搜档网
当前位置:搜档网 › 石墨热场、单晶硅切片和单晶炉项目可行性研究报告

石墨热场、单晶硅切片和单晶炉项目可行性研究报告

石墨热场、单晶硅切片和单晶炉项目可行性研究报告
石墨热场、单晶硅切片和单晶炉项目可行性研究报告

xxxxxxxx石墨热场、单晶硅切片和单晶炉项目

1.项目简介

石墨热场、单晶硅切片和单晶炉项目,项目总投资25000万元,占地100亩,建设石墨热场标准生产线5条,单晶硅切片生产线6条,单晶炉生产线5条,年产石墨热场1000套,单晶硅片2000万片,年产单晶炉200台,年销售额50000万,利税3000万。xxxxxx科技有限公司500台单晶炉正常生产需要大量石墨热场,同时生产のの单晶硅也需要切片再销往沿海省市。我县是全国特色のの石墨热场加工基地,同时也可以成为xxxxxxのの单晶硅走向沿海のの桥头堡,该项目结合两地优势,实现优势互补。该项目建成后将首先保证xx公司热场供应,保证企业原料供应问题,进一步降低企业成本,同时也扩大了我县单晶硅棒销路。稳定のの市场订单也为项目建设提供了盈利のの保障,双方对项目建设非常积极。该项目建成后将进一步拉长xx县光伏产业产业链条,进一步做大做强xx县光伏产业,进一步提升xx县光伏科技含量,对光伏设备本地化生产有重要意义。

2.综合说明

石墨热场和单晶硅切片项目,一期总投资1亿元,占地60亩,建设石墨热场标准生产线5条,单晶硅切片生产线6条。二期投资15000万元,占地40亩,建设单晶炉生产线5条。

本项目总投资概算25000万元;动态总投资24000万元,年产石墨热场1000套,单晶硅片2000万片,单晶炉200台,年销售额50000万,利税3000万元。

目录

一、项目背景和必要性

1、项目背景

2、太阳能光伏产业发展前景和现状

3、项目必要性和意义

4、太阳能光伏产业链介绍

二、项目编制依据

1、编制依据

2、编制范围

三、项目承建单位のの基本状况和财务状况

1、基本状况

2、股东介绍

四、项目技术基础

1、技术基础

2、工艺特点和关键技术

3、主要技术指标

五、项目建设方案

1、项目建设内容和建设规模

2、注册地址

3、政策背景

4、主要技术及工艺路线

5、主要技术经济指标

六、项目建设条件落实情况

七、投资估算及资金筹措

1、总投资规模

2、资金筹措方案

八、财务经济效益分析及社会效益分析

1、产品成本分析

2、基础数据のの说明

3、财务经济分析及主要指标

4、盈利预测

5、社会效益分析

九、项目风险分析

1、市场风险

2、财务风险

3、技术风险

4、关键技术人员流失风险

5、管理风险

十、结论

一、项目のの背景和必要性

1、项目背景

目前人类のの能源消费结构中,石油、煤炭、天然气、铀等矿物资源,占到

了能源供给量のの80%以上。到2010年,全球将消耗掉从经济成本和技术角度考虑较容易开发のの石油储量のの一半。据统计,地球上尚未开采のの原油储藏量不足两万亿桶,可供人类开采时间不超过60年,而且随着易开采部分のの开采殆尽,原油开采のの成本将越来越高;天然气储备估计在131800-152900兆立方米,将在57-65年内枯竭;煤のの储量约为5600亿吨,可以供应约160年;铀のの年开采量目前为每年6万吨,可维持70年左右。如果矿石资源一旦短缺,而新のの能源体系又没有完全建立,将有可能造成全球性のの能源危机,从而导致全球性のの经济危机。

图1。世界和中国主要常规能源储量预测(赵玉文)此外,传统のの化石初级能源除了不可再生所造成のの有限性外,另一个弊端就是使用后对环境のの污染性。石油和煤燃烧后所产生のの二氧化碳、二氧化硫等气体のの大量直接排放所造成のの温室效应、臭氧层空洞、酸雨等问题,如果再不加以控制就会对人类のの生存环境造成灾难性のの后果。

面对资源枯竭、环境恶化所造成のの能源危机,人类已经意识到它のの严重性,许多国家开始从节约能源、保护环境入手试图解决能源危机,但却无法改变

现有矿物资源のの储量有限性以及使用后对环境のの污染性这两个不争のの事实,而只能在一定程度上对危机进行缓解。解决能源危机のの根本途径就是寻找一种可再生のの清洁型新能源。太阳能作为取之不尽のの清洁能源将是解决能源危机のの首选。

由于太阳能以其取之不尽、用之不竭、无污染、廉价、人类能够自由利用等特点日益受到世界各国のの重视,太阳能光伏产业のの发展得到了国家のの大力鼓励与支持。《中华人民共和国可再生能源法》のの颁布实施,为太阳能光伏产业のの发展提供了政策保障;我国在《京都议定书》上のの签字,以及环保政策のの出台和对国际社会のの承诺,给太阳能光伏产业带来机遇;西部大开发战略のの实施,为太阳能光伏产业提供了巨大のの国内市场;中国能源战略のの调整,使政府加大了对可再生能源发展のの支持力度……,所有这些都为中国太阳能光伏产业のの发展带来极大のの机会。

在全球性金融危机のの影响下,太阳能光伏产业发展速度有所减缓,但同时也促使太阳能光伏产品价格提前回归理性,并加快了太阳能光伏技术のの发展和产业升级步伐。目前,太阳能光伏产业正处于大调整期,而国际、国内太阳能光伏产业のの政策扶持和太阳能光伏发电成本のの下降,将使太阳能光伏产业进入新一轮のの爆发性增长阶段,这对于太阳能光伏产业是重大のの战略发展机遇。

中国政府曾多次召开专题会议,要求加快太阳能光伏产业发展,做大规模,迅速占领行业制高点。根据市场情况和以上两项规划,公司也制订了光伏产业发展规划,实施xx石墨热场、单晶硅切片和单晶炉项目。

该项目符合当前国家重点鼓励发展のの产业、产品和技术目录のの要求,符合国家“十二五”发展规划,未来十年内国际国内市场需求巨大,前景十分广阔。

2、太阳能光伏产业发展前景和现状

(1)、太阳能光伏产业发展前景

国内外专家呼吁世界各国大力发展太阳能光伏产业,并对未来100年世界能源结构发展预测如下:

太阳能发展100年预测

图2. 世界100年能源发展预测

进入21 世纪,太阳能光伏发电技术不断进步,世界光伏产业进入了快速发展时期。1995-2005年间,全球太阳能电池产量增长了17倍。2005年,全球太阳能电池年产量达到了1654MW,累计装机发电容量超过5GW,2008年全球太阳能电池产量达到7.9GW,增幅85%,全球累计装机容量达到14721MW,2009年达23GW,2010年全球太阳能光伏累计装机容量接近40GW,比2009年增加70%。整个行业のの销售收入在2005-2010年间,从130亿美元提高至450亿美元,预计未来5年内增长3-5倍。

(2)、太阳能光伏产业现状

硅光电池特性测试实验报告

硅光电池特性测试实验报告 系别:电子信息工程系 班级:光电08305班 组长:祝李 组员:贺义贵、何江武、占志武 实验时间:2010年4月2日 指导老师:王凌波 2010.4.6

目录 一、实验目的 二、实验内容 三、实验仪器 四、实验原理 五、注意事项 六、实验步骤 七、实验数据及分析 八、总结

一、实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池伏安特性测试实验 5、硅光电池负载特性测试实验 6、硅光电池时间响应测试实验 7、硅光电池光谱特性测试实验 设计实验1:硅光电池光控开关电路设计实验 设计实验2:简易光照度计设计实验 三、实验仪器 1、硅光电池综合实验仪 1个 2、光通路组件 1只 3、光照度计 1台 4、2#迭插头对(红色,50cm) 10根 5、2#迭插头对(黑色,50cm) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台 四、实验原理 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合

单晶炉热场清洁与安装作业指导书

指导书版次 日期 页 6 页 → → 取导流筒 取热屏支撑环 取上保温罩 取三瓣埚 → → → 取坩埚底盘 取中保温罩 取石墨中轴 取加热器

指导书版次 日期 页 6 页 → → 取下保温罩和底盘 4.1.3.5 用吸尘设备清洁石墨器件: 打磨夹缝 打磨外表面 4.1.3. 5.3检查石墨器件上是否有硅蒸气沉积引起的凸出物 打磨机去除,并用吸尘设备清除干净。 4.1.3.6 检查石墨器件有无缺损、裂缝及使用的炉数, 如有缺损、裂缝或使用炉数已达到规定的数量,需根据 实际情况及时调换新的已锻烧过的石墨器件。(见右图) 4.1.3.7 清除真空管道内的氧化物:用毛刷和吸尘器清扫抽气管道内的挥发物,吸尘器管 型密封圈是否损坏,如有损坏必 须更换。注意在安装球阀与真空管道时,要保证螺丝受力均匀,防止螺丝不紧引起漏气。 4.1.3.8.1、用专用工具除尘筒螺栓,取出罐盖和过滤网。打开除尘筒前确认真空泵球 阀和真空泵电源在关闭状态,否则在清理过程中会向炉内倒吸气,造成炉内污染; 4.1.3.8.2、用毛刷和吸尘器仔细清扫过滤网及除尘筒内的氧化物;

指导书版次 日期 页 6 页 将热场底盘放在主室底座上,底盘安装须平稳。 (见下图) 4.2.2.3底盘上的电极孔、中心孔要与主室底座的孔对应、 (见右图) 装电极柱:装电极柱时不宜太紧,否则容易涨裂引起电极打火。

指导书版次 日期 页 6 页 → → → → → 4.2. 5.2 必须注意的是,每次清炉时电极螺丝先松掉后再拧紧。以防硅蒸汽进入电极螺丝和 加热器脚之间的缝隙使之粘住无法拆卸。 4.2.7 安装石墨埚托、三瓣埚: 4.2.7.1埚托安装须平稳,下降坩埚轴至最低位置时距离加热器脚应不少于2cm。

半导体a谱仪实验报告

实验6:半导体α谱仪 实验目的 1.了解α谱仪的工作原理及其特性。 2.掌握应用谱仪测量α粒子能谱的方法。 3.测定241Am核素的α衰变的相对强度。 内容 1.调整谱仪参量,测量不同偏压下的α粒子能量,并确定探测器的工作偏压。 2.测定谱仪的能量分辨率,并进行能量刻度。 3.测量未知α源的能谱,并确定α粒子能量。 原理 半导体α谱仪的组成如图1所示。 金硅面垒探测器是用一片N型硅,蒸上一薄层金(100-2000 A),接近金膜的那一 层硅具有P型硅的特性,这种方式形成的PN结靠近表面层,结区即为探测粒子的灵敏区。探测器工作加反向偏压。α粒子在灵敏区内损失能量转变为与其能量成正比的电脉冲信号,经放大并由多道分析器测出幅度的分布,从而给出带电粒子的能谱。偏置放大器的作用是当多道分析器的道数不够用时,利用它切割、展宽脉冲幅度,以利于脉冲幅度的精确分析。为了提高谱仪的能量分辨率,探测器要放在真空室中。另外金硅面垒探测器一般具有光敏的特性,在使用过程中,应有光屏蔽措施。 金硅面垒型半导体α谱仪具有能量分辨率高、能量线性范围宽、脉冲上升时间快、体积小和价格便宜等优点,在α粒子及其它重带电粒子能谱测量中有着广泛的应用。 带电粒子进入灵敏区,损失能量产生电子空穴对。形成一对电子空穴所需的能量w,与半导体材料有关,与入射粒子的类型和能量无关。对于硅,在300K时,w为3.62eV,77K时为3.76eV。对于锗,在77K时w为2.96eV。若灵敏区的厚度大于入射

粒子在硅中的射程,则带电粒子的能量E 全部损失在其中,产生的总电荷量Q 等于 e w E )/(。w E /为产生的电子空穴对数,e 为电子电量。由于外加偏压,灵敏区的电 场强度很大,产生的电子空穴对全部被收集,最后在两极形成电荷脉冲。通常在半导体探测器设备中使用电荷灵敏前置放大器。它的输出信号与输入到放大器的电荷量成正比。 探测器的结电容d C 是探测器偏压的函数,如果核辐射在探测器中产生电荷量为Q ,那么探测器输出脉冲幅度是d C Q /。因此,由于探测器偏压的微小变化所造成的d C 变化将影响输出脉冲的幅度。事实上,电源电压的变化就可以产生偏压近种微小变化。此外,根据被测粒子的射程调节探测器的灵敏区厚度时,也往往需要改变探测器的偏压。要减少这些变化对输出脉冲幅度的影响,前级放大器对半导体探测器系统的性能越着重要的作用。图2表示典型探测器的等效电路和前置放大器的第一级。其中一K 是放大器的开环增益,f C 是反馈电容,1C 是放大器的总输入电容,它等于 '',C C C d +是放大器插件电缆等寄生电容。前置放大器的输入信号是d C Q /,它的等 到效输入电容近似等于f KC ,只要1C KC f >>,那么前置放大器的输出电压为 f f C Q C K C KQ V - =++- =)1(10 ( 1 ) 这样一来,由于选用了电荷灵敏放大器作为前级放大器,它的输出信号与输入电荷Q 成正比,而与探测器的结电容d C 无关。 1. 确定半导体探测器偏压

关于单晶炉热场温度梯度方面的研究

关于单晶炉热场温度梯度方面的研究 摘要:在电子半导体器件制造中,单晶硅的氧浓度会严重影响单晶硅产品的性能,也是单晶硅生长过程中较难控制的环节。本文介绍了直拉单晶法中氧杂质的 来源、对单晶硅的影响以及氧浓度的控制方法。 关键词:直拉单晶氧浓度电子半导体集成电路 单晶硅是微电子工业的基础材料,广泛用于集成电路和功率半导体器件的制造,成为当今信息社会的基石,同时也是太阳能光伏电池的主要材料,直拉单晶 硅是利用切氏法(czochralski)制备,称为CZ单晶硅。目前主要应用于微电子集 成电路和太阳能电池方面。在单晶硅直拉工艺引入的众多杂质中,氧对材料的性 能影响最大,在表征单晶硅质量的众多参数中,氧含量及其均匀性是最重要的参 数之一,也是在硅晶体生长过程中较难控制的参数。 1 直拉单晶硅的氧杂质 直拉单晶硅存在杂质中氧是主要杂质,石英坩埚的晶体生长过程是一种轻微 的污染,直拉硅中的元素杂质是不可避免的;氧空位结合,形成微缺陷;也可以 聚集形成具有电性质的氧簇,可能是氧沉淀的形式,引入诱导缺陷。研究发现, 利用氧的沉淀性质,设计“内吸杂”工艺,可以达到吸除直拉单晶硅中的金属杂质,提高集成电路产品成品率的作用,因此,人们对直拉单晶硅中的氧开始了有控制 的利用。 直拉单晶硅的生长需要利用高纯的石英坩埚,虽然石英坩埚的熔点要高于硅 材料的熔点(1420),但是,在如此的高温过程中,熔融的液态硅会侵蚀石英坩埚,导致少量的氧进入熔硅,最终进入直拉单晶硅。直拉单晶硅中的氧一般在(5~20)×1017cm-3范围内,以过饱和间隙状态存在于晶体硅中。 2 氧对直拉单晶硅的影响 氧在硅中大部分处于间隙位置,它的振动所形成的硅在11o6cm-1产生红外吸收带的Si-O键,这也符合空缺产生836cm-1红外吸收带。在直拉硅单晶是350 ~ 500热处理几十个小时的治疗,效果会产生热施主。随着硅单晶的生长方法(Czochralski的1018atoms/cm3的氧含量)是最著名的热施主效应,浮区晶体(氧含量1016atoms/cm3)热施主效应不明显,除了500 ~ 800长时间的热处理,将有一个新的供体的效果,现在,只有较高的氧含量,单晶(5×1017atoms /立方 厘米氧含量)。由于热施主的存在,样品的电阻率降低,p型样品的电阻率增大。这些特性改变了硅片径向电阻率的均匀性,导致电阻率的热稳定性降低,成品率 下降。氧对硅中少数载流子寿命的影响也是非常复杂的。可能与硅的电阻率变化 有类似的机制。 3 直拉单晶硅氧浓度的控制方法 在直拉法生产中,氧掺入硅单晶的途径是从石英(SiO2)坩埚溶解进入硅熔体,溶解的氧经由熔体的对流和扩散传输到晶体/熔体界面或自由表面。由于氧在熔体中的扩散系数相当小,所以氧主要是通过对流的传输的。如果要控制原始直 拉硅中氧含量和分布的均匀性,就必须控制晶体生长过程中氧从石英坩埚溶解到 熔体的速度,控制熔体流动以控制熔体输送的氧量。控制氧的主要方法可分为两类:一是通过调节牵引条件获得最佳氧含量和分布的期望值。第二,设计了一种 新的晶体生产方法,以抑制外界因素的影响,改变流动方式,达到控制氧的目的。 3.1 拉晶条件的调控 增加氩气流量,降低炉内压力有利于氧含量的降低。为了防止在熔融二氧化

半导体物理与器件 实验指导书

实验指导书 院系:机电工程学院 专业:微电子 课程:半导体物理与器件编者:孙玮

目录 实验一四探针法测量半导体电阻率和方块电阻 (1) 实验二半导体非平衡少子寿命测试 (10)

实验一 四探针法测量半导体电阻率 一、实验目的: 硅单晶的电阻率与半导体器件的性能有着十分密切的关系,半导体电阻率的测量是半导体材料常规参数测量项目之一。测量电阻率的方法很多,如三探针法、电容—电压法、扩展电阻法等。四探针法则是一种广泛采用的标准方法,在半导体工艺中最为常用,其主要优点在于设备简单,操作方便,精确度高,对样品的几何尺寸无严格要求。四探针法除了用来测量半导体材料的电阻率以外,在半导体器件生产中还广泛用来测量扩散层薄层电阻,以判断扩散层质量是否符合设计要求。因此,薄层电阻是工艺中最常需要检测的工艺参数之一。 本实验的目的是掌握四探针法测量电阻率和薄层电阻的原理及测量方法,针对不同几何尺寸的样品,掌握其修正方法;了解影响电阻率测量的各种因素和改进措施。 二、实验内容: 1. 对所给的各种样品分别测量其电阻率; 2. 对同一样品,测量五个不同的点,由此求出单晶断面电阻率不均匀度; 三、实验原理与方法: 1.半导体材料电阻率的测量 将四根探针加在待测半导体材料样品表面,由外面两根探针接恒流源,电流为I ,由中间两根探针测电压,从而求出材料的电阻率,它在很大程度上消除了探针的接触势垒及注入效应对测量的影响。 设样品为半无穷大,若样品的电阻率ρ均匀,引入点电流源的探针其电流强度为I ,则所产生的电力线具有球面的对称性,即等位面为一系列以点电流为中心的半球面,如图1.1所示。在以r 为半径的半球面上,电流密度j 的分布是均匀的。 2 2r I j π= (1-1) 若E 为r 处的电场强度,则 图1.1

双向可控硅斩波实验报告

双向可控硅斩波实验报告 一.概述 双向可控硅是一种功率半导体器件,也称双向晶闸管,双向晶闸管可广泛用于工业、交通、家用电器等领域,实现交流调压、电机调速、交流开关、路灯自动开启与关闭、温度控制、台灯调光、舞台调光等多种功能。 双向和单向可控硅的区别。 普通晶闸管(又称可控硅)是一种大功率半导体器件,主要用于大功率的交直流变换、调压等。 单向可控硅通过触发信号(小的触发电流)来控制导通(可控硅中通过大电流)的可控特性,一只双向可控硅的工作原理,可等效两只同型号的单向可控硅互相反向并联,然后串联在调压电路 在单片机控制系统中,可作为功率驱动器件,由于双向可控硅没有反向耐压问题,控制电路简单,因此特别适合做交流无触点开关使用。双向可控硅接通的一般都是一些功率较大的用电器,且连接在强电网络中,其触发电路的抗干扰问题很重要,通常都是通过光电耦合器将单片机控制系统中的触发信号加载到可控硅的控制极。为减小驱动功率和可控硅触发时产生的干扰,交流电路双向可控硅的触发常采用过零触发电路。过零触发是指在电压为零或零附近的瞬间接通。由于采用过零触发,因此上述电路还需要正弦交流电过零检测电路。图一为此次实验电路原理图。

图1 双向可控硅实验电路原理图 二.项目主要研究内容 1.过零检测电路 为减小驱动功率和可控硅触发时产生的干扰,交流电路中可控硅的触发常采用过零触发电路。过零触发是指在电压为零或零附近的瞬间接通。由于采用过零触发,因此上述电路还需要正弦交流电过零检测电路。如图2所示。为了提高效率,使触发脉冲与交流电压同步,要求每隔半个交流电的周期输出一个触发脉冲,且触发脉冲电压应大于4V ,脉冲宽度应大于20us.图中SDCZ3 为交流输入端子,TPL521为光电耦合器,起隔离作用。当正弦交流电压接近零时,光电耦合器的两个发光二极管截止,三极管Q2基极的偏置电阻电位使之导通,产生下降沿信号,T1的输出端接到单片机89C51 的外部中断0 的P3.2引脚,以引起外部中断。在中断服务子程序中使用定时器累计移相时间,然后发出双向可控硅的同步触发信号。

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

实验一 半导体材料的缺陷显示及观察

实验一半导体材料的缺陷显示及观察 实验目的 1.掌握半导体的缺陷显示技术、金相观察技术; 2.了解缺陷显示原理,位错的各晶面上的腐蚀图象的几何特性; 3.了解层错和位错的测试方法。 一、实验原理 半导体晶体在其生长过程或器件制作过程中都会产生许多晶体结构缺陷,缺陷的存在直接影响着晶体的物理性质及电学性能,晶体缺陷的研究在半导体技术上有着重要的意义。 半导体晶体的缺陷可以分为宏观缺陷和微观缺陷,微观缺陷又分点缺陷、线缺陷和面缺陷。位错是半导体中的主要缺陷,属于线缺陷;层错是面缺陷。 在晶体中,由于部分原子滑移的结果造成晶格排列的“错乱”,因而产生位错。所谓“位错线”,就是晶体中的滑移区与未滑移区的交界线,但并不是几何学上定义的线,而近乎是有一定宽度的“管道”。位错线只能终止在晶体表面或晶粒间界上,不能终止在晶粒内部。位错的存在意味着晶体的晶格受到破坏,晶体中原子的排列在位错处已失去原有的周期性,其平均能量比其它区域的原子能量大,原子不再是稳定的,所以在位错线附近不仅是高应力区,同时也是杂质的富集区。因而,位错区就较晶格完整区对化学腐蚀剂的作用灵敏些,也就是说位错区的腐蚀速度大于非位错区的腐蚀速度,这样我们就可以通过腐蚀坑的图象来显示位错。 位错的显示一般都是利用校验过的化学显示腐蚀剂来完成。腐蚀剂按其用途来分,可分为化学抛光剂与缺陷显示剂,缺陷显示剂就其腐蚀出图样的特点又可分为择优的和非择优的。 位错腐蚀坑的形状与腐蚀表面的晶向有关,与腐蚀剂的成分,腐蚀条件有关,与样品的性质也有关,影响腐蚀的因素相当繁杂,需要实践和熟悉的过程,以硅为例,表1列出硅中位错在各种界面上的腐蚀图象。 二、位错蚀坑的形状 当腐蚀条件为铬酸腐蚀剂时,<100>晶面上呈正方形蚀坑,<110>晶面上呈菱形或矩形蚀坑,<111>晶面上呈正三角形蚀坑。(见图1)。

半导体物理与器件实验报告

课程实习报告 HUNAN UNIVERSITY 题目:半导体物理与器件 学生姓名:周强强 学生学号:20100820225 专业班级:通信二班 完成日期:2012.12.22

运行结果截图: 2.2 函数(),cos(2/)V x t x t πλω=-也是经典波动方程的解。令03x λ≤≤,请在同一坐标中 绘出x 的函数(),V x t 在不同情况下的图形。 (1)0;(2)0.25;(3)0.5;(4)0.75;(5)t t t t t ωωπωπωπωπ =====。 3.27根据式(3.79),绘制出0.2()0.2F E E eV -≤-≤范围内,不同温度条件下的费米-狄拉克概率函数:()200,()300,()400a T K b T K c T K ===。

4.3 画出a ()硅,b ()锗,c ()砷化镓在温度范围200600K T K ≤≤内的本征载流子浓度曲线 (采用对数坐标)。

4.46 已知锗的掺杂浓度为15 3a =310 cm N -?,d =0N 。画出费米能级相对于本征费米能级的位 置随温度变化 200600)K T K ≤≤(的曲线。

5.20硅中有效状态密度为 19 3/2c 2.8 10()300T N =? 193/2 1..0410() 300 T N ν=? 设迁移率为 3/2 n =1350300T μ-?? ? ?? 3/2 =480300T ρμ-?? ? ?? 设禁带宽带为g =1.12V E e ,且不随温度变化。画出200600K T K ≤≤范围内,本征电导率随绝对温度T 变化的关系曲线。

单晶实验报告

高级物理化学实验 报告 实验项目名称:X-射线单晶衍射实验:单晶结构分析及应用 学生姓名与学号:指导教师:黄长沧老师 成绩评定:评阅教师: 日期:2014 年月日

X-射线衍射法测定物质结构 一. 实验目的 1. 学习了解X 射线衍射仪的结构和工作原理。 2. 了解X-射线单晶衍射仪的使用方法。 3. 掌握X 射线衍射物相定性分析的方法及步骤。 二.实验原理 根据晶体对X 射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X 射线物相分析法。 利用晶体形成的X 射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X 射线照射到结晶性物质上时,X 射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X 射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。利用单晶体对X 射线的衍射效应来测定晶体结构实验方法。 衍射X 射线满足布拉格(W.L.Bragg )方程:2dsinθ=nλ式中:λ是X 射线的波长;θ是衍射角;d 是结晶面间隔;n 是整数。波长λ可用已知的X 射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X 射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构。 样品X-射线衍射采集的数据采用Crystalclear 程序还原,使用multi-scan 或numberic 方式进行吸收校正。结构解析使用SHELX-97程序包,用直接法解出。非氢原子的坐标和各向异性温度因子采用全矩阵最小二乘法进行结构修正。配合物的氢原子坐标由差傅里叶合成或理论加氢程序找出。所有或部分氢原子的坐标和各向同性温度因子参加结构计算,但不参与结构精修。 结构分析过程中使用的最小二乘函数、偏离因子、权重偏离因子、权重因子等数学表达式如下: 最小二乘函数: Ls = 1 ()n ci oi i F F =-∑2 温度因子:Ueq=1/3∑i∑j U ij αi *.αj *.αi . αj

半导体物理实验指导1

试验一 单晶硅少子寿命测试 一.试验目的 1.了解半导体非平衡少子寿命的概念和重要性。 2.掌握高频光电导衰减法测量寿命的基本原理。 3.学会“DSY-Ⅱ硅单晶寿命仪”的使用。 二.实验原理 1.非平衡载流子的注入 我们知道,处于热平衡状态的半导体,在一定的温度下,载流子浓度使一定的。这种处于平衡状态下的载流子浓度,称为平衡载流子浓度。 对非简并半导体来说,有2 0exp()g o o c v i E n p N N n k T =- = 如果对半导体施加外界作用(光注入或者电注入),破坏热平衡条件,则半导体处于非平衡状态,其载流子浓度不再是o n 、o p ,而是存在过剩载流子n ?、p ?,称为非平衡载流子。 当外界作用消失后,注入的非平衡载流子不能一直存在下去,最后,载流子浓度恢复导平衡时的值,半导体又回到平衡态,这个过程即是非平衡载流子的复合。但非平衡载流子不是立刻全部消失,而有一个过程,即它们在导带和价带中有一定的生存时间,有的长,有的短。非平衡载流子的平均生存时间称为非平衡载流子的寿命,用τ表示。由于相对于非平衡多数载流子,非平衡少数载流子的更重要,因而非平衡载流子的寿命常称为少数载流子寿命。 假定一束光在n 型半导体内部均匀地产生非平衡载流子n ?、p ?,且n p ?=?。在t =0时,突然光照停止,p ?将随时间变化。单位时间内非平衡载流子浓度的减少应为()d p t dt ?,它 是由复合引起的,因此应当等于非平衡载流子的复合率。 即 ()() d p t p t dt τ ??=- 。 小住入时,τ为恒量,与()p t ?无关, ()t p t Ce τ -∴?=。 设t =0时,0(0)()p p ?=?,则0()C p =?, 0()()t p t p e τ -∴?=?。 这就是非平衡载流子浓度随渐渐按指数衰减的规律。利用上式可求出非平衡载流子平均生存时间t 就是τ。 ()/()/t t t td p t d p t te dt de dt τ τ τ- - ∞∞ ∞∞= ??= =? ?? ? 所以寿命标志着非平衡载流子浓度减少导原值1/e 所经历的时间。寿命不同,非平衡载流子衰减的快慢不同,寿命越短,衰减越快。 2.高频光电导衰减法

半导体硅材料

半导体硅材料和光电子材料的发展现状及趋势 随着微电子工业的飞速发展, 作为半导体工业基础材料的硅材料工业也将随之发展,而光电子科技的飞速发展也使半导体光电子材料的研究加快步伐,所以研究半导体硅材料和光电子材料的发展现状及未来发展趋势势在必行。现代微电子工业除了对加工技术和加工设备的要求之外,对硅材料也提出了更新更高的要求。 在当今全球超过2000亿美元的半导体市场中,95%以上的半导体器件和99%以上的集成电路都是用高纯优质的硅抛光片和外延片制作的。在未来30-50年内,它仍将是集成电路工业最基本和最重要的功能材料。半导体硅材料以丰富的资源、优质的特性、日臻完善的工艺以及广泛的用途等而成为了当代电子工业中应用最多的半导体材料。 随着国际信息产业的迅猛发展, 电子工业和半导体工业也得到了巨大发展,并且直到20世纪末都保持稳定的15%的年增长率迅速发展,作为半导体工业基础材料的硅材料工业也将随之发展,所以研究半导体硅材料的发展现状及未来发展趋势势在必行。

一、半导体硅材料的发展现状 由于半导体的优良性能,使其在射线探测器、整流器、集成电路、硅光电池、传感器等各类电子元件中占有极为重要的地位。同时,由于它具有识别、存储、放大、开关和处理电信号及能量转换的功能,而使“半导体硅”实际上成了“微电子”和“现代化电子”的代名词。 二、现代微电子工业的发展对半导体硅材料的新要求 随着微电子工业飞速发展, 除了本身对加工技术和加工设备的要求之外, 同时对硅材料也提出了更新更高的要求。 1. 对硅片表面附着粒子及微量杂质的要求 随着集成电路的集成度不断提高,其加工线宽也逐步缩小,因此, 对硅片的加工、清洗、包装、储运等工作提出了更高的新要求。对于兆位级器件, 0.10μm的微粒都可能造成器件失效。亚微米级器件要求0.1μm的微粒降到10个/片以下同时要求各种金属杂质如Fe、Cu、Cr、Ni、A1、Na 等, 都要控制在目前分析技术的检测极限以下。 2. 对硅片表面平整度、应力和机械强度的要求

PN结的物理特性—实验报告

半导体PN 结的物理特性实验报告 姓名:陈晨 学号:12307110123 专业:物理学系 日期:2013年12月16日 一、引言 半导体PN 结是电子技术中许多元件的物质基础具有广泛应用,因此半导体PN 结的伏安特性是半导体物理学的重要内容。本实验利用运算放大器组成电流-电压变换器的方法精确测量弱电流,研究PN 结的正向电流I ,正向电压U ,温度T 之间的关系。本实验桶过处理实验数据得到经验公式,验证了正向电流与正向电压的指数关系,正向电流与温度的指数关系以及正向电压与温度的线性关系,并由此与计算玻尔兹曼常数k 与0K 时材料的禁带宽度E ,加深了对半导体PN 节的理解。 二、实验原理 1、 PN 结的物理特性 (1)PN 结的定义:若将一块半导体晶体一侧掺杂成P 型半导体,即有多余电子的半导体,另一侧掺杂成N 型半导体,即有多余空穴的半导体,则中间二者相连的接触面就称为PN 结。 (2)PN 结的正向伏安特性:根据半导体物理学的理论,一个理想PN 结的正向电流I 与正向电压U 之间存在关系 ①,其中I S 为反向饱和电流,k 为玻尔兹曼常数,T 为热力学温度,e 为电子电量。在常温(T=300K )下和实验所取电压U 的范围内, 故①可化为 ②,两边取对数可得 。 (3)当温度T 不变时作lnI-U 图像并对其进行线性拟合,得到线性拟合方程的斜率为e/kT ,带入已知常数e 和T ,便得玻尔兹曼常数k 。 2、反向饱和电流I s (1)禁带宽度E :在固体物理学中泛指半导体或是绝缘体的价带顶端至传导带底端的能量差距。对一个本征半导体而言,其导电性与禁带宽度的大小有关,只有获得足够能量的电子才能从价带被激发,跨过禁带宽度跃迁至导带。 (2)根据半导体物理学的理论,理想PN 结的反向饱和电流Is 可以表示为 ③,代入②得 ,其中I 0为与结面积和掺杂浓度等有关的常数,γ取决于少数载流子迁移率对温度的关系,通常取γ=3.4,k 为玻尔兹曼常数,T 为热力学温度.E 为0K 时材料的禁带宽度。两边取对数得 ,其中γlnT 随温度T 的变 化相比(eU-T )/kT 很缓慢,可以视为常数。 (3)当正向电压U 不变时作lnI-1/T 图像并进行线性拟合,得到拟合方程斜率(eU-E )/k ,代入已知常数便得0K 时PN 结材料的禁带宽度E ;当正向电流I 不变时作U-T 图并进行线性拟合,得到拟合直线截距E/e ,带入已知常数,便得0K 时PN 结材料的禁带宽度E 。 3、实验装置及其原理 (1)如图所示为由运算放大器组成的电流-电压变换器电路图,电压表V1测量的是正向电压U1,电压表V2测量的是正向电流I 经运算放大器放大后所对应的电压U2,分析电路后可知,正向电流I ≈U 2/R f ,其中R f 为反馈电阻。通过二极管的正向电流除了扩散电流外,还 (1)eU kT s I I e =-1 eU kT e >>eU kT s I I e =lnI lnI s eU kT =+0E kT s I I T e γ - =0eU E kT I I T e γ-=0ln lnI ln eU E I T kT γ-=++

太阳能电池特性测试实验报告

太阳电池特性测试实验 太阳能是人类一种最重要可再生能源,地球上几乎所有能源如: 生物质能、风能、水能等都来自太阳能。利用太阳能发电方式有两种:一种是光—热—电转换方式,另一种是光—电直接转换方式。其中,光—电直接转换方式是利用半导体器件的光伏效应进行光电转换的,称为太阳能光伏技术,而光—电转换的基本装置就是太阳电池。 太阳电池根据所用材料的不同可分为:硅太阳电池、多元化合物薄膜太阳电池、聚合物多层修饰电极型太阳电池、纳米晶太阳电池、有机太阳电池。其中,硅太阳电池是目前发展最成熟的,在应用中居主导地位。硅太阳电池又分为单晶硅太阳电池、多晶硅薄膜太阳电池和非晶硅薄膜太阳电池三种。单晶硅太阳电池转换效率最高,技术也最为成熟,在大规模应用和工业生产中仍占据主导地位,但单晶硅成本价格高。多晶硅薄膜太阳电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池。非晶硅薄膜太阳电池成本低,重量轻,转换效率较高,便于大规模生产,有极大的潜力,但稳定性不高,直接影响了实际应用。 太阳电池的应用很广,已从军事、航天领域进入了工业、商业、农业、 通信、家电以及公用设施等部门,尤其是在分散的边远地区、高山、沙漠、海岛和农村等得到广泛使用。目前,中国已成为全球主要的太阳电池生产国,主要分布在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 一、 实验目的 1. 熟悉太阳电池的工作原理; 2. 太阳电池光电特性测量。 二、 实验原理 (1) 太阳电池板结构 以硅太阳电池为例:结构示意图如图1。硅太阳电池是以硅半导体材料制成的大面积PN 结经串联、并联构成,在N 型材料层面上制作金属栅线为面接触电极,背面也制作金属膜作为接触电极,这样就形成了太阳电池板。为了减小光的反射损失,一般在表面覆盖一层减反射膜。 (2) 光伏效应 当光照射到半导体PN 结上时,半导体PN 结吸 收光能后,两端产生电动势,这种现象称为光生伏特效应。由于P-N 结耗尽区存在着较强的 图1 太阳能电池板结构示意图

单晶炉热场设计

§2 合理热场 单晶硅是在热场中进行拉制的,热场的优劣对单晶硅质量有很大影响。单晶硅生长过程中,好的热场,能生产出高质量的单晶。不好的热场容易使单晶变成多晶,甚至根本引不出单晶。有的热场虽然能生长单晶,但质量较差,有位错和其他结构缺陷。因此,找到较好的热场条件,配置最佳热场,是非常主要的直拉单晶工艺技术。 热场主要受热系统影响,热系统变化热场一定变化。加热器是热系统的主体,是热系统的关键部件。因此,了解加热器内温度分布状况对配制热场非常重要。 从示意图看出,以加热器中心线为基准,中心温度最高,向上和向下温度逐渐降低,它的变化率称为纵向温度梯度,用dy dT 表示。加热器径向温度内表面,中心温度最低,靠近加热器边缘温度逐渐增加,成抛物线状,它的变化率为径向温度梯度,用dx dT 表示。 单晶硅生长时,热场中存在着固体(晶体),熔体两种形态,温度梯度也有 两种。晶体中的纵向温度梯度S dy dT ???? ??和径向温度梯度L dy dT ???? ??。熔体中的纵向温度梯度L dy dT ???? ??和径向温度梯度L dx dT ??? ??。是两种完全不同的温度分布。但是,最能影响结晶状态是生长界面处的温度梯度L S dx dT -??? ??,L S dy dT -???? ??,它是晶体、熔体、环境三者的传热、放热、散热综合影响的结果,在一定程度上决定看单晶质量。 晶体生长时单晶硅的温度梯度粗略的讲:离结晶界面越远,温度越低。即S dy dT ???? ??>0。 只有S dy dT ???? ??足够大时,才能单晶硅生长产生的结晶潜热及时传走,散掉,保持结晶界面温度稳定。若S dy dT ???? ??较小,晶体生长产生的结晶潜热不能及时散掉, 单晶硅温度会增高,结晶界面温度随着增高,熔体表面的过冷度减小,单晶硅的

大学物理实验报告系列之霍尔效应-大物霍尔效应实验报告Word版

【实验名称】霍尔效应 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除付效应的影响,测量试样的VH—IS;和VH—IM 曲线。 3.确定试样的导电类型、载流子浓度以及迁移率。 【实验仪器】 霍尔效应实验仪 【实验原理】霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。 对于图1(a)所示的N型半导体试样,若在X方向通以电流1s,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力 F B = e v B (1) 则在Y方向即试样A、A'电极两侧就开始聚积异号电荷而产生相应的附加电场一霍尔电场。电场的指向取决于试样的导电类型。对N型试样,霍尔电场逆Y方向,P型试样则沿Y方向,有: Is (X)、 B (Z) E H (Y) <0 (N型) E H (Y) >0 (P型) 显然,该电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H eE与 洛仑兹力eVB相等时,样品两侧电荷的积累就达到平衡,故有 H eE= B v e(2) 其中 H E为霍尔电场,v是载流子在电流方向上的平均漂移速度。 设试样的宽为b,厚度为d,载流子浓度为n,则 bd v ne Is=(3)由(2)、(3)两式可得 d B I R d B I ne b E V S H S H H = = = 1 (4) 即霍尔电压 H V(A、A'电极之间的电压)与IsB乘积成正比与试样厚度成反比。 比例系数 ne R H 1 =称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, 整理为word格式

霍尔效应及其应用实验报告

霍尔效应及其应用实验报告 一、实验名称: 霍尔效应原理及其应用 二、实验目的: 1、了解霍尔效应产生原理; 2、测量霍尔元件的 H s V I -、H m V I -曲线,了解霍尔电压H V 与霍尔元件工作电流s I 、直螺线管的励磁电流m I 间的关系; 3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度B 及分布; 4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号) 四、实验原理: 1、霍尔效应现象及物理解释 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力B f 作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。 半导体样品,若在x方向通以电流s I ,在z方向加磁场B ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场H E ,电场的指向取决于样品的导电类型。显然,

当载流子所受的横向电场力E B f f <时电荷不断聚积,电场不断加强,直到E B f f =样品两侧电 荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) H V 。 设H E 为霍尔电场,v 是载流子在电流方向上的平均漂移速度;样品的宽度为b ,厚度为d ,载流子浓度为n ,则有: s I nevbd = (1-1) 因为E H f eE =,B f evB =,又根据E B f f =,则 1s s H H H I B I B V E b R ne d d =?=?= (1-2) 其中1/()H R ne =称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出H V 、B 以及知道s I 和d ,可按下式计算 3(/)H R m c : H H s V d R I B = (1-3) B I U K S H H /= (1—4) H K 为霍尔元件灵敏度。根据RH 可进一步确定以下参数。 (1)由H V 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的s I 和B 的方向(即测量中的+s I ,+B ),若测得的H V <0(即A′的电位低于A的电位),则样品属N型,反之为P型。 (2)由H V 求载流子浓度n ,即1/()H n K ed =。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入3/8π的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。

半导体物理实验报告..

电子科技大学 半导体物理实验报告 姓名:艾合麦提江 学号:2010033040008 班级:固电四班

实验一 半导体电学特性测试 测量半导体霍尔系数具有十分重要的意义。根据霍尔系数的符号可以判断材 料的导电类型;根据霍尔系数及其与温度的关系,可以计算载流子的浓度,以及载流子浓度同温度的关系,由此可确定材料的禁带宽度和杂质电离能;通过霍尔系数和电阻率的联合测量.能够确定我流子的迁移约 用微分霍尔效应法可测纵向载流子浓度分布;测量低温霍尔效应可以确定杂质补偿度。霍尔效应是半导体磁敏器件的物理基础。1980年发现的量子霍尔效应对科技进步具有重大意义。 早期测量霍尔系数采用矩形薄片样品.以及“桥式”样品。1958年范德堡提出对任意形状样品电阻率和霍尔系数的测量方法,这是一种有实际意义的重要方法,目前已被广泛采用。 本实验的目的使学生更深入地理解霍尔效应的原理,掌握霍尔系数、电导率和迁移率的测试方法,确定样品的导电类型。 一、实 验 原 理 如图,一矩形半导体薄片,当沿其x 方向通有均匀电流I ,沿Z 方向加有均匀磁感应强度的磁场时,则在y 方向上产生电势差。这种想象叫霍尔效应。所生电势差用V H 表示,成为霍尔电压,其相应的电场称为霍尔电场E y 。实验表明,在 弱磁场下,E y 同J (电流密度)和B 成正比 E y =R H JB (1) 式中R H 为比例系数,称为霍尔系数。 在不同的温度范围,R H 有不同的表达式。在本征电离完全可以忽略的杂质电离区,且主要只有一种载流子的情况,当不考虑载流子速度的统计分布时,对空穴浓度为p 的P 型样品 0pq 1 R H >= (2) 式中q 为电子电量。对电子浓度为n 的N 型样品 0nq 1 R H <- =

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b ,厚度为d ,载流子浓度为n ,则 图1. 霍尔效应原理示意图,a )为N 型(电子) b )为P 型(孔穴) f e f m v -e E H A / A B C I S V mA B a +e E H f e f m v I S B b l d b

实验报告半导体PN结的物理特性及弱电流测量

成都信息工程学院 物理实验报告 姓名: 石朝阳 专业: 班级: 学号: 实验日期: 2009-9-15下午 实验教室: 5102-1 指导教师: 【实验名称】 PN 结物理特性综合实验 【实验目的】 1. 在室温时,测量PN 结电流与电压关系,证明此关系符合波耳兹曼分布规律 2. 在不同温度条件下,测量玻尔兹曼常数 3. 学习用运算放大器组成电流-电压变换器测量弱电流 4. 测量PN 结电压与温度关系,求出该PN 结温度传感器的灵敏度 5. 计算在0K 温度时,半导体硅材料的近似禁带宽度 【实验仪器】 半导体PN 结的物理特性实验仪 资产编号:××××,型号:×××(必须填写) 【实验原理】 1.PN 结的伏安特性及玻尔兹曼常数测量 PN 结的正向电流-电压关系满足: ]1)/[ex p(0-=kT eU I I (1) 当()exp /1eU kT >>时,(1)式括号内-1项完全可以忽略,于是有: 0exp(/)I I eU kT = (2) 也即PN 结正向电流随正向电压按指数规律变化。若测得PN 结I U -关系值,则利用(1)式可以求出 /e kT 。在测得温度T 后,就可以得到/e k ,把电子电量e 作为已知值代入,即可求得玻尔兹曼常数k 。 实验线路如图1所示。

2、弱电流测量 LF356是一个高输入阻抗集成运算放大器,用它组成电流-电压变换器(弱电流放大器),如图2所示。其中虚线框内电阻r Z 为电流-电压变换器等效输入阻抗。 运算放大器的输入电压0U 为: 00i U K U =- (3) 式(3)中i U 为输入电压,0K 为运算放大器的开环电压增益,即图2中电阻f R →∞时的电压增益(f R 称反馈电阻)。因而有: 00(1) i i s f f U U U K I R R -+= = (4) 由(4)式可得电流-电压变换器等效输入阻抗x Z 为 00 1i f f x s U R R Z I K K = =≈+ (5) 由(3)式和(4)式可得电流-电压变换器输入电流s I 与输出电压0U 之间的关系式,即: 图1 PN 结扩散电源与结电压关系测量线路图 图2 电流-电压变换器

相关主题