搜档网
当前位置:搜档网 › fluent学习心得

fluent学习心得

fluent学习心得
fluent学习心得

1. 分离式求解器和耦合式求解器:都适用于从不可压到高速可压的很大范围的流动,总得来说,计算高速可压时,耦合式求解器更有优势;分离式求解器中有几个模型耦合式求解器中没有,如VOF,多项混合模型等。

2. 对于绝大多数问题,选择1st-Order Implicit就已经足够了。精度要求高时,选择2st-Order Implicit.而Explicit选项只对耦合显式求解器有效。

3. 压力都是相对压力值,相对于参考压力而言。对于不可压流动,若边界条件中不包含有压力边界条件时,用户应设置一个参考压力位置。计算时,fluent强制这一点的相对压力值为0.

4. 选择什么样的求解器后,再选择什么样的计算模型,即通知fluent是否考虑传热,流动是无粘、层流还是湍流,是否多相流,是否包含相变等。默认情况,fluent只进行流场求解,不求解能量方程。

5. 多相流模型:其中vof模型通过单独的动量方程和处理穿过区域的每一流体的容积比来模拟两种或三种不能混合的流体。

6. 能量方程:选中表示计算过程中要考虑热交换。对于一般流动,如水利工程及水力机械流场分析,可不考虑传热;气流模拟时,往往要考虑。默认状态下,fluent在能量方程中忽略粘性生成热,而耦合式求解器包含有粘性生成热。

7. 粘性模型:inviscid无粘计算;Laminar模型,层流模型;k-epsilon(2 eqn)模型,目前常用模型。

8. 材料定义:比较简单

9. 边界条件:见P210-211

10. 给定湍流参数:在计算区域的进口、出口及远场边界,需给定输运的湍流参数。Turbulence specification Method项目,意为让用户指定使用哪种模型来输入湍流参数。用户可任选其一,然后按公式计算选定的湍流参数,并作为输入。

湍流强度,湍动能k,湍动耗散率e。

11. 常用的边界条件:

压力进口:适用于可压和不可压流动,用于进口的压力一直但流量或速度未知的情况。Fluent 中各种压力都是相对压力值。

速度入口:用于不可压流,如果用于可压流可能导致非物理结果。

质量进口:规定进口的质量。

压力出口:需要在出口边界处设置静压。静压只用于亚音速流动。在fluent求解时,当压力出口边界上流动反向时,就是用这组回流条件。出口回流有三种方式:垂直与边界,给定方向矢量,来自相邻单元。

出流:用于模拟求解前流速和压力未知的出口边界。适用于出流面上的流动情况由区域内外推得到,且对上游没影响。不用于可压流动,也不能与压力进口边界条件一起是用。

压力远场:只适用于可压气体流动,气体的密度通过理想气体定律来计算。

12. 设置求解控制参数:为了更好的控制求解过程,需要在求解器中进行某些设置,内容包括选择离散格式、设置欠松弛因子、初始化场变量及激活监视变量等。

Fluent允许用户对流项选择不同的离散格式。默认情况下,当是用分离式求解器时,所有方程中的对流相一阶迎风格式离散;耦合式求解时,二阶精度格式,其他仍一阶。对于2D三角形和3D四面体网格,注意要是用二阶精度格式。一般,一阶容易收敛,精度差。

欠松弛因子:为了加速收敛,在迭代10次左右后,检查残差是增加还是减小,若增大,则减小欠松弛因子的值;反之,增大它。

Pressure-velocity coupling:包含压力速度耦合方式的列表。该项只在分离式求解器中出现。可选SIMPLE、SIMPLEC、PISO。多数选择simplec,piso算法主要用于瞬态问题的模拟,

特别是希望使用大的时间步长的情况。

Courant Number;设置网格的Courant数,用于控制耦合求解时的时间步长。对于耦合显示求解器,该数值不要过大,一般<2。隐式求解器,可取较大值,一般取5,有时20,甚至100,也可收敛。

13. 设置监视参数,一般残差监视。

14. 初始化流场的解:向fluent提供流场的解的初始猜测值。

15. 流畅迭代计算,稳态问题求解和非稳态问题求解。

fluent燃烧简介

FLUENT燃烧简介 FLUENT软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。 1.1 FLUENT燃烧模拟方法概要 燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。FLUENT可以模拟宽广范围内的燃烧问题。然而,需要注意的是:你必须保证你所使用的物理模型要适合你所研究的问题。FLUENT在模拟燃烧中的应用可如下图所示: 图 1 FLUENT模拟过程中所需的物理模型 1.1.1 气相燃烧模型 一般的有限速率形式(Magnussen模型) 守恒标量的PDF模型(单或二组分混合分数) 层流火焰面模型(Laminar flamelet model) Zimount 模型 1.1.2 离散相模型 煤燃烧与喷雾燃烧 1.1.3 热辐射模型 DTRM,P-1,Rosseland 和Discrete Ordinates 模型 1.1.4 污染物模型 NOx模型,烟(Smoot)模型 2.1气相燃烧模型 ·在FLUENT中,针对不同的燃烧现象,采用了不同的化学动力学处理手段,以减少计算成本,如下: 有限速率燃烧模型---预混、部分预混和扩散燃烧 混合分数方法(平衡化学的PDF模型和非平衡化学的层流火焰面模型)---扩散燃烧

反应进度方法(Zimont模型)---预混燃烧 混合物分数和反应进度方法的结合---部分预混燃烧 2.2.1 有限速率模型 化学反应过程一般采用总包机理(即简化化学反应,如单步反应)进行描述。 求解积分的输运方程,得到每种组分的时均质量分数值,如下: -----(1) 其中组分j的反应源项为所有反应K个反应中,组分j的净生成速率: -----(2) -----(3) 计算所需参数包括:1、组分及其热力学参数值;2、反应及其速率常数值。 有限速率模型的有缺点: 优点:适用于预混、部分预混和扩散燃烧,简单直观; 缺点:当混合时间尺度和反应时间尺度相当时缺乏真实性,难以解决化学反应与湍流的耦合问题,难以预测反应的中间组分,模型常数具有不确定性。 这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。 应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。 2.2.2守恒标量的PDF模型 守恒标量的PDF模型仅适用于扩散(非预混)燃烧问题,该方法假定了反应是受混合速率所控制,即反应已经达到化学平衡状态,每个单元内的组分及其性质是由燃料和氧化剂的湍流混合强度所控制,其中涉及的化学反应体系由化学平衡计算来处理(利用FLUENT的组件程序PrePDF)。 该方法通过求解混合物分数及其方差的输运方程获得组分和温度场,而不是直接求解组分和能量的输运方程。 -----(4) -----(5) 其中-----(6) 混合分数定义-----(7)

FLUENT中文全教程1-250

FLUENT 教程 赵玉新 I、目录 第一章、开始 第二章、操作界面 第三章、文件的读写 第四章、单位系统 第五章、读入和操作网格 第六章、边界条件 第七章、物理特性 第八章、基本物理模型 第九章、湍流模型 第十章、辐射模型 第十一章、化学输运与反应流 第十二章、污染形成模型 第十三章、相变模拟 第十四章、多相流模型 第十五章、动坐标系下的流动 第十六章、解算器的使用 第十七章、网格适应 第十八章、数据显示与报告界面的产生 第十九章、图形与可视化 第二十章、Alphanumeric Reporting 第二十一章、流场函数定义 第二十二章、并行处理 第二十三章、自定义函数 第二十四章、参考向导 第二十五章、索引(Bibliography) 第二十六章、命令索引 II、如何使用该教程 概述 本教程主要介绍了FLUENT 的使用,其中附带了相关的算例,从而能够使每一位使用 者在学习的同时积累相关的经验。本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。第二和第三部分包含物理模型,解以及网格适应的信息。第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT 所使用的流场函数与变量的定义。 下面是各章的简略概括 第一部分: z开始使用:本章描述了FLUENT 的计算能力以及它与其它程序的接口。介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中,我们给出

了一个可以在你自己计算机上运行的简单的算例。 z使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。同时也提供了远程处理与批处理的一些方法。(请参考关于特定的文本界面命令的在线帮助) z读写文件:本章描述了FLUENT 可以读写的文件以及硬拷贝文件。 z单位系统:本章描述了如何使用FLUENT 所提供的标准与自定义单位系统。 z读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。本章还描述了非一致(nonconformal)网格的使用. z边界条件:本章描述了FLUENT 所提供的各种类型边界条件,如何使用它们,如何定义它们and how to define boundary profiles and volumetric sources. z物理特性:本章描述了如何定义流体的物理特性与方程。FLUENT 采用这些信息来处理你的输入信息。 第二部分: z基本物理模型:本章描述了FLUENT 计算流体流动和热传导所使用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)。以及在使用这些模型时你需要输入的数据,本章也包含了自定义标量的信息。 z湍流模型:本章描述了FLUENT 的湍流模型以及使用条件。 z辐射模型:本章描述了FLUENT 的热辐射模型以及使用条件。 z化学组分输运和反应流:本章描述了化学组分输运和反应流的模型及其使用方法。本章详细的叙述了prePDF 的使用方法。 z污染形成模型:本章描述了NOx 和烟尘的形成的模型,以及这些模型的使用方法。 第三部分: z相变模拟:本章描述了FLUENT 的相变模型及其使用方法。 z离散相变模型:本章描述了FLUENT 的离散相变模型及其使用方法。 z多相流模型:本章描述了FLUENT 的多相流模型及其使用方法。 z Flows in Moving Zones(移动坐标系下的流动):本章描述了FLUENT 中单一旋转坐标系,多重移动坐标系,以及滑动网格的使用方法。 z Solver 的使用:本章描述了如何使用FLUENT 的解法器(solver)。 z网格适应:本章描述了explains the solution-adaptive mesh refinement feature in FLUENT and how to use it 第四部分: z显示和报告数据界面的创建:本章描述了explains how to create surfaces in the domain on which you can examine FLUENT solution data z图形和可视化:本章描述了检验FLUENT 解的图形工具 z Alphanumeric Reporting:本章描述了如何获取流动、力、表面积分以及其它解的数据。 z流场函数的定义:本章描述了如何定义FLUENT 面板内出现的变量选择下拉菜单中的流动变量,并且告诉我们如何创建自己的自定义流场函数。 z并行处理:本章描述了FLUENT 的并行处理特点以及使用方法 z自定义函数:本章描述了如何通过用户定义边界条件,物理性质函数来形成自己的FLUENT 软件。 如何使用该手册 z根据你对CFD 以及FLUENT 公司的熟悉,你可以通过各种途径使用该手册 对于初学者,建议如下:

《FLUENT中文手册(简化版)》

FLUENT中文手册(简化版) 本手册介绍FLUENT的使用方法,并附带了相关的算例。下面是本教程各部分各章节的简略概括。 第一部分: ?开始使用:描述了FLUENT的计算能力以及它与其它程序的接口。介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中给出了一个简单的算例。 ?使用界面:描述用户界面、文本界面以及在线帮助的使用方法,还有远程处理与批处理的一些方法。?读写文件:描述了FLUENT可以读写的文件以及硬拷贝文件。 ?单位系统:描述了如何使用FLUENT所提供的标准与自定义单位系统。 ?使用网格:描述了各种计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。还描述了非一致(nonconformal)网格的使用. ?边界条件:描述了FLUENT所提供的各种类型边界条件和源项,如何使用它们,如何定义它们等 ?物理特性:描述了如何定义流体的物理特性与方程。FLUENT采用这些信息来处理你的输入信息。 第二部分: ?基本物理模型:描述了计算流动和传热所用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)及其使用方法,还有自定义标量的信息。 ?湍流模型:描述了FLUENT的湍流模型以及使用条件。 ?辐射模型:描述了FLUENT的热辐射模型以及使用条件。 ?化学组分输运和反应流:描述了化学组分输运和反应流的模型及其使用方法,并详细叙述了prePDF 的使用方法。 ?污染形成模型:描述了NOx和烟尘的形成的模型,以及这些模型的使用方法。 第三部分: ?相变模拟:描述了FLUENT的相变模型及其使用方法。 ?离散相变模型:描述了FLUENT的离散相变模型及其使用方法。 ?多相流模型:描述了FLUENT的多相流模型及其使用方法。 ?移动坐标系下的流动:描述单一旋转坐标系、多重移动坐标系、以及滑动网格的使用方法。 ?解法器(solver)的使用:描述了如何使用FLUENT的解法器。 ?网格适应:描述了如何优化网格以适应计算需求。 第四部分: ?显示和报告数据界面的创建:本章描述了explains how to create surfaces in the domain on which you can examine FLUENT solution data ?图形和可视化:本章描述了检验FLUENT解的图形工具 ?Alphanumeric Reporting:本章描述了如何获取流动、力、表面积分以及其它解的数据。 ?流场函数的定义:本章描述了如何定义FLUENT面板内出现的变量选择下拉菜单中的流动变量,并且告诉我们如何创建自己的自定义流场函数。 ?并行处理:本章描述了FLUENT的并行处理特点以及使用方法 ?自定义函数:本章描述了如何通过用户定义边界条件,物理性质函数来形成自己的FLUENT软件。 如何使用该手册 对于初学者,建议从阅读“开始”这一章起步。 对于有经验的使用者,有三种不同的方法供你使用该手册:按照特定程序的步骤从按程序顺序排列的目录列表和主题列表中查找相关资料;从命令索引查找特定的面板和文本命令的使用方法;从分类索引查找特定类别信息(在线帮助中没有此类索引,只能在印刷手册中找到它)。 什么时候使用Support Engineer:Support Engineer能帮你计划CFD模拟工程并解决在使用FLUENT 中所遇到的困难。在遇到困难时我们建议你使用Support Engineer。但是在使用之前有以下几个注意事项:●仔细阅读手册中关于你使用并产生问题的命令的信息 ●回忆导致你产生问题的每一步 ●如果可能的话,请记下所出现的错误信息 ●对于特别困难的问题,保存FLUENT出现问题时的日志以及手稿。在解决问题时,它是最好的资源。

Fluent多相流模型选择

FLUENT多相流模型 分类 1、气液或液液流动 气泡流动:连续流体中存在离散的气泡或液泡 液滴流动:连续相为气相,其它相为液滴 栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡 分层自由流动:由明显的分界面隔开的非混合流体流动。 2、气固两相流动 粒子负载流动:连续气体流动中有离散的固体粒子 气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流 流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。 3、液固两相流动 泥浆流:流体中的大量颗粒流动。颗粒的stokes数通常小于1。大于1是成为流化了的液固流动。 水力运输:在连续流体中密布着固体颗粒 沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。 4、三相流 以上各种情况的组合 多相流动系统的实例 气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。 液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。 栓塞流:管道或容器中有大尺度气泡的流动 分层流:分离器中的晃动、核反应装置沸腾和冷凝 粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动 气力输运:水泥、谷粒和金属粉末的输运 流化床:流化床反应器、循环流化床 泥浆流:泥浆输运、矿物处理 水力输运:矿物处理、生物医学、物理化学中的流体系统 沉降流动:矿物处理。 多相流模型的选择原则 1、基本原则

1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相 模型。 2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴 和粒子负载流动,采用混合模型或欧拉模型。 3)对于栓塞流、泡状流,采用VOF模型 4)对于分层/自由面流动,采用VOF模型 5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。 6)对于流化床,采用欧拉模型 7)泥浆和水力输运,采用混合模型或欧拉模型。 8)沉降采用欧拉模型 9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣 的流动特种,选择合适的流动模型。此时由于模型只是对部分流动特 征采用了较好的模拟,其精度必然低于只包含单个模式的流动。 2、混合模型和欧拉模型的选择原则 VOF模型适合于分层的或自由表面流,而混合模型和欧拉模型适合于流动中有相混合或分离,或者分散相的体积分数超过10%的情况(小于10%可使用离散相模型)。 1)如果分散相有宽广的分布(如颗粒的尺寸分布很宽),最好采用混 合模型,反之使用欧拉模型。 2)如果相间曳力规律一直,欧拉模型通常比混合模型更精确;若相间 曳力规律不明确,最好选用混合模型。 3)如果希望减小计算了,最好选用混合模型,它比欧拉模型少解一部 分方程;如果要求精度而不在意计算量,欧拉模型可能是更好的选择。 但是要注意,复杂的欧拉模型比混合模型的稳定性差,可能会遇到收 敛困难。

Fluent多相流模型选择与设定

1.多相流动模式 我们可以根据下面的原则对多相流分成四类: ?气-液或者液-液两相流: o 气泡流动:连续流体中的气泡或者液泡。 o 液滴流动:连续气体中的离散流体液滴。 o 活塞流动: 在连续流体中的大的气泡 o 分层自由面流动:由明显的分界面隔开的非混合流体流动。 ?气-固两相流: o 充满粒子的流动:连续气体流动中有离散的固体粒子。 o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。 o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。从 床底不断充入的气体使得颗粒得以悬浮。改变气体的流量,就会有气泡不断 的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。 ?液-固两相流 o 泥浆流:流体中的颗粒输运。液-固两相流的基本特征不同于液体中固体颗 粒的流动。在泥浆流中,Stokes 数通常小于1。当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。 o 水力运输: 在连续流体中密布着固体颗粒 o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物 质。随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤 积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里 的粒子仍然在沉降。在澄清层和沉降层中间,是一个清晰可辨的交界面。 ?三相流(上面各种情况的组合) 各流动模式对应的例子如下: ?气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷 ?液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗?活塞流例子:管道或容器内有大尺度气泡的流动 ?分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝 ?粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动 ?风力输运例子:水泥、谷粒和金属粉末的输运

fluent多相流算例

Tutorial:Dam-Break Simulation Using FLUENT’s Volume of Fluid Model Purpose This tutorial examines the dam-break problem using the Volume of Fluid(VOF)multiphase model. This tutorial demonstrates how to do the following: ?Set up a dam-break problem. ?Choose the time step by estimating the maximum possible velocity of the interface and the grid cell dimension. ?Solve the problem using the VOF model. ?Manipulate the solution parameters. Prerequisites This tutorial assumes that you are familiar with the FLUENT interface and that you have a good understanding of basic setup and solution procedures.In this tutorial,you will use VOF multiphase model,so you should have some experience with it.This tutorial will not cover the mechanics of using this model;instead,it will focus on the application of this model to solve a dam-break problem. If you have not used this model before,it would be helpful to?rst refer to the FLUENT6.3 User’s Guide and the FLUENT6.2Tutorial Guide. Problem Description The initial setup of the dam-break problem is shown in Figure1. In this problem,a rectangular column of water,in hydrostatic equilibrium,is con?ned between two walls.Gravity is acting downwards with a magnitude of-9.81m/s2.At the beginning of the calculation,the right wall is removed and the water is allowed to?ow out to the horizontal wall.

FLUENT中两相流、多相流中模型的的选择问题

两相流:通常把含有大量固体或液体颗粒的气体或液体流动称为两相流;其中含有多种尺寸组颗粒群为一个“相”,气体或液体为另一“相”,由此就有气—液,气—固,液—固等两相流之分。 两相流的研究:对两相流的研究有两种不同的观点:一是把流体作为连续介质,而把颗粒群作为离散体系;而另一是除了把流体作为连续介质外,还把颗粒群当作拟连续介质或拟流体。 引入两种坐标系:即拉格朗日坐标和欧拉坐标,以变形前的初始坐标为自变量称为拉格朗日Langrangian 坐标或物质坐标;以变形后瞬时坐标为自变量称为欧拉Eulerian 坐标或空间坐标。 一.离散相模型 FLUENT在求解连续相的输运方程的同时,在拉格朗日坐标下模拟流场中离散相的第二相;← 离散相模型解决的问题:煤粉燃烧、颗粒分离、喷雾干燥、液体燃料的燃烧等;← 应用范←围:FLUENT中的离散相模型假定第二相体积分数一般说来要小于10-12%(但颗粒质量承载率可以大于10-12%,即可模拟离散相质量流率等/大于连续相的流动);不适用于模拟在连续相中无限期悬浮的颗粒流问题,包括:搅拌釜、流化床等; 颗粒-颗粒之间的相互作用、颗粒体积分数对连续相的影响未考虑;← 湍流中颗粒处理的两种模型:Stochastic Tracking,应用随机方法来考虑瞬时湍流速度对颗粒轨道的影响;Cloud Tracking,运用统计方法来跟踪颗粒围绕某一平均轨道的湍流扩散。通过计算颗粒的系统平均运动方程得到颗粒的某个“平均轨道”← 二.多相流模型 FLUENT中提供的模型: VOF模型(Volume of Fluid Model)← 混合模型(Mixture Model)← 欧拉模型(Eulerian Model)← 1.VOF模型(Volume of Fluid Model) VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为α1,如果α1=0,表示该控制容积中不含第一相,如果α1=1,则表示该控制容积中只含有第一相,如果0←<α1<1,表示该控制容积中有两相交界面; VOF方法是用体积率函数表示流体自由面的位置和流体所占的体积,其方法占内存小,是一种简单而有效的方法。← 2.混合模型(Mixture Model) 用混合特性参数描述的两相流场的场方程组称为混合模型;← 考虑了界面传递特性以及两相间的扩散作用和脉动作用;使用了滑移速度的概念,允许相以不同的速度运动;← 用于模拟各相有不同速度的多相流;也用于模拟有强烈耦合的各向同性多相流和各相以相同速度运动的多相流;← 缺点:界面特性包括不全,扩散和脉动特性难于处理。← 3.欧拉模型(Eulerian Model) 欧拉模型指的是欧拉—欧拉模型;← 把颗粒和气体看成两种流体,空间各点都有这两种流体各自不同的速度、温度和密度,这些流体其存在在同一空间并相互渗透,但各有不同的体积分数,相互间有滑移;←

GAMBIT实例教程4_燃烧室模型的建立.

4. 燃烧室模型的建立(3-D ) 在这份指导书中,你可以通过运GAMBIT 中的top-down 几何结构法来为燃烧室生成几何模型(用实体来生成容积)。你可以通过非结构化六面体网格法来为画出的燃烧室几何体划分网格。 在这份指导书中你可以学习到如何去: ● 移动一个体积; ● 从一个体积中扣除另一个; ● 把一个体积阴影化; ● 交叉两个体积; ● 混合一个体积的边; ● 通过对面进行扫描来生成体积; ● 为读入FLUENT/UNS来准备网格。 4.1 前提 这份指导书假定读者已经掌握了指导书1并且已对GAMBIT 界面相当熟悉。 4.2 问题描述 这个问题在图4-1中以图解的形式表示出来。此几何体包括一个简化的向燃烧腔加料的燃料喷嘴,在这个指导书中由于几何结构对称你可以仅作出燃烧室几何体的1/4模型。喷嘴包括两个同心管,其直径分别是4个单位和10个单位,燃烧室的边缘与喷嘴下的壁面融合在一起。 4.3 策略

在这份指导书中,你可以运用top-down 几何结构法来生成燃烧室几何体,你可以生成体积(在本例中为方体和圆体)并用布尔运算把它们结合起来,交叉、扣除这些体积以生成基本体积,最后,通过“融和”命令,你可以舍掉一些边界以完成几何体生成。 在这个模型例子中,简单的选择捡起几何体并用六面体单元对整个区域进行网格划分是不可能的,由于Cooper 工具(在本向导中要应用)需要两组面,一组平行于扫描路径,另一组垂直于扫描路径,不管怎样,融和边界不适合于任一组。对cooper 工具更详细的描述见GAMBIT Modeling Guide 。你需要把几何体分成许能用cooper 来划分网格的部分。在GAMBIT 中有许多分解几何体的方法。在这个例子中,你可以采用把那些挨着弯面的体积部分从主体积中分开的方法。对这个燃烧室进行分解的详细步骤在下面给出。 注意到几何体中有许多面,其默认的网格划分方案是pave 方案。这些面中的大部分与Z 方向垂直。在Z 方向有许多几何突起,因此在cooper 网格方案中应被选为主方向。为使其可能,X 、Y 方向的铺砌面(图4-2中的两个对称面)必须改变以去用Submap 或Map 网格划分方案。 默认的,GAMBIT 对这两个面选择Pave 网格划分方案,是因为它们每一个都在融合处都有一个圆边。如果你把每个面圆角分裂出来并通过一个体积把它们连接

Fluent软件的燃烧模型介绍

FLUENT软件的燃烧模型介绍 Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。下面对Fluent软件的燃烧模型作一简单介绍: 一、气相燃烧模型 ·有限速率模型 这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。 应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。 ?PDF模型 该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。各组分浓度由混合组分分布求得。PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。在该模型中,用概率密度函数PDF来考虑湍流效应。该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型)或化学平衡计算来处理,因此比有限速率模型有更多的优势。 应用领域:该模型应用于非预混燃烧(湍流扩散火焰),可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。 ?非平衡反应模型 层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。在模拟富油一侧的火焰时,典型的平衡火焰假设失效。该模型可以模拟形成Nox的中间产物。 应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET的燃烧问题。

?预混燃烧模型 该模型专用于燃烧系统或纯预混的反应系统。在此类问题中,充分混合的反应物和反应产物被火焰面隔开。通过求解反应过程变量来预测火焰面的位置。湍流效应可以通过层流和湍流火焰速度的关系来考虑。 应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。 二、分散相燃烧模型 除了可以模拟各种气相燃烧问题以外,FLUENT5还提供了模拟分散相燃烧问题(液体燃料燃烧、喷射燃烧、固体颗粒燃烧等)的燃烧模型: ?在拉格朗日坐标下,模拟分散相(包括固体颗粒/油滴/气泡等)在瞬态和稳态下的运动轨迹 ?多种球形和非球形粒子的曳力规律 ?线性分布或Rosin-Rammler方程的粒子大小分布 ?连续相的湍流效应对粒子传播的影响 ?分散相的加热/冷却 ?液滴的汽化和蒸发 ?燃烧粒子,包括油滴的挥发过程和焦碳的燃烧 ?连续相与分散相的耦合 模拟油滴在湍流的影响而产生的扩散效应时,FLUENT可以采用粒子云模型和随机轨道模型。 ?随机轨道模型 该模型利用离散的随机跟踪法模拟瞬态湍流速度脉动对粒子轨迹的影响。 ?粒子云模型 该模型追踪粒子平均轨道的粒子云的形成和演化的统计过程。粒子云浓度通过粒子平均轨迹的概率密度函数来表示。

FLUENT实例5个-fluent仿真模拟实例

前言 为了使学生尽快熟悉计算流体软件FLUENT以及更好的掌握计算流体力学的计算模型,本书编制了几个简单的模型,包括了组分燃烧、管内流动、换热和房间温度场四个方面的内容。其中概括了二维和三维的模型,描述详细,可根据步骤建模、划分网格和计算以及后处理。本书不可能面面具到并进行详细讲解,但相信读者通过本书的学习,一定能领会其中的技巧。

目录 前言﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍1 燃烧器内甲烷和空气的燃烧﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍3 管内层流流动数值计算﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 38 蒸汽喷射器内的传热模拟﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 52 组分传输与气体燃烧算例﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 75 空调房间温度场的模拟﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍102

燃烧器内甲烷和空气的燃烧 问题描述 这个问题在图1中以图解的形式表示出来。此几何体包括一个简化的向燃烧腔加料的燃料喷嘴,由于几何结构对称可以仅做出燃烧室几何体的1/4模型。喷嘴包括两个同心管,其 直径分别是4个单位和10个单位,燃烧室的边缘与喷嘴下的壁面融合在一起。 一、利用GAMBIT建立计算模型 启动GAMBIT。 第一步:选择一个解算器 选择用于进行CFD计算的求解器。 操作:Solver -> FLUENT5/6 第二步:生成两个圆柱体 1、生成一个柱体以形成燃烧室 操作:GEOMETRY-> VOLUME-> CREATE VOLUME R 打开Create Real Cylinder窗口,如图2所示 图1:问题图示

a) 在柱体的Height 中键入值1.2。 b) 在柱体的Radius 1 中键入值0.4。 Radius 2的文本键入框可留为空白,GAMBIT 将默认设定为Radius 1值相等。 c) 选择Positive Z (默认)作为Axis Location 。 d) 点击Apply 按钮。 2、按照上述步骤以生成一个Height =2,Radius 1 =1并以positive z 为轴的柱体。 3、点击在Global Control 工具栏左上部的FIT TO WINDOW 命令按钮,去观察柱体的生成。 这两个柱体在图3中示出,按住鼠标左键并拖动它以观察视图的旋转。你可以按下鼠标右键并把鼠标沿靠近或远离你的方向拖动以放大或缩小视图。 4、移动生成的第一个柱体以使它在大柱体的前面。 操作:GEOMETRY -> VOLUME -> MOVE /COPY /ALIGN VOLUMES 图2:生成圆柱对话框 图3:两个圆柱

fluent中燃烧模型分类

FLUENT燃烧模型 化学反应 模拟方法 方法描述计算反应的选择 有限速率模型需要求解组分质量分数的 输运方程,化学反应机理 由用户自己定义。反应速 率在组分输运方程中作为 源项,并由阿累尼乌斯公 式计算。应用范围最广泛。 应用:模拟化学组分混合、 输运和反应的问题;壁面 或粒子表面反应问题 层流有限 速率模型 使用Arrhenius公式计算化学源项,忽略湍流脉动的影响。对于化学动力学控制的燃烧(如层流燃 烧),或化学反应相对缓慢的湍流燃烧是准确的。但对一般湍流火焰中Arrhenius化学动力学的高度 非线性一般不精确;对于化学反应相对缓慢、湍流脉动较小的燃烧(如超音速火焰)可能可以接受。 漩涡破碎模型 Eddy Dissipation 大部分燃料快速燃烧,整体反应速率由湍流混合控制。复杂且常是未知的化学反应动力学速率可以 完全的被忽略掉。化学反应速率由大尺度涡混合时间尺度k/ε控制。只要k/ε(湍流)出现,燃烧 即可进行,不需要点火源来启动燃烧。(缺点:未能考虑分子输运和化学动力学因素的影响) 适用条件:高雷诺数湍流预混燃烧过程。 EBU-Arrehenius 模型 EDC模型 假定化学反应都发生在小涡中(精细涡),反应时间由小涡生存时间和化学反应本身需要的时间共 同控制。EDC模型能够在湍流反应中考虑详细的化学反应机理。但是他们的数值积分计算开销很大。 使用条件:只有在快速化学反应假定无效的情况下才能使用这一模型(如快速熄灭火焰中缓慢的 CO烧尽、选择性非催化还原中的NO转化问题)。 非预混燃烧模型不求解每个组分的质量分数输运方程,求解混合分数输运方程和一个或两个守恒标量的方程,然后从预测的混合分数公布推导出每一个组分的浓度。通过概率密度函数或PDF来考虑湍流的影响。 应用:主要用于模拟湍流扩散火焰的反应系统。这个系统要求接近化学平衡,氧化物和燃料以两个或者三个进口进入计算域。 预混燃烧模型主要用于单一、完全预先混合好的燃烧系统。反应物和燃烧产物被火焰前沿分开。求解出反应发展变量来预测前沿的位置。湍流的影响通过湍流火焰速度计算。 部分预混燃烧模型描述非预混燃烧完全预混燃烧相结合的系统。结合混合分数方程和反应物发展变量来分别确定组分浓度和火焰前沿位置。适用于计算域内具有变化等值比率的预混火焰情况。通过求解混合分数方程和反应过程参数来确定火焰峰面的位置。 PDF输运方程模型结合CHEMKIN可以考虑详细的化学反应机理,高度的非线性化学反应项是精确模拟,无须封闭模型,可以合理的模拟湍流和详细化学反应动力学之间的相互作用,是模拟湍流燃烧的精确模拟方法。但计算量特别大。 优点:可以计算中间组分;考虑分裂影响;考虑湍流-化学反应之间的作用;无需求解组分输运方程 缺点:系统须满足(靠近)局部平衡;不能用于可压缩或非湍流流动;不能用于预混燃烧。

Fluent分析一个例子Word版

由于目前我尚未开始我的课题,下面我就利用fluent对空气在一个喷管内的流动做流场分析,fluent用的是有限体积法来进行计算仿真。 该喷管模型如下:这是一段缩放型喷管,空气在压力作用下从左端进入喷管,从右端出来。进口的压力为1atm,出口的平均压力为0.843atm。管直径为40mm,长度为160mm。 图1 喷管示意图 如上图所示,空气在一个大气压的作用下通过平均背压为0.843atm的缩放型喷管。背压是以正弦波的规律变化的,即 我要做的工作是在gambit中建立该喷管的二位模型,再利用fluent求解器计算喷管内的不定常流动。 首先,利用gambit建立二维喷管的计算模型。模型如下图所示。由于喷管是对称结构,因此先建立上半部分的模型。 图2 用gambit建立的喷管轮廓图 建模完成以后,对各条边进行节点划分。然后再创建结构化网格。创建的结构化网格如下图所示。 图3 区域内的网格图 网格划分完成以后,开始设置边界类型。设置网格类型包括以下几个步骤:(1)确定进口边界类型;(2)确定出口边界类型;(3)确定固壁边界类型;(4)定义对称面。 以上工作都完成以后,要输出网格文件。输出网格文件以后,再利用fluent

进行喷管内流动的仿真计算。

利用fluent进行喷管内流动的仿真计算步骤如下: (1)读入网格文件,读入网格文件以后,将会在信息反馈窗口显示网格的有关信息,如果没有错误就可以继续进行,若有错误,要重新设定gambit中的网格。 (2)下面再检查网格,fluent将会对网格进行各种检查,并将结果在信息反馈窗口中显示出来,其中要特别注意最小体积一项,要确保为正数,否则无法计算。 (3)检查网格没有问题后,要显示网格。由于显示的网格图形不是整体,而仅仅是图形的一半。为了更好的显示网格图形,可以利用镜面反射功能,以对称面为镜面,进行对称反射并构成一个整体。如下图所示: 图4 整体区域的网格图 (4)设置长度单位及压强单位,由于fluent默认的长度单位是m,要将单位改成mm;再重新设定压强的单位,定义压强的单位为大气压atm,它不是fluent 的默认单位,其默认单位为Pa。 (5)建立求解模型。选择耦合、隐式求解器,先求解定常流动,将求解的值作为非定常流动的初始值。再选择湍流模型为Spalart-Allmaras模型,该湍流模型是一种相对简单的一方程模型,仅考虑了动量的传递方程。在气体动力学中,对于有固壁边界的流动,利用Spalart-Allmaras模型计算边界层内的流动以及压力梯度较大的流动都可得到较好的结果。 (6)设置流体属性。选择理想气体定律来计算流体的密度。此时,fluent会自动激活求解能量方程,不用再到能量方程设置对话框中进行设置了。 (7)设置边界条件。先将初始压强设置为0atm后,在边界条件设置时,将是以绝对压强给定的。边界条件中压强的给定总是相对于工作压强的。分别设置喷管的入口和出口边界条件。

fluent基础(入门篇)

1单精度与双精度的区别 大多数情况下,单精度解算器高效准确,但是对于某些问题使用双精度解算器更合适。下面举几个例子: 如果几何图形长度尺度相差太多(比如细长管道),描述节点坐标时单精度网格计算就不合适了;如果几何图形是由很多层小直径管道包围而成(比如:汽车的集管)平均压力不大,但是局部区域压力却可能相当大(因为你只能设定一个全局参考压力位置),此时采用双精度解算器来计算压差就很有必要了。对于包括很大热传导比率和(或)高比率网格的成对问题,如果使用单精度解算器便无法有效实现边界信息的传递,从而导致收敛性和(或)精度下降 2分离解与耦合解的区别 选择解的格式 FLUENT 提供三种不同的解格式:分离解;隐式耦合解;显式耦合解。三种解法都可以在很大流动范围内提供准确的结果,但是它们也各有优缺点。分离解和耦合解方法的区别在于,连续性方程、动量方程、能量方程以及组分方程的解的步骤不同,分离解是按顺序解,耦合解是同时解。两种解法都是最后解附加的标量方程(比如:湍流或辐射)。隐式解法和显式解法的区别在于线化耦合方程的方式不同。分离解以前用于 FLUENT 4 和 FLUENT/UNS,耦合显式解以前用于 RAMPANT。分离解以前是用于不可压流和一般可压流的。而耦合方法最初是用来解高速可压流的。现在,两种方法都适用于很大范围的流动(从不可压到高速可压),但是计算高速可压流时耦合格式比分离格式更合适。FLUENT 默认使用分离解算器,但是对于高速可压流(如上所述),强体积力导致的强烈耦合流动(比如浮力或者旋转力),或者在非常精细的网格上的流动,你需要考虑隐式解法。这一解法耦合了流动和能量方程,常常很快便可以收敛。耦合隐式解所需要内存大约是分离解的 1.5 到 2 倍,选择时可以通过这一性能来权衡利弊。在需要隐式耦合解的时候,如果计算机的内存不够就可以采用分离解或者耦合显式解。耦合显式解虽然也耦合了流动和能量方程,但是它还是比耦合隐式解需要的内存少,但是它的收敛性相应的也就差一些。 注意:分离解中提供的几个物理模型,在耦合解中是没有的:多项流模型;混合组分/PDF燃烧模型/预混合燃烧模型/Pollutant formation models/相变模型/Rosseland 辐射模型/指定质量流周期流动模型/周期性热传导模型。分离求解器是默认的 3欧拉方程用于解决无粘流动,

Fluent软件的燃烧模型介绍(精)

Fluent软件的燃烧模型介绍 Fluent软件中包含多种燃烧模型、辐射模型及与燃烧相关的湍流模型,适用于各种复杂情况下的燃烧问题,包括固体火箭发动机和液体火箭发动机中的燃烧过程、燃气轮机中的燃烧室、民用锅炉、工业熔炉及加热器等。燃烧模型是FLUENT软件优于其它CFD软件的最主要的特征之一。下面对Fluent软件的燃烧模型作一简单介绍: 一、气相燃烧模型 ·有限速率模型 这种模型求解反应物和生成物输运组分方程,并由用户来定义化学反应机理。反应率作为源项在组分输运方程中通过阿累纽斯方程或涡耗散模型。有限速率模型适用于预混燃烧、局部预混燃烧和非预混燃烧。 应用领域:该模型可以模拟大多数气相燃烧问题,在航空航天领域的燃烧计算中有广泛的应用。 PDF模型 该模型不求解单个组分输运方程,但求解混合组分分布的输运方程。各组分浓度由混合组分分布求得。PDF模型尤其适合于湍流扩散火焰的模拟和类似的反应过程。在该模型中,用概率密度函数PDF来考虑湍流效应。该模型不要求用户显式地定义反应机理,而是通过火焰面方法(即混即燃模型或化学平衡计算来处理,因此比有限速率模型有更多的优势。 应用领域:该模型应用于非预混燃烧(湍流扩散火焰,可以用来计算航空发动机的环形燃烧室中的燃烧问题及液体/固体火箭发动机中的复杂燃烧问题。 非平衡反应模型

层流火焰模型是混合组分/PDF模型的进一步发展,从而用来模拟非平衡火焰燃烧。在模拟富油一侧的火焰时,典型的平衡火焰假设失效。该模型可以模拟形成Nox的中间产物。 应用领域:该模型可以模拟火箭发动机的燃烧问题和RAMJET及SCRAMJET 的燃烧问题。 预混燃烧模型 该模型专用于燃烧系统或纯预混的反应系统。在此类问题中,充分 混合的反应物和反应产物被火焰面隔开。通过求解反应过程变量来预测火焰面的位置。湍流效应可以通过层流和湍流火焰速度的关系来考虑。 应用领域:该模型可以用来模拟飞机加力燃烧室中的复杂流场模拟、气轮机、天然气燃炉等。 二、分散相燃烧模型 除了可以模拟各种气相燃烧问题以外,FLUENT5还提供了模拟分散相燃烧问题(液体燃料燃烧、喷射燃烧、固体颗粒燃烧等的燃烧模型:在拉格朗日坐标下,模拟分散相(包括固体颗粒/油滴/气泡等在瞬态和稳态下的运动轨迹 多种球形和非球形粒子的曳力规律 线性分布或Rosin-Rammler方程的粒子大小分布 连续相的湍流效应对粒子传播的影响 分散相的加热/冷却 液滴的汽化和蒸发 燃烧粒子,包括油滴的挥发过程和焦碳的燃烧

ICEMCFD与FLUENT培训

ICEMCFD与FLUENT培训 软件介绍: ICEM CFD是目前CFD 分析中最常用的专业的网格前处理软件,功能强大,是STAR-CD、STAR-CCM+、FLUENT和CFX等主流计算流体力学软件标准配置的网格前处理工具。另外ICEM CFD也可以作为有限元分析软件(如:Ansys、Nastran、Abaqus、LS-Dyna 等)的网格前处理工具。ICEM CFD是目前市场上最强大的六面体结构化网格生成工具。 ANSYS FLUENT是目前全球通用的商用CFD 软件,用来模拟从不可压缩到高度可压缩范围内的复杂流动。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT 能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转捩与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。ANSYS FLUENT在国防、航空航天、机器制造、汽车、船泊、兵器、电子、铁道、石油天然气、材料工程等行业都有着广泛的应用。 培训目的: 通过本次培训,学员将系统地掌握ICEM CFD 中几何功能、网格功能以及网格编辑功能,使学员能够使用强大的前处理工具ICEM CFD 解决自己的一些CAE前处理问题。 同时帮助学员系统地学习计算流体力学(Computational Fluid Dynamics-CFD)知识与当前最流行的CFD软件ANSYS-FLUENT的使用。掌握CFD分析的基本过程与原理,在最短的时间掌握应用FLUENT软件对流体流动、湍流、传热、多相流等物理现象进行分析。使得学员在培训后,面对企业所需解决的工程问题,能够独立地对其进行分析,正确地确立解决问题的思路,然后合理应用CFD软件对其进行求解,并对分析结果进行恰当的分析,真正地帮助企业进行产品的设计与开发。 课程简介:

相关主题