期:自 2013 年 11 月 18 日至 2013 年 11 月 30 日 指导教师: 助理指导教师(并指出所负责的部分): 教研室:电气工程教研室主任: 附录:短路点的设置如下,计算时桥开关和母连开关都处于闭合状态。

一、取基准容量: S B=100MVA 基准电压:U B=U av 二、计算各元件电抗标幺值: =0.0581, (1)X L=0.401Ω/km ,L1=16.582km L2=14.520km ,X d1=X d2=X'' d 系统电抗标幺值X'' =0.0581,两条110kV进线为LGJ-150型 d 线路长度一条为16.582km,另一条为14.520km.。 (2)主变铭牌参数如下: 1﹟主变:型号 SFSZ8-31500/110 接线 Y N/Y N/d11 变比 110±4×2.5%∕38.5±2×2.5%∕10.5 短路电压(%) U K(1-2)=10.47 U K(3-1)=18 U K(2-3)=6.33 短路损耗(kw) P K(1-2)=169.7 P K(3-1)=181 P K(2-3)=136.4 空载电流(%) I0(%)=0.46 空载损耗(kW) P0=40.6 2﹟主变:型号 SFSZ10-40000/110 接线 Y N/Y N/d11 变比 110±8×1.25%∕38.5±2×2.5%∕10.5 短路电压(%) U K(1-2)=11.79 U K(3-1)=21.3 U K(2-3)=7.08 短路损耗(kW) P K(1-2)=74.31 P K(3-1)=74.79 P K(2-3)=68.30 空载电流(%) I0(%)=0.11 空载损耗(kW) P0=26.71 (3)转移电势E∑=1

课程设计(论文)-基于MATLAB的电力系统单相短路故障分析与仿真.doc

课程设计 ( 论文 )- 基于 MATLAB的电力系统单相短路故障分析与 仿真

————————————————————————————————作者:————————————————————————————————日期:

电力系统分析课程设计说明书题目:单相接地短路 专业:电气工程及其自动化 班级:电气 1307 姓名:陈欢

目录 课程设计(论文)任务书 ----------------------- (1)引言 ------------------------------------------------------------------- ( 3)第一章.电力系统短路故障分析------------------------------- ( 4)第二章.电力系统单相短路计算-------------------- ( 5)2.1 简单不对称故障的分析计算---------------------- ( 5) 2.1.1. 对称分量法 ------------------- (5) 2.2 单相接地短路------------------------------ ( 6) 2.2.1. 正序等效定则 ---------------------------- (6) 2.2.2. 复合序网 --------------------------------- (6) 2.2. 3. 单相接地短路分析 --------------------------- (7)第三章.电力系统单相短路时域分析 ---------------- ( 10)3.1 仿真模型的设计与实现------------------------ (10) 3.1.1. 实例分析 -------------------------------- (10) 3.1.2. 仿真参数 ----------------------------- -- -- -- (11)3.2 仿真结果分析------------------------------- (13) 结束语 ----------------------------------------- ( 18)参考文献 --------------------------------------- ( 18)

两相短路故障的计算

编号0714141 课程设计 系(部)院:机电工程系 专业:电气工程及其自动化 作者姓名: 学号: 指导教师:职称:讲师 完成日期:年月日 二○一○年十二月

目录 目录 0 摘要 (2) ABSTRACT (3) 1 引言 (4) 1.1短路故障的原因 (4) 1.2短路故障发生的原因 (4) 1.3短路类型 (4) 1.4短路的危害 (4) 2 电力系统自动化的一般概念 (5) 3 本课程设计的主要任务 (6) 4 课程设计的目的 (6) 5 课程设计任务书 (6) 6课程设计内容及过程 (8) 6.1数学模型 (8) 6.1.1架空输电线的等值电路和参数 (8) 6.1.2变压器等值电路和参数 (9) 6.2对称分量法 (11) 6.2.1不对称三相量的分解 (11) 6.2.2变压器的各零序等值电路 (12) 6.3两相短路接地的分析 (13) 6.4算例 (16) 课程设计总结 (19) 参考文献 (20)

摘要 电力系统自动化(automation of power systems)对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。在电力系统的设计和运行中,必须考虑到可能发生的故障和不正常的运行情况,防止其破坏对用户的供电和电气设备的正常工作。从电力系统的实际运行情况看,这些故障多数是由短路引起的,例如短路时电路的电压骤降,严重影响电气设备的正常运行,短路时保护装置动作,如熔断器的保险丝熔断,将短路电路切除,这会造成停电,而且短路点越靠近电源,停电范围越大,造成生活的不便和经济上的损失,严重的短路会影响电力系统运行的稳定性,可使并列运行的发电机组失去同步,造成系统解列,不对称短路,像单相短路和两相短路。因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。这里着重介绍简单不对称故障两相短路接地的常用计算方法。对称分量法是分析不对称故障常用方法,根据对称分量法,一组不对称的三相量可以分解为正序、负序和零序三相对称的三相量。在应用对称分量法分析计算不对称故障时必须首先作出电力系统的各序网络,通过网络化简求出各序网络对短路点的输入电抗以及正序网络的等值电势,再根据不对称短路的不同类型,列出边界方程,以求得短路点电压和电流的各序分量。 关键词:两相短路故障;短路计算;两相短路接地;对称分量法.

电力系统中电气设备的接地问题

龙源期刊网 https://www.sodocs.net/doc/2717175866.html, 电力系统中电气设备的接地问题 作者:陈亮 来源:《装饰装修天地》2015年第04期 摘要:电气设备的任何部分与大地(土壤)间作良好的电气连接称为接地。接地是确保电气设备正常工作和安全防护的重要措施之一。其工作原理和结构表明其参考电位并非工程中的接地,不能用简单的处理方法将其一概作统一接地,如果接地不当,会产生问题。解决工程上的问题应考虑现场实际情况,措施的异同会直接影响安装和使用。 关键词:接地;类型;作用;检查;安全 一、接地的作用 我们往往只知道接地可防止人身遭受电击,其实接地除了这一作用外,还可以防止设备和线路遭受损坏、预防火灾、防止雷击、防止静电损害和保证电力系统的正常运行。 1.防止电击 人体阻抗和所处环境的状况有极大的关系,环境越潮湿,人体的阻抗越低,也越容易遭受电击。例如,自装过交流收音机的人几乎都受到过电击,但几乎都能摆脱电源,因为此时人所处的环境干燥,皮肤也较干燥。接地是防止电击的一种有效的方法。电气设备通过接地装置接地后,使电气设备的电位接近地电位。 2.保证电力系统的正常运行 电力系统的接地,又称工作接地,一般在变电站或变电所对中性点进行接地。工作接地的接地电阻要求很小,对大型的变电站要求有一个接地网,保证接地电阻小而且可靠。工作接地的目的是使电网的中性点与地之间的电位接近于零。低压配电系统无法避免相线碰壳或相线断裂后碰地,如果中性点对地绝缘,就会使其他两相的对地电压升高到3 倍的相电压,其结果可能把工作电压为220的电气设备烧坏。 3.防止雷击和静电的危害 雷电发生时,除了直接雷外,还会生产感应雷,感应雷又分为静电感应雷和电磁感应雷。所有防雷措施中最主要的方法是接地。 二、接地的类型 1.工作接地

电力系统三相短路电流的计算

能源学院 课程设计 课程名称:电力系统分析 设计题目:电力系统三相短路电流的计算 学院:电力学院 专业:电气工程及其自动化____________ 班级:1203班________________________ 姓名:将________________________ 学号:1310240006__________________

目录 摘要 (1) 课题 (2) 第一章.短路的概述 (2) 1.1发生短路的原因 (2) 1.2发生短路的类型 (2) 1.3短路计算的目的 (3) 1.4短路的后果 (3) 第二章.给定电力系统进行三相短路电流的计算 (4) 2.1收集已知电力系统的原始参数 (4) 2.2制定等值网络及参数计算 (4) 2.2.1标幺值的概念 (4) 2.2.2计算各元件的电抗标幺值 (5) 2.2.3系统的等值网络图 (5) 第三章.故障点短路电流计算 (6) 第四章.电力系统不对称短路电流计算 (9) 4.1对称分量法 (9) 4.2各序网络的定制 (10) 4.2.1同步发电机的各序电抗 (10) 4.2.2变压器的各序电抗 (10) 4.3不对称短路的分析 (12) 4.3.1不对称短路三种情况的分析 (12) 4.3.2正序等效定则 (14) 心得体会 (15) 参考文献 (16)

电力系统分析是电气工程、电力工程的专业核心课程,通过学习电力系统分析,学生可以了解电力系统的构成,电力系统的计算分析及方法、电力系统常见的故障及其处理方法、电力系统稳定性的判断,为从事电力系统打下必要的基础。 电力系统短路电流的计算是重中之重,电力系统三相短路电流计算主要是短路电流周期(基频)分理的计算,在给定电源电势时,实际上就是稳态交流电路的求解。采用近似计算法,对系统元件模型和标幺参数计算作简化处理,将电路转化为不含变压器的等值电路,这样,就把不同电压等级系统简化为直流系统来求解。 在电力系统中,短路是最常见而且对电力系统运行产生最严重故障的后果之一。

电力系统接地分类

电力系统接地分类详解 电力系统接地分类详解 在电力系统中,接地是用来保护人身及电力、电子设备安全的重要措施。通常我们将接地分为工作接地、系统接地、防雷接地、保护接地,用他们来保护不同的对象,这几种接地形式从目的上来说是没有什么区别的,均是通过接地接地导体将过电压产生的过电流通过接地装置导入大地,从而实现保护的目的。现代工厂在接地上都要求形成一张严密的网,而所有的被保护对象都挂在这个安全的接地网上,但不同的接地都需要从接地装置处的等电位点连接。 对于防雷接地,主要是通过将雷电产生的雷击电流通过接地网这一有效途径引入大地,从而对建筑物起到保护作用。一般有两种避雷方式供选择,其一是避雷针接地,其二是采用法拉第笼方式接地。它们是两种不同的防雷模式,它们在防雷原理上有显著的区别。避雷针的原理是空中拦截闪电、使雷电通过自身放电,从而保护建筑物免受雷击,避雷针的保护范围是从地面算起的以避雷针高度为滚球半径的弧线下的面积,对于法拉第笼,它认为避雷针的范围很小,而且在避雷针保护的空间内仍有电磁感应作用,而且避雷针附近是强的电磁感应区,有很大的电位梯度,在它周围有陡的跨步电压存在,在这一范围内的人们有生命危险,鉴于种种观点,现在的防雷接地系统中法拉第笼占有重要地位。实验证明,一个封闭的金属壳体是全屏蔽的,在雷电流通过时,是沿着壳体的外表面流入大地,而在壳体的内部没有感应电动势及磁通,即雷电流没有对内部的设备产生干扰效应。而法拉第笼下部的环状接地环、等电位均压网也避免了人在此等电位环境中被雷击的危险。 采用保护接地是当前低压电力网中的一种行之有效的安全保护措施。通常有两种做法,即接地保护和接零保护。将设备和用电装置的中性点、外壳或支架与接地装置用导体作良好的电气连接是电气工作的一个重点,也就是我们通常说的接地。将电气设备和用电装置的金属外壳与系统零线相接叫做接零。由于电力系统中采用保护接地,是我们对用电设备、金属结构及电子等设备采取的接地保护措施,这样就可以避免电器设备漏电、线路破损或绝缘老化漏电等漏电事故造成

电力系统各种短路向量分析

电力系统各种短路向量分析

一、单相(A 相)接地短路 故障点边界条件 . . . 0;0;0kB kC kA U I I === 即 .... 1200kA kA kA kA U U U U =++= 又 . (2) 111()33kA kA kB kC kA I I a I a I I =++= . (2) 2 11()33 kA kA kB kC kA I I a I a I I =++= . .... 11()33 k kA kB kC kA I I I I I =++= 所以 ... 120kA kA k I I I == 以上就是以对称分量形式表示的故障点电压和电流的边界条件。

向量图如下: 由向量图可知A相电流增大,B、C相电流为零,A相电压为零,B、C相电压增大。

二、B 、C 相接地短路。 故障点边界条件为 ... 0;0;0kA kB kC I U U === 同上用对称分量表示,则 . . . 1200kA kA k I I I ++= . . . 120 13 kA kA k kA U U U U === 相量图如下:

有向量图可知,A 相电流为零,B 、C 相电流增大;A 相电压增大,B 、C 相电压为零。 三、两相短路 故障点的边界条件为 ..... 0;;kA kB kC kB kC I I I U U ==-= 以对称分量形式表示故障点电压、电流边界条件: . . . . . 12120;;kA kA kA kA kA I I I U U ==-=

向量图如下:

低压电力系统的保护接地分析 李荣根

低压电力系统的保护接地分析李荣根 摘要:接地在电气技术上具有很高的重要性、普遍性和复杂性。各种系统均有 多种复杂的接地要求,而且是与系统紧密联系的组成部分。 关键词:接地:保护;低压电力系统; 从功能性接地和非功能性接地两方面解析了接地的作用及保护原理,说明了 防止电击措施有多种,等电位联结只是其中使用最广泛、方便和经济的一种。 一、低压系统接地分类 低压系统接地分为TN、TT和IT。第一种代表变压器中性点接地(工作接地)方式,第二种代表用电设备外壳接地方式。T-直接接地;I-不接地;N-外壳与中性点金属连接;第一种决定电力系统的工作接地方式,第二种决定了设备的保 护接地方式。高压系统只是说工作接地包含有效接地和非有效接地,而低压系统 不仅表明电源侧工作接地,同时还表明了用户侧的保护接地。由于低压系统有中 性线引出,因此,在分析计算时需考虑接地电流和接零电流,两者大小可能不一样。高压系统的电气设备金属外壳都要求直接接地,低压系统设备金属外壳实质 上也是要求直接接地。那么外壳接地是不是就能起到保护作用呢?回答是否定的,只有满足一定的条件才是安全的。根据《交流电气装置的接地设计规范》推荐: 短时间(15 s)内体重50 kg的人承受的最大交流电流有效值是Ib=116/t(mA),体重70 kg的人承受的最大交流电流有效值是Ib=157/t(mA)。长时间内作用在人身上的电压小于50 V(通过电流30 mA)是安全的。出现接地故障时人体是否 安全,小电流接地系统按照长时间接触验算。大电流接地系统按照短时间接触验算。 1.保护接地。为电气安全,将系统、装置或设备的一点或多点接地。 2.接地电压。电气设备发生接地故障时,其接地部分与大地零电位点之间的 电位差称之为接地电压。 3.转移电压。接地故障电流流过接地系统时,由一端与该接地系统连接的金 属导体传递的接地系统对参考地之间的电位差。 4.接触电压。接地故障电流通过接地装置时,地表面形成电位分布,设备垂 直距离2 m和地面水平距离1 m处之间的电位差。此处1 m处容易误导,设备往 往距离其接地装置相当远,用接地线连接的设备外壳电位与接地装置一样,虽然 人距离设备水平距离1 m,实际人与设备外壳的电位差应是人与接地装置之间的 电位差,绝不是1 m的电位差。 5.跨步电压。接地故障电流通过接地装置在地面水平距离为1 m的两点之间 的电位差。人体能够承受的电压不仅与电流还与人体电阻有关,人体电阻变化范 围很大,我国采用1.5 kΩ作为参考值,人体单脚接地等效金属圆盘电阻3ρ。 二、高压配电装置接地 由于开关站和变电所的进线电源一般是10 kV及以上的高压,亦有可能出现 接地故障,所以有必要简单介绍高压配电装置的接地。高压电力系统的接地分为 有效接地和非有效接地。非有效接地系统向1 kV以下低压装置供电的高压配电装 置的保护接地电阻R≤50/I且不应大于4Ω,高压配电装置金属外壳的对地电压不 得超过50 V。接触电压和跨步电压小于接地电压,自然满足安全性要求。非有效 接地系统单相接地故障电流是线路电容电流,数值较小,所以一般容易做到。有 效接地系统向1 kV以下低压装置供电的高压配电装置的保护接地电阻R≤2 000/I。故障时接地电压允许值可达2 000 V,切除故障时间0.4 s,应该考虑均压措施。利

电力系统分析短路电流的计算

1课程设计的题目及目的 1.1课程设计选题 如图所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发 生a 相直接接地短路故障,测得K 点短路后三相电压分别为0=a U , 1201-∠=b U , 1201∠=c U 。试求: (1)系统C 的正序电抗; (2)K 点发生bc 两相接地短路时故障点电流; (3)K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路电流中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 25 .02=T X 25.02==''X X d 图1-1 1.2课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件; 2短路电流计算的基本概念和方法 2.1基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入

代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 2.2 短路电流计算的基本方法 1.单相(a 相)接地短路 单相接地短路是,故障处的三个边界条件为: 0fa V = ; 0fb I = ; 0fc I = 经过整理后便得到用序量表示的边界条件为: (2)(0)(1)(2)(0)00fa fa fa fa fa fa V V V I I I ? =++=? ??==? 2.两相(b 相和c 相)短路 b 相和c 相短路的边界条件 . 0fa I = ; ..0fb fc I I += ; . . fb fc V V = 经过整理后便得到用序量表示的边界条件为: (0) (1)(2)(1)(2)00fa fa fa fa fa I I I V V ? =??? +=??? =?? 3. 两相(b 相和c 相)短路接地 b 相和 c 相短路接地的边界条件 0fa I = ; 0fb V = ; 0fc V =

电力系统接地讲解知识

电力系统的中性点接地有三种方式: 有效接地系统(又称大电流接地系统) 小电流接地系统(包含不接地和经消弧线圈接地) 经电阻接地系统(含小电阻、中电阻和高电阻) 大电流接地系统 用于110kV及以上系统及。该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。 作为220kV枢纽变电站的主变必须并列运行。其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV系统零序保护的方向性和稳定性。主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。 作为220kV负荷变电站的主变必须分列运行。此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。所有主变不能相220kV系统提供零序电流,110kV 侧零序阻抗稳定。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV侧中性点通过间隙接地。110kV侧中性点必须全部直接接地。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。所以主变110kV 侧中性点通过间隙接地,并且不再加装间隙保护。 0.4kV系统均采用大电流接地运行。对于Y/Y0接线的变压器,零序阻抗很大。虽然接入的负荷多为单相负荷,由于每个负荷较小,并不一定会造成三相负荷电流严重不一致(中性点电流小于额定电流的25%),不会造成三相电压严重不平衡。但当线路出现对地短路时,短路电流较小,往往不能使断路器(空气开关)跳开或熔断器熔断,致使事故扩大,许多情况下形成火灾。此时应在变压器中性点引线处加装过流保护,跳开高压侧断路器。显然这是比较复杂的。 使用△/Y0接线的变压器,可以克服这一缺点。但充油变压器的分接开关制作比较困难,尤

某系统单相、两相接地短路电流的计算

1 课程设计的题目及目的 1.1 课程设计选题 如图1所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发生a 相直接接地短路故障,测得K 点短路后三相电压分别为Ua=1∠-120,Uc=1∠120. (1)求系统C 的正序电抗; (2)求K 点发生bc 两相接地短路时故障点电流; (3)求K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 2T 25.02==''X X d 图1 电路原理图 1.2 课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件;

2设计原理 2.1 基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。2.2电力系统各序网络的制定 应用对称分量法分析计算不对称故障时,首先必须作出电力系统的各序网络。为此,应根据电力系统的接线图,中型点接地情况等原始资料,在故障点分别施加各序电势,从故障点开始,逐步查明各序电流流通的情况。凡是某一序电流能流通的元件,都必须包括在该序网络中,并用相应的序参数和等值电路表示。除中性点接地阻抗,空载线路以及空载变压器外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示,如图2所示;负序电流能流通的元件与正序电流的相同,但所有电源的负序电势为零。因次,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,便得到负序网络如图3所示;在短路点电流施加代表故障边界条件的零序电势时,由于三相零序电流大小及相位相同,他们必须经过大地才能构成通路,而且电流的流通与变压器中性点接地情况及变压器的接法有密切的关系。如图4所示。利用各序的网络图可以计算出相应的序阻抗。 图2 系统的正序网络

电力系统两相短路计算与仿真(2)

辽宁工业大学 《电力系统分析》课程设计(论文)题目:电力系统两相短路计算与仿真(2) 院(系):工程技术学院 专业班级:电气工程及其自动化 学号: 学生姓名: 指导教师:王 教师职称 起止时间:15-06-15至15-06-26

课程设计(论文)任务及评语

摘要 目前,随着科学技术的发展和电能需求的日益增长,电力系统规模越来越庞大,电力系统在人民的生活和工作中担任重要的角色,电力系统的稳定运行直接影响人们的日常生活,因此,关于电力系统的短路计算与仿真也越来越重要。 本论文首先介绍有关电力系统短路故障的基本概念及短路电流的基本算法,主要讲解了对称分量法在不对称短路计算中的应用。其次,通过具体的简单环网短路实例,对两相接地短路进行分析和计算。最后,通过MATLAB软件对两相接地短路故障进行仿真,观察仿真后的波形变化,将短路运行计算结果与各时刻短路的仿真结果进行分析比较,得出结论。 关键词:电力系统分析;两相接地短路;MATLAB仿真

目录 第1章绪论 (1) 1.1短路的原因、类型及后果 (1) 1.1.1电路系统中的短路 (1) 1.1.1短路的后果 (1) 1.2短路计算的目的 (2) 第2章电力系统不对称短路计算原理 (3) 2.1对称分量法基本原理 (3) 2.2三相序阻抗及等值网络 (3) 2.3 两相不对称短路的计算步骤 (4) 2.4两相(b相和c相)短路 (4) 第3章电力系统两相短路计算 (7) 3.1系统等值电路的化简 (7) 3.2两相短路计算 (9) 第4章短路计算的仿真 (11) 4.1仿真模型的建立 (11) 4.2 仿真结果及分析 (11) 第5章总结 (14) 参考文献 (15)

电力系统三相短路的实用计算

第七章电力系统三相短路的实用计算 容要点 电力系统故障计算。可分为实用计算的“手算”和计算机算法。大型电力系统的故障计算,一般均是采用计算机算法进行计算。在现场实用中,以及大学本、专科学生的教学中,常采用实用的计算方法—‘手算’(通过“手算“的教学,可以加深学生对物理概念的理解)。 例题1: 如图7一1所示的输电系统,当k点发生三相短路,作标么值表示的等值电 路并计算三相短路电流。各元件参数已标于图中。 图7一1系统接线图 解:取基准容量Sn=100MVA,基准电压Un=Uav(即各电压级的基准电压用平均额定电压表示)。则各元件的参数计算如下,等值电路如图7一2所示

图7-2 等值电路 例题7-2: 已知某发电机短路前在额定条件下运行,额定电流 3.45 N KA I=,N COS?=

0.8、d X ''=0.125。试求突然在机端发生三相短路时的起始超瞬态电流''I 和冲击电流有名值。(取 1.8=i m p K ) 解:因为,发电机短路前是额定运行状态,取101. 10U =∠? 习题: 1、电力系统短路故障计算时,等值电路的参数是采用近似计算,做了哪些简化? 2、电力系统短路故障的分类、危害、以及短路计算的目的是什么? 3、无限大容量电源的含义是什么?由这样电源供电的系统,三相短路时,短路电流包含几种分量?有什么特点? 4、何谓起始超瞬态电流(I")?计算步骤如何?在近似计算中,又做了哪些简

化假设? 5、冲击电流指的是什么?它出现的条件和时刻如何?冲击系数imp k 的大小与什么有关? 6、在计算1"和imp i 时,什么样的情况应该将异步电动机(综合负菏)作为电源看待?如何计算? 7、什么是短路功率(短路容量)?如何计算?什么叫短路电流最大有效值?如何计算? 8、网络变换和化简主要有哪些方法?转移电抗和电流分布系数指的是什么?他们之间有何关系? 9.运算由线是在什么条件下制作的?如何制作? 10.应用运算曲线法计算短路电流周期分量的主要步骤如何? 11、供电系统如图所示,各元件参数如下:线路L, 50km, X1=0.4km Ω ;变压器T, N S =10MVA, %k u =10.5. T K = 110/11。假定供电点(s)电压为106.5kV 保持恒定不变,当空载运行时变压器低压母线发生三相短路时,试计算:短路电流周期分量起始值、冲击电流、短路电流最大有效值及短路容量的有名值。 12、某电力系统的等值电路如图所示。已知元

电力系统的接地形式(图示)

N = N eutral Conductor PE = P rotection- E arth Conductor PEN = P rotectitive- E arth- N eutral- Conductor T = T erre = Earthing I = I solation S = S eparated Neutral and Protective Conductor C = C ombined Neutral and Protective Conductor Abb. 6 TN-S-System Abb. 7 TN-C System Abb. 8 TN-C-S System Abb.9 TT System Abb. 10 IT System Network configuration Power systems Network configuration Network configurations are differed as per kind of – direct current, alternating current – “number of active conductors and the kind of earth connection” using the following characters: First letter: earthing of the current source (part 300, VDE 0100): T – direct earthing of a point I - insulation of all active parts of earth or connection of a point with the earth via an impedance. Second letter: earthing of elements of electrical machine: T – element is directly earthed, independent of the earthing of a point of a current source N – element is directly connected to the operating earth electrode (in networks of alternating voltage the earthed point is mostly the neutral point). Further letters: arrangement of neutral conductor and protective conductor in the TN-system: S – functions of neutral and protective conductor by separate conductors C – functions of neutral and protective conductor combined in one conductor (PEN). In TN-systems a point is directly earthed (operating earth electrode). The elements of the electrical machine are connected to this point via PE- or PEN-conductor. Three types of TN-systems are to be differed (part 300, VDE 0100): TN-S-system - Separated neutral and protective conductor in the entire network (diagram 6)TN-C-system - Functions of neutral and protective conductor are combined in the entire network in one conductor, the PEN- conductor (diagram 7).TN-C-S-system - In one part of the network the neutral and the protective conductor are combined (PEN- conductor) (diagram 8). In the TT-system a point is directly earthed (operating earth electrode). The elements of the electrical machine are connected with earth electrodes, that are separated from the operating earth electrode (diagram 9). The IT-system has no direct connection between active conductors and earthed parts. The elements of the electrical machine are earthed (diagram 10).

电力系统两相接地短路计算与仿真

电力系统两相接地短路计算与仿真

辽宁工业大学《电力系统分析》课程设计(论文) 题目:电力系统两相接地短路计算与仿真(2) 院(系):电气工程学院 专业班级:电气112 学号:110303057 学生姓名:李晓冬 指导教师:孙丽颖 教师职称:教授 起止时间:14-06-30至14-07-11

课程设计(论文)任务及评语 课程设计(论文)任务 原始资料:系统如图 各元件参数如下(各序参数相同): G1、G2:S N =35MVA,V N =10.5kV,X=0.33; T1: S N =31.5MVA,Vs%=10.5,k=10.5/121kV,△Ps=180kW, △ Po=30kW,Io%=0.8;YN/d-11 T2: S N =31.5MVA,Vs%=10, k=10.5/121kV,△Ps=200kW, △Po=33kW,Io%=0.9; YN/d-11 L12:线路长70km,电阻0.2Ω/km,电抗 0.41Ω/km,对地容纳2.78×10-6S/km; L23:线路长75km,电阻0.18Ω/km,电抗 0.38Ω/km,对地容纳2.98×10-6S/km;; L13: 线路长85km,电阻0.18Ω/km,电抗 0.4Ω/km,对地容纳2.78×10-6S/km;; 负荷:S3=45MVA,功率因数均为0.9. 任务要求(节点2发生AC两相金属性接地短路时): 1 计算各元件的参数; 2 画出完整的系统等值电路图; 3 忽略对地支路,计算短路点的A、 B和C三相电压和电流; 4 忽略对地支路,计算其它各个节 点的A、B和C三相电压和支路电流; 5 在系统正常运行方式下,对各种 不同时刻AC两相接地短路进行Matlab仿 真; 6 将短路运行计算结果与各时刻短 路的仿真结果进行分析比较,得出结论。 G G G1 T1 1 L12 2 T2 G2 1:k

基于MATLAB的电力系统单相短路故障分析与仿真

研究生课程论文封面 (2014—2015学年第1学期) 课程名称: 电力系统运行与控制 课程类型: 选修课 授课教师: 学 时: 学 分: 2.0 批阅意见: 河南理工大学研究生学处制 报告题目:基于MATLAB 的电力系统单相短路故障分析与仿真 姓名: 学号: 年级: 专业: 学院: 电气学院 注意事项: 1、 以上各项由研究生本人认真填写; 2、 研究生课程论文应符合一般学术规范,具 有一定学术价值,严禁抄袭或应付;凡学 校检查或抽查不合格者,一律取消该门课 程成绩和学分,并按有关规定追究相关人 员责任; 3、 论文得分由批阅人填写,并签字确认;批 阅人应根据作业质量客观、公正的签写批 阅意见(原则上不少于50字); 4、 原则上要求所有课程论文均须用A4纸打 印,加装本封面,左侧装订; 5、 课程论文由学生所在学院(系)统一保存, 以备查用。

本文介绍了MATLAB 软件在电力系统中的应用,以及动态仿真工具Simulink 。的使用。 MATLAB 的 Simulink 的仿真环境中,利用Simpowersystems 中电气元件对电力系统发生单相短路时电路情况进行仿真与分析,着重分析了中性点不接地时电压电流的变化情况。结果表明,仿真波形基本符合理论分析,说明了MATLAB 是电力系统仿真研究的有力工具。 1电力系统短路故障分析 1.1短路故障原因 短路产生的原因有很多,主要有以下几个方面: (1)元件损坏例如绝缘材料的自然老化,设计,安装维护不良所带来的设备缺陷发展成短路等; (2)气象条件恶化例如雷击造成的闪络放电或避雷器动作,架空线路由于大风或导线覆冰引起电杆倒塌; (3)违规操作,例如运行人员带负荷拉刀闸,线路或设备检修后未拆除接地线就加上电压等; (4)其他,例如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等。 1.2短路故障分析的内容和目的 短路故障分析的主要内容包括故障后电流的计算、短路容量的计算、故障后系统中各点电压的计算以及其他的一些分析和计算,如故障时线路电流与电压之间的相位关系等。短路电流计算与分析的主要目的在于应用这些计算结果进行继电保护设计和整定值计算,开关电器、串联电抗器、母线、绝缘子等电气设备的设计,制定限制短路电流的措施和稳定性分析等。 1.3电力系统单相接地短路计算 1.3.1正序等效定则 在求解各种不对称故障时,故障支路的正序电流分量ka1n I )( 可用如下同式表 示: ? ∑∑+=)(11ka1n E I n a Z Z )( (1-1) 式中 ∑ 1E a ------故前故障点基准相的运行相电压; ?)(n Z ------与短路故障类型有关的阻抗(三相短路时,0)3(=?Z ;两相短

电力系统中性点接地方式

电力系统中性点接地方式简述 电力系统中性点是指星形连接的变压器或发电机的中性点。 电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系。 电力系统中性点接地方式是人们防止系统事故的一项重要应用技术,具有理论研究与实践经验密切结合的特点,因而是电力系统实现安全与经济运行的技术基础。 电力系统中性点接地方式主要是技术问题,但也是经济问题。在选定方案的决策过程中,应结合系统的现状与发展规划进行技术经济比较,全面考虑,使系统具有更优的技术经济指标,避免因决策失误而造成不良后果。 简言之,电力系统的中性点接地方式是一个系统工程问题。 接地,出于不同的目的,将电气装置中某一部位经接地线和接地体与大地作良好的电气连接称为接地。 根据接地的目的不同,分为工作接地和保护接地。 工作接地是指为运行需要而将电力系统或设备的某一点接地。如变压器中性点直接接地或经消弧线圈接地、避雷器接地等都属于工作接地。 保护接地是指为防止人身触电事故而将电气设备的某一点接地。如将电气设备的金属外壳接地、互感器二次线圈接地等。 接地方式主要有2种,即直接接地系统和不接地系统。 1.中性点直接接地系统

中性点直接接地系统——又称大电流系统;适于110kV以上的供电系统,380V以下低压系统。直接接地系统发生单相接地是会使保护马上动作切除电源与故障点。 随着电力系统电压等级的增高和系统容量增大,设备绝缘费用所占比重也越来越大。中性点不接地方式的优点已居于次要地位,主要考虑降低绝缘投资。所以,110kV及以上系统均采用中性点直接接地方式。对于380V以下的低压系统,由于中性点接地可使相电压固定不变,并可方便地获得相电压供单相设备用电,所以除了特定的场合以外(如矿井),亦多采用中性点接地方式。 对于高压系统,如110kV以上的供电系统,电压高,设备绝缘会高,如果中性点不接地,当单相接地时,未接地的二相就要能够承受√ 3倍的过电压,瓷绝缘子体积就要增大近一倍,原来1米长的绝缘子就要增加到1.732米以上,不但制造起来不容易,安装也是问题,会使设备投资大大增加;另外110kV以上系统由于电压高,杆塔的高度也高,不容易出现单相接地的情况,因而就是出现了接地就跳闸也不会影响多少供电可靠性,因而从投资的经济性考虑,在110kV以上供电系统,多采用中性点直接接地系统。 在低压380/220V系统中,有许多单相用电设备,如果中性点不接地运行,则发生单相接地后,有可能未接地的相电压会升高,因过电压烧毁家用电器,从安全性考虑,必须采用中性点直接接地系统,将中性点牢牢接地。 1kV以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 中性点直接接地系统的优点:发生单相接地时,其它两完好相对地电压不会升高,因此可降低绝缘费用,保证安全。

相关主题