搜档网
当前位置:搜档网 › Landsat系列辐射定标参数整理

Landsat系列辐射定标参数整理

Landsat系列辐射定标参数整理
Landsat系列辐射定标参数整理

辐射定标参数整理

1.亮度温度计算

亮度温度是一个常用的温度概念,是在卫星高度上传感器探测波段范围内普朗克黑体辐射函数与传感器响应函数乘积积分得到的辐射值.亮度温度包含有大气和地表对热辐射传导的影响,不是真正意义上的地表温度。

计算公式:

其中,Lλ为传感器探孔处光谱辐射强度,即星上辐射亮度值,实现像素DN值转化为绝对辐射亮度值。

1.1.星上辐射亮度(Lλ)

遥感影像的亮度值(DN值)都是经过量化和纠正过的以8bit编码的数字影像,为了精确反演地物特性,有必要将DN值转化为星上辐射亮度值。

https://www.sodocs.net/doc/2f10675078.html,ndsat8

Lλ= M L*Q cal + A L

通过查看影像的头文件,可以获取偏差参数:M L(RADIANCE_MULT_BAND_x)和A L(RADIANCE_ADD_BAND_x)为图像的增益和偏置。

1.1.

https://www.sodocs.net/doc/2f10675078.html,ndsat5/7

QCAL为经过辐射校正的图像灰度值即DN值;L max为探测器可检测到的最大辐射亮度,也是最大灰度值所相应的辐射亮;L min为探测器可检测到的最小辐射亮度,也是最小灰度值所相应的辐射亮度。

表 1 Landsat5 TM的Lmin和Lmax值

表 2 Landsat7 ETM+的Lmin和Lmax值

QCAL max为传感器接收到的最大灰度值,QCAL min为传感器接收到的最小灰度值。(1)如

果没有元数据信息,QCAL MIN默认值1(TM和ETM+1)或者0(MSS);QCAL MAX取默认值255(TM 和ETM+)或者127(MSS)。(2)如果有元数据信息,QCAL MIN取值如下:对于LPGS Products(The level 1 product generation system)取值为1,对于NLAPS Products(National Landsat Archive Production System)在04 April 2004之前取值为0,在04 April 2004之后取值为1;QCAL MAX 取值为127(MSS), 255(TM、ETM)。

注:LPGS和NLAPS分别是两种数据处理系统得到的产品,从2008年12月份开始,L7 ETM+ 和L5都是以LPGS系统处理,L4 TM和MSS以NLAPS系统处理。

表 3 Landsat5/7的QCALmin和QCALmax的值

1.2.预设常量K

K1和K2是发射前预设的常量,具体值如下表所示。

2.大气顶层反射率(表观发射率)

https://www.sodocs.net/doc/2f10675078.html,ndsat 5/7(TM/ETM)

ρ=

π?Lλ?d2 ESUN?cosθ

其中:ρ——地面相对反射率;D——日地天文单位距离;Lλ——传感器光谱辐射值,即大气顶层的辐射能量;ESUN——大气顶层的太阳平均光谱辐射,即大气顶层太阳辐照度;1注:Landsat7热红外波段(Band 6)在格式1时总设置为低增益(6L),格式2时总设置为高增益(6H)

θ——太阳天顶角(单位为弧度)。

相关参数可以通过不同途径获得。其中:日地天文单位距离D=1 - 0.01674 cos(0.9856×(JD-4)×π/180);JD为遥感成像的儒略日(Julian Day),可以通过儒略日算法模块获得;太阳天顶角=90°-太阳高度角;太阳高度角可以从遥感数据的头文件中获得;大气顶层太阳辐照度(ESUN)从遥感权威单位定期测定并公布的信息中获取。

具体计算方式:

①地天文单位距离D:

儒略日计算:JD=1721103.5+INT(365.25*Y)+INT(30.6*M+0.5)+D

日地距离计算:D=1 - 0.01674 *cos(0.9856*(JD-2451545)*π/180/36525) 其中Y M D 分别为年月日

②太阳天顶角=90°-太阳高度角(单位:弧度)

太阳高度角在头文件中(SUN ELEVATION)

在该头文件中为:太阳天顶角=90°-SUN ELEVATION

③大气顶层太阳辐照度(ESUN)可从遥感权威单位定期测定并公布的信息中获取;

大气顶层太阳辐照度(ESUN)

https://www.sodocs.net/doc/2f10675078.html,ndsat 8(OLI)

ρλ=( M p*Q cal + A p)/sin(θse)

M p为增益参数(REFLECTANCE_MULT_BAND_x), A p为偏移参数(REFLECTANCE_ADD_BAND_x),θSE为太阳高度角(SUN_ELEVATION)

Landsat简介及数据预处理教学内容

L a n d s a t简介及数据 预处理

Landsat8数据打开和辐射定标处理 美国的USGS(https://www.sodocs.net/doc/2f10675078.html,/)网站提供最新的Landsat8数据下载,产品类型标示L1GT,与之前的数据格式类似,每个波段以.tif文件提供,元数据存放在 _MTL.txt文件中。Landsat8增加了几个波段,详细信息浏览: https://www.sodocs.net/doc/2f10675078.html,/s/blog_764b1e9d01016gvh.html。 在ENVI5.0SP3中非常容易打开Landsat8数据,如下: (1)选择File->Open ,选择_MTL.txt文件打开。 (2)ENVI自动显示RGB显示真彩色图像,打开Data Manager对话框,可以看到 ENVI自动读取元数据信息,包括中心波长信息、波段名称等。并将数据根据类型自动划分为三类。 (3)从文件信息中可以看到,热红外数据被重采样为30米分辨率,与可见光-近红 外波段一致,全色为15米分辨率。

图1:Data Manager对话框 打开之后就可以很方便的进行其他处理,比如辐射定标、大气校正、融合等处理。下面使用ENVI下的通用定标工具进行Landsat8的辐射定标。 (1)选择ToolBox/Radiometric Correction/Radiometric Calibration,选择可见 光-近红外数据。

(2)在Radiometric Calibration面板中,可以选择定标类型:辐射亮度值和大气 表观反射率。 (3)其他选项是方便用于FLAASH大气校正。 (4)选择文件名和路径输出 (5)如图3所示,得到大气表观反射率数据。 图2:Radiometric Calibration面板

美国Landsat卫星遥感数据下载说明

1、Landsat 影像简要介绍 2、影像下载步骤 1)打开下载页面 https://www.sodocs.net/doc/2f10675078.html,/EarthExplorer/ (USGS 主页为:https://www.sodocs.net/doc/2f10675078.html, ) 2)注册一个用户以后即可登陆 3)在“Select your dataset(s)”中选择所需要的数据类型,本例选取L7 SLC-on(1999-2003),即L7从发射(1999年4月)到传感器出现故障前(2003年5月)之间的数据,2003年L7出现故障后(影像数据两边有较明显的锯齿,难以使用,有人提到可用插值法校正影像,但与真实数据仍有较大误差)。

4)选定所需影像经纬度范围,在“Enter your search criteria”栏中输入参数,在输入地名之前,“Area Selected”栏中可能只有一个点的输入空档,可随意输入一个地名或在“Area Selected”中随意输入一个经纬度,这样“Area Selected”栏中就有两个点的输入空档,这两 个点即为影像的左上角和右下角。 5)输入时间范围(L7数据的有效范围是1999-2003年) 6)选取数据的最大显示数量,在“Number of Results”栏中输入 7)单击“Search”后,进入下载界面,以下界面显示只有37项数据可用(但不一定都能下 载),可选择“Save Results”保存检索结果,也可选择“Results”直接查看结果。

8)进入显示结果的界面以后,即可单击下载,L7不支持FTP批量下载(MODIS是支持的),所以如果网络较为稳定,可用迅雷等工具下载;如果网络不够稳定,建议用wget工具下载(每景影像约250M,解压后将近600M,直通车下载速度为250kb/s,这样下载一景数据需要20min左右) 3、影像查看 以下为各波段数据介绍,其中将文件解压缩以后一般可看到12个文件,*b10.tif为B1数据, 等工具,波段组合可根据解译的地物而定,一般可选择743、543、432、321。

Landsat卫星的TM ETM各波段介绍

Landsat卫星的TM/ETM各波段介绍 北京揽宇方圆信息技术有限公司拥有WorldView、QuickBird、IKONOS、GeoEye、SPOT、PLEIADES、高分一号、高分二号、资源三号等世界上最高分辨率卫星影像的代理权,能够为户提供全天候、全覆盖、多分辨率、多尺度的影像产品。整合最丰富的遥感影像数据资源,为用户提供最专业的遥感影像数据服务,北京揽宇方圆致力成为中国遥感影像数据服务第一品牌。 一、波段介绍 1.TM1 0.45-0.52um,蓝波段 对水体穿透强, 该波段位于水体衰减系数最小,散射最弱的部位(0.45—0.55um),对水体的穿透力最大,可获得更多水下信息,用于判断水深,浅海水下地形,水体浑浊度,沿岸水,地表水等; 能够反射浅水水下特征,区分土壤和植被、编制森林类型图、区分人造地物类型,分析土地利用。 对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等。 2.TM2 0.52-0.60um,绿波段 对植物的绿反射敏感该波段位于健康绿色植物的绿色反射率(0.54—-0.55um)附近; 对健康茂盛植物的反射敏感, 主要观测植被在绿波段中的反射峰值,这一波段位于叶绿素的两个吸收带之间,利用这一波段增强鉴别植被的能力 对绿的穿透力强, 探测健康植被绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种,植被类型和评估作物长势 对水体有一定的穿透力,可反映水下特征,水体浑浊度,水下地形,沙洲,沿岸沙地等。. 可区分人造地物类型, 3.TM3 0.62-0.69um ,红波段 对水中悬浮泥沙反映敏感。该波段位于含沙浓度不同的水体辐射峰值(0.58—-0.68um)附近,对水中悬浮泥沙反映敏感。 叶绿素的主要吸收波段, 能增强植被覆盖与无植被覆盖之间的反差,亦能增强同类植被的反差,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率, 测量植物绿色素吸收率,并以此进行植物分类; 此外其信息量大,广泛用于对裸露地表,植被,岩性,地层,构造,地貌等为可见光最佳波段; 可区分人造地物类型 4 .TM4 0.76-0.96UM 近红外波段, 对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量, 处于水体强吸收区,水体轮廓清晰,用于勾勒水体,绘制水体边界、探测水中生物的含量和

TM影像各波段介绍

TM影像各波段介绍 1.TM1 0.45-0.52um,蓝波段,对水体穿透强,对叶绿素与叶色素反映敏感,有助于判别水深及水中叶绿素分布以及水中是否有水华等. 2.TM2 0.52-0.60um,绿波段,对健康茂盛植物的反射敏感,对力的穿透力强,用于探测健康植物绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种和反映水下特征. 3.TM3 0.62-0.69UM ,红波段,叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息量大多为可见光最佳波段,广泛用于地貌,岩性,土壤,植被,水中泥沙等方面. 4 .TM4 0.76-0.96UM 近红外波段,对绿色植物类别差异最敏感,为植物通用波段,用于牧师调查,作物长势测量,水域测量. 5.TM5 1.55-1.75UM,中红外波段,处于水的吸收波段,一般1.4-1.9UM内反映含水量,用于土壤湿度植物含水量调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力.易于反映云与雪. 6.TM6 1.04-1.25UM热红外波段,可以根据辐射响应的差别,区分农林覆盖长势,差别表层湿度,水体岩石,以及监测与人类活动有关的热特征,进行热制图. 7.TM7 2.08-3.35UM,中红外波段,为地质学家追加波段,处于水的强吸收带,水体呈黑色,可用于区分主要岩石类型,岩石的热蚀度,探测与交代岩石有关的粘土矿物. 二.类型提取: 1.城市与乡镇的提取:TM1+TM7+TM3+TM5+TM6+TM2-TM4 2.乡镇与村落:TM1+TM2+TM3+TM6+TM7-TM4-TM5 3.河流的提取:TM5+TM6+TM7-TM1-TM2-TM4 4.道路的提取:TM6-(TM1+TM2+TM3+TM4+TM5+TM7) 三.光谱差异 TM1居民地与河流菜地不易分开. TM2居民地与河流菜地不易分 TM3乡村与菜地不易分 TM4农田与道路不易分,乡镇,道路,河滩易浑. TM5县城与农田不易分 TM6村庄与河流易混.

Landsat系列辐射定标参数整理

辐射定标参数整理 1.亮度温度计算 亮度温度是一个常用的温度概念,是在卫星高度上传感器探测波段范围内普朗克黑体辐射函数与传感器响应函数乘积积分得到的辐射值.亮度温度包含有大气和地表对热辐射传导的影响,不是真正意义上的地表温度。 计算公式: 其中,Lλ为传感器探孔处光谱辐射强度,即星上辐射亮度值,实现像素DN值转化为绝对辐射亮度值。 1.1.星上辐射亮度(Lλ) 遥感影像的亮度值(DN值)都是经过量化和纠正过的以8bit编码的数字影像,为了精确反演地物特性,有必要将DN值转化为星上辐射亮度值。 https://www.sodocs.net/doc/2f10675078.html,ndsat8 Lλ= M L*Q cal + A L 通过查看影像的头文件,可以获取偏差参数:M L(RADIANCE_MULT_BAND_x)和A L(RADIANCE_ADD_BAND_x)为图像的增益和偏置。 1.1. https://www.sodocs.net/doc/2f10675078.html,ndsat5/7

QCAL为经过辐射校正的图像灰度值即DN值;L max为探测器可检测到的最大辐射亮度,也是最大灰度值所相应的辐射亮;L min为探测器可检测到的最小辐射亮度,也是最小灰度值所相应的辐射亮度。 表 1 Landsat5 TM的Lmin和Lmax值 表 2 Landsat7 ETM+的Lmin和Lmax值 QCAL max为传感器接收到的最大灰度值,QCAL min为传感器接收到的最小灰度值。(1)如

果没有元数据信息,QCAL MIN默认值1(TM和ETM+1)或者0(MSS);QCAL MAX取默认值255(TM 和ETM+)或者127(MSS)。(2)如果有元数据信息,QCAL MIN取值如下:对于LPGS Products(The level 1 product generation system)取值为1,对于NLAPS Products(National Landsat Archive Production System)在04 April 2004之前取值为0,在04 April 2004之后取值为1;QCAL MAX 取值为127(MSS), 255(TM、ETM)。 注:LPGS和NLAPS分别是两种数据处理系统得到的产品,从2008年12月份开始,L7 ETM+ 和L5都是以LPGS系统处理,L4 TM和MSS以NLAPS系统处理。 表 3 Landsat5/7的QCALmin和QCALmax的值 1.2.预设常量K K1和K2是发射前预设的常量,具体值如下表所示。 2.大气顶层反射率(表观发射率) https://www.sodocs.net/doc/2f10675078.html,ndsat 5/7(TM/ETM) ρ= π?Lλ?d2 ESUN?cosθ 其中:ρ——地面相对反射率;D——日地天文单位距离;Lλ——传感器光谱辐射值,即大气顶层的辐射能量;ESUN——大气顶层的太阳平均光谱辐射,即大气顶层太阳辐照度;1注:Landsat7热红外波段(Band 6)在格式1时总设置为低增益(6L),格式2时总设置为高增益(6H)

最新版ENVI5.3下高分二号(GF2)数据预处理

ENVI5.3下高分二号(GF2)数据预处理 以一景2015年1月23日获取的GF2-PMS1数据为例介绍在ENVI5.3下GF2数据预处理的详细操作步骤。GF2数据预处理基本流程如下: 图:GF2数据预处理流程 说明:1. 针对不同的应用,有不同的处理流程,上图中列出了两种常用的预处理流程。流程一主要针对高精度的定量遥感应用,也就是对大气校正精度要求

比较高应用,比如:植被参数定量反演等;流程二主要针对定性遥感或者对大气校正精度要求比较低的遥感应用,比如:土地利用类型分类等。本文介绍的主要是流程二的详细操作步骤,流程一的实现可参考日志:ENVI5.2下高分二号数据FLAASH大气校正;另外,中国资源卫星应用中心网站已经公布了最新的GF2数据绝对辐射定标系数和两个传感器的波谱响应函数,大家可以下载使用。2. 本例中所有操作都是在ENVI5.3版本下进行的,除NNDiffuse Pan Sharpening 图像融合(ENVI5.2新增,ENVI5.1中可以使用G-S融合方法)外,其他操作在ENVI5.1/5.2下同样可以完成。 1. 数据打开 启动ENVI5.3,在菜单栏中,选择File > Open,弹出Open对话框,找到GF2数据文件夹所在位置,选中扩展名为.tiff的两个文件,点击打开。 图2 打开GF2多光谱和全色数据

在左侧图层管理Layer Manager面板中,选择多光谱或全色数据图层,右键View Metadata查看其元数据信息,可以看到ENVI很好地识别了数据的RPC 信息。 图3 ENVI自动识别GF2数据RPC信息 2. 正射校正 有了RPC信息之后,下面我们就可以基于这些RPC信息分别对多光谱和全色数据进行正射校正。这里我们以多光谱数据正射校正为例,全色数据正射校正操作完全相同。

Landsat陆地卫星遥感影像数据介绍

Landsat陆地卫星遥感影像数据 简介 “地球资源技术卫星”计划最早始于1967年,美国国家航空与航天局(NASA)受早期气象卫星和载人宇宙飞船所提供的地球资源观测的鼓舞,开始在理论上进行地球资源技术卫星系列的可行性研究。1972年7月23日,第一颗陆地卫星(Landsat_1)成功发射,后来发射的这一系列卫星都带有陆地卫星(Landsat)的名称。到1999年,共成功发射了六颗陆地卫星,它们分别命名为陆地卫星1到陆地卫星5以及陆地卫星7,其中陆地卫星6的发射失败了。 Landsat陆地卫星系列遥感影像数据覆盖范围为北纬83o到南纬83o之间的所有陆地区域,数据更新周期为16天(Landsat 1~3的周期为18天),空间分辨率为30米(RBV和MSS传感器的空间分辨率为80米)。目前,中国区域内的Landsat陆地卫星系列遥感影像数据(见图1)可以通过中国科学院计算机网络信息中心国际科学数据服务平台免费获得(https://www.sodocs.net/doc/2f10675078.html,)。 Landsat 陆地卫星在波段的设计上,充分考虑了水、植物、土壤、岩石等不同地物在波段反射率敏感度上的差异,从而有效地扩充了遥感影像数据的应用范围。在基于Landsat遥感影像数据的一系列应用中,计算植被指数和针对Landsat ETM off影像的条带修复为最常用同时也是最为基础的两个应用。因此,中国科学院计算机网络信息中心基于国际科学数据服务平台,提供了1)基于Landsat 数据的多种植被指数提取。2)对Landsat ETM SLC-off影像数据的条带修复。 图1 Landsat 遥感影像中国区示意图 数据特征 (1)数据基本特征 Landsat陆地卫星包含了五种类型的传感器,分别是反束光摄像机(RBV),多光谱扫描仪(MSS),专题成像仪(TM),增强专题成像仪(ETM)以及增强专题成像仪+(ETM+),各传感器拍摄影像的基本特征如下:

landsat8波段介绍

Landsat8卫星包含OLI(Operational Land Imager 陆地成像仪)和TIRS(Thermal Infrared Sensor 热红外传感器)两种传感器。OLI包括了ETM+的所有波段,为了避免大气吸收部分特征,OLI对波段进行了重新调整,比较大的调整: 1、OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征; 2、OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征; 3、新增两个波段:海蓝波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测;短波红外波段,又称卷云波段(band 9; 1.360–1.390 μm) 包含水汽强吸收特征,可用于云检测; 4、近红外band5和短波红外band9与MODIS对应的波段更加接近。 Landsat TM (ETM+)7个波段可以组合很多RGB方案用于不同地物的解译,Landsat8的OLI陆地成像仪包括9个波段,可以组合更多的RGB方案。 OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了0.825μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两个新增的波段:蓝色波段(band 1; 0.433–0.453 μm)

主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近,

绝对辐射定标系数

国产陆地观测卫星2013年外场绝对辐射定标系数 1、 资源三号(ZY-3)卫星绝对辐射定标系数见表2 表2 ZY-3卫星在轨绝对辐射定标系数 卫星载荷 波段 光谱范围(μm ) Gain 资源三号 多光谱相机 Band-1 0.45 ~ 0.52 0.2551 Band-2 0.52 ~ 0.59 0.2353 Band-3 0.63 ~ 0.69 0.1944 Band-4 0.77 ~ 0.89 0.2107 注:利用绝对定标系数将ZY-3卫星CCD 图像DN 值转换为辐亮度图像的公式为: ()e e L Gain DN Bias λ=?+ 式中:式中()e e L λ为转换后辐亮度,单位为211W m sr m μ---???,DN 为卫星载荷观测值;Gain 为定标斜率,单位为211W m sr m μ---???,Bias 为定标截距,单位为211W m sr m μ---???。

2、 资源一号02C (ZY-1 02C )卫星绝对辐射定标系数见表3 表3 ZY-1 02C 星CCD 相机的定标系数 卫星载荷 波段号 Gain Bias ZY-1-02C-PMS Band1(P) 0.6208 -13.826 Band2 0.7397 -22.246 Band3 0.6904 -15.438 Band4 0.6369 -14.201 注:利用绝对定标系数将ZY-1 02C 卫星CCD 图像DN 值转换为辐亮度图像的公式为: ()e e L Gain DN Bias λ=?+ 式中:式中()e e L λ为转换后辐亮度,单位为211W m sr m μ---???,DN 为卫星载荷观测值;Gain 为定标斜率,单位为211W m sr m μ---???,Bias 为定标截距,单位为211W m sr m μ---???。

landsat7波段介绍

Landsat-7是美国的陆地卫星计划(Landsat)中的第七颗,于1999年4月15日在加利福尼亚范登堡空军基地用Delta II 火箭发射。卫星携带增强型专题制图仪(Enhanced Thematic Mapper ,ETM+)传感器。自2003年6月以来,该传感器已采集并传输了扫描线校正器(SLC)故障导致的数据间隙数据。到2020年底,地球资源卫星9号将取代轨道上的Landsat 7。 在数据产品方面,Landsat-7与Landsat-5的最主要差别有:增加了分辨率为15米的全色波段(PAN波段);波段6的数据分低增益和高增益数据,分辨率从120米提高到60米。此外,在增加了2个校准灯之外,还增加了一个全孔径太阳校准器(FASC)和一个部分孔径太阳校准器(PASC)。 产品分类: 1. 标准景产品 按标准WRS分幅体系(World Reference System)确定产品。 2. 移动景产品 移动景产品是指在连续两幅标准景产品中分割出的图像产品,其大小与标准景产品相同。需指定产品下移比例。 3. 超级景(superscene)产品 在Landsat-7数据预处理系统中,超级景产品是指图像长度在1景和3景之间、宽度与标准景产品相同的连续图像产品。需指定产品下移比例及产品大小(以景为单位),但必须在连续3个标准景的范围内选择,也就是说,下移比例及产品大小之和不能超过3。

4. 子区产品 针对标准景产品、移动景产品和超级景产品,可以选择1/4景产品、1/2景产品、或给定产品范围,也可以用户上机选子区。与以上产品一样,子区产品也只经过一次数据重采样。

环境减灾星座AB星各载荷在轨绝对辐射定标系数

环境减灾星座A/B 星各载荷在轨绝对辐射定标系数 1、HJ1A/B 星各载荷在轨绝对辐射定标系数见表1和表2。 表1 HJ1A/B 星CCD 与IRS 绝对辐射定标系数 定标系数 卫星 传感器 增益 参数 Band1 Band2 Band3 Band4 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.57630.54100.6824 0.7209 1 L 0 (W ?m ?2 ?sr ?1?μm ?1) 9.31839.17587.5072 4.1484 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.9160 0.9228 1.1277 1.0753 CCD1 2 L 0 (W ?m ?2 ?sr ?1?μm ?1) 7.3250 6.0737 3.6123 1.9028 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.63600.59100.8142 0.8768 1 L 0 (W ?m ?2 ?sr ?1?μm ?1) 7.55757.0944 4.1319 1.2232 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.9997 1.0016 1.3777 1.3043 HJ1A CCD2 2 L 0 (W ?m ?2 ?sr ?1?μm ?1) 4.6344 4.0982 3.7360 0.7385 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.53290.528950.68495 0.72245 1 L 0 (W ?m ?2 ?sr ?1?μm ?1) 1.6146 4.0052 6.2193 2.8302 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.86850.9367 1.2433 1.3002 CCD1 2 L 0 (W ?m ?2 ?sr ?1?μm ?1) 3.0089 4.4487 3.2144 2.5609 a (DN/W ?m ?2 ?sr ?1?μm ?1) 0.57820.50870.6825 0.6468 1 L 0 (W ?m ?2 ?sr ?1?μm ?1) 3.4608 5.8769 8.0069 8.8583 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.9076 0.8502 1.1635 0.9800 CCD2 2 L 0 (W ?m ?2 ?sr ?1?μm ?1) 2.2219 4.0683 5.2537 6.3497 g (DN/W ?m ?2 ?sr ?1?μm ?1) 4.285718.557912.662 61.472 HJ1B IRS 1 b (DN) - - 11.489 -44.598 表2 HJ1A 星HSI 绝对辐射定标系数(DN/W ?m ?2?sr ?1?μm ?1) HJ1AHSI 绝对定标系数 波长 定标系数 波长 定标系数 波长 定标系数 460.04 0.2927 561.88 1.5462 721.61 5.8620 462.14 0.3050 565.00 1.5896 726.77 5.1258 464.25 0.3447 568.16 1.6073 732.01 5.5057 466.38 0.3786 571.36 1.6783 737.33 4.3242

LANDSAT 卫星数据下载方法

LANDSAT 卫星数据下载方法 2010.10.14 叶震超 下载网站一:https://www.sodocs.net/doc/2f10675078.html,/index.jsp 该网站已经开放查询和下载的数据包括Landsat 7 ETM和Landsat4-5TM中国境内数据。用户注册 后可以浏览中国境内所有数据的元数据,免费下载本网站已镜像的所有数据,对于尚未提供下载的数据, 用户可以通过“数据预定”向我们提出需求,我们将尽力满足你的需求。 除提供Landsat原始影像的数据下载服务外,我们还提供基于Landsat的数据加工平台,为用户提 供数据服务:(1)基于Landsat数据的多种植被指数提取。(2)对Lansdat 7 ETM SLC-off影像数据的条带修 复。此外,我们向用户提供了Landsat陆地卫星全球影像拼接数据(MrSID格式)的免费下载。 可以下载中国范围的LANDSAT 卫星各种类型的数据: Landsat 1-5 MSS ?产品描述 Landsat MSS是由Landsat1-5卫星携带的传感器,他几乎获得了1972年7月至1992年10月期间的连续地球影像。Landsat-1,Landsat-2,andsat-3每18天扫瞄同一地区,即其18天可以覆盖全球一次。Landsat-4和Landsat5每16 天扫瞄同一地区。Landsat MSS影像数据有四个波段(如下),所有波段的分辨率为79米,南北的扫描范围大约为170km,东西的扫描范围大约为183km。

? ?卫星图片 Landsat 1 Landsat 2 Landsat 3 ? ? ?产品样图

landsat8波段介绍

landsat8: Landsat 8 是美国陆地卫星计划(Landsat)的第八颗卫星,于2013年2月11号在加利福尼亚范登堡空军基地由Atlas-V火箭搭载发射成功,最初称为“陆地卫星数据连续性任务”(Landsat Data Continuity Mission,LDCM)。Landsat 8上携带陆地成像仪(Operational Land Imager ,OLI)和热红外传感器(Thermal Infrared Sensor,TIRS)。 简介: Landsat 8是NASA与美国地质调查局(USGS)合作开发并由轨道科学公司(Orbital Science Corporation)建造的。NASA负责了设计、建造、发射和在轨校准阶段,在此期间卫星被称为Landsat 数据连续性任务(Landsat Data Continuity Mission ,LDCM)。2013年5月30日,USGS接管了常规操作,卫星改名为Landsat 8。USGS在地球资源观测与科学(EROS)中心负责发射后的校准活动、卫星操作、数据产品生成和数据存档。 介绍: OLI陆地成像仪包括9个波段,空间分辨率为30米,其中包括一个15米的全色波段,成像宽幅为185x185km。OLI包括了ETM+传感器所有的波段,为了避免大气吸收特征,OLI对波段进行了重新调整,比较大的调整是OLI Band5(0.845–0.885 μm),排除了 0.825μm处水汽吸收特征;OLI全色波段Band8波段范围较窄,这种方式可以在全色图像上更好区分植被和无植被特征;此外,还有两

个新增的波段:蓝色波段(band 1; 0.433–0.453 μm) 主要应用海岸带观测,短波红外波段(band 9; 1.360–1.390 μm) 包括水汽强吸收特征可用于云检测;近红外band5和短波红外band9与MODIS对应的波段接近。

星上比辐射定标器及性能评估方法研究

星上比辐射定标器及性能评估方法研究 高精度的星上定标是实现遥感数据定量化的重要途径之一。以太阳照明反射特性已知的聚四氟乙烯漫射板作为光源,采用比值辐射计进行漫反射板响应率衰减的监测和修正,实现对遥感器全光路、全视场、全口径的高精度绝对辐射定标,是当前可见短波红外波段星上定标技术的主要发展趋势。 星上比辐射定标器性能评估准确与否直接影响其在轨应用性能。在此背景下,本论文开展了星上比辐射定标器及其性能评估方法研究。 论文介绍了星上比辐射定标器工作原理,详细阐述了各关键环节设计方案。根据定标器原理和物理模型,分析得出星上定标不确定度主要来源为漫射板BRDF实时量值的不确定度,其关键在于比值辐射计对漫射板在轨衰减的修正精度。 对星上比辐射定标器性能参数测试需求进行了分析,识别出太阳观测几何因子波段比、辐射比、动态范围和信噪比等比值辐射计的关键表征参数。建立了定标器测试方案和流程,并在实验室内完成了比值辐射计、漫反射板以及星上比辐射定标器整机级的性能参数测试。 以卤钨灯作为测试光源,获取了比值辐射计太阳观测几何因子波段比查找表,不确定度优于0.18%;通过灯-板模拟系统完成了辐射比验证,预估在轨辐射比测量不确定度优于0.4%;使用已标定的大口径、多能级积分球光源对比值辐射计的动态范围、信噪比和稳定性进行了测试。结合漫射板和定标器整机测试结果,比值辐射计对漫反射板稳定性监视不确定度优于1.3%,漫射板BRDF实时量值不确定度优于1.76%,星上比辐射定标器的绝对辐射定标总不确定度优于3%。 本论文系统性地对星上比辐射定标器性能评估方法进行了研究,提出了定标

器测试方法以及测试流程,通过对星上比辐射定标器部件级以及整机级参数的测试,获取了定标器各项定标参数,完成星上定标不确定度的评估,验证了星上定标器设计以及性能评估方法的合理性,可以为定标器在轨应用以及定标精度预评估提供有效数据支撑。

Landsat5卫星数据产品

一感数据遥感信息 Landsat一5卫星数据产品 陈俊,王文,李子扬,李安 (中国科学院中国遥感卫星地面站,北京100086) 摘要:Landsat-5卫星所获得的图像是至今全球应用最为广泛的遥感信息源,本文详细介绍了Landsat一5卫星的基本参数与其数字产品的特点,以及卫星运行多年后的辐射精度与几何定位精度。最后还介绍了用ERDASI—MAGINE、PCIGEOMATICA与ENVI打开Landsat_5数字产品的方法与注意事项。 关键词:Landsat一5;参数;产品格式;辐射定标;几何定位精度 中图分类号:P237.9文献标识码:A文章编号:1000—3177(2007)91--0085--04 ILandsat一5卫星基本参数2Landsat一5卫星TM数据产品介绍 Landsat-5卫星是美国于1984年3月发射的光学对地观测卫星。Landsat一5卫星所获得的图像是迄今为止在全球应用最为广泛、成效最为显著的地球资源卫星遥感信息源,同时Landsat一5卫星也是目前在轨运行时间最长的光学遥感卫星。 Landsat-5卫星主要轨道特性参数如下: 近极近环形太阳同步轨道 轨道高度:705km 倾角:98.2。 运行周期:98.9分钟 24小时绕地球:15圈 穿越赤道时间:上午9点45分+/一15分钟 扫描带宽度:185km 重访周期:16天 景覆盖范围:184×185.2kin Landsat一5的主题成像传感器(TM)分为7个波段,各波段的参数如表1所示。 表lLandsat一5各波段参数 波段号波段频谱范围(肛m)分辨率(m)B1BlueO.45—0.5230 B2GreenO.52—0.6030 B3RedO.63—0.6930 B4NearIR0.76—0.9030 B5SWIR1.55—1.7530 B6LWIR10.40—12.5120 B7SWIR2.08—2.3530 收稿日期:2006—12--04修订日期:2006—12—1i 作者简介:陈俊,中国科学院中国遥感卫星地面站硕士研究生。 2.1产品级别 Landsat一5的成像传感器TM获取的数据属于光学类遥感数据,目前中国科学院中国遥感卫星地面站(以下简称中国遥感卫星地面站)所生产的Landsat一5数据产品一共有四个级别,分别是0级、1级、系统级纠正(SystematicGeocorrection)与精纠正(PrecisionGeocorrection)。0级产品是指像素值没有经过处理的图像数据,1级产品是指对0级产品进行辐射纠正后的产品,系统级纠正产品是在1级产品的基础上进行系统几何纠正后的产品,精纠正产品是引入了控制点信息进行几何精纠正后的产品。相对于0级和1级产品,系统级纠正与精纠正的产品可以增加高程纠正(elevationcorrection)功能,高程纠正有三种选择级别:base、CoarseDEM与FineDEM,base是全球尺度的高程纠正,CoarseDEM是1:100万比例尺的DEM数据,FineDEM是1:25万以上比例尺的DEM数据。0级与1级产品的数据格式有EOSATFAST与CCRSLG—SOWG两种,系统级纠正与精纠正产品的数据格式有EOSATFAST、CCRSLGSOWG与GeoTiff三种。0级产品没有经过辐射纠正和几何纠正处理,这类产品主要是面向具有一定遥感卫星数据处理经验的高级用户,所以一般情况下不建议普通用户使用。目前中国遥感卫星地面站给用户提供最多的是经过辐射纠正和几何纠正的系统级纠正产品。用户如果对图像定位精度要求比较高,平原地区可选用精纠正产品,高程较高的区域建议选用经过高程纠

高精度卫星光学遥感器辐射定标技术_郑小兵

收稿日期:2011-04-24 基金项目:国家863计划(2008AA121203)资助。 高精度卫星光学遥感器辐射定标技术 郑小兵1,2 (1中国科学院通用光学定标和表征技术重点实验室,合肥230031) (2中国科学院安徽光学精密机械研究所光学遥感中心,合肥230031) 摘要随着长期气候变化等观测新需求和高分辨对地观测等新手段的发展,空间光学仪器面临进一步提高辐射定标精度的要求。文章从空间光学仪器定标精度的制约因素和全过程定标的实现等方面,分析了国际相关领域的技术进展,并就新型定标技术的研究和应用提出建议与展望。 关键词辐射定标光学遥感卫星 中图分类号:V443+.5 文献标识码:A 文章编号:1009-8518(2011)05-0036-08High-Accuracy Radiometric Calibration of Satellite Optical Remote Sensors Zheng Xiaobing (1Key Laboratory of Optical Calibration and Characterization,Chinese Academy of Sciences ,Hefei 230031,China ) (2Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences ,Hefei 230031,China ) Abstract Climate change monitoring and high resolution earth observation demand higher accuracy of abso -lute calibration for space optical sensors.This paper briefly discusses the progress and constrained factors of cur -rent radiometric calibration techniques.New calibration approaches and instrumentations such as hyperspectral and spectrally tunable reference light sources,and global calibration site network are introduced,and their ap -plications are suggested. Key words Radiometric calibration Optical remote sensing Satellite 1引言 光学辐射定标主要研究光辐射传感器的输出与已知的、用SI 单位表述的输入光辐射之间的定量关系,包括各种光辐射效应的定量化、光辐射的精确测量及其不确定度评估,光辐射传感器的综合特性表征,以及光辐射传感器的工作条件对其性能影响的评估等方面的内容。 光辐射是光学遥感信息的基本载体。各种平台上光学传感器的几何和光谱分辩能力都与其光辐射的准确测量能力直接相关。辐射定标在空间对地观测观测过程中所发挥的主要作用表现为: 1)实现各类光学传感器从预研-工程研制-在轨运行的全过程定标,保证传感器的精度能够满足应用需求; 2)统一不同平台、不同传感器的辐射量化标准,使不同时间、空间条件下获得的遥感信息可以比对、转换和融合; 3)通过动态监测,校正传感器的性能衰变,修正大气、照明条件、环境变化等对测量结果的影响,保证测第32卷第5期 2011年10月 航天返回与遥感SPACECRAFT RECOVERY &REMOTE SENSING 36

Landsat卫星影像简介

Landsat 卫星影像简介 同济大学罗新 1. Landsat系列卫星概述(Avalanche P) Landsat系列卫星是由美国的NASA和USGS共同努力的成果。其中NASA负责火箭的发射以及遥感卫星的研制。USGS负责卫星的运行以及卫星影像的接收和处理。Landsat系列卫星中由于Landsat 5长时间高质量的运行(运行了28年10个月)为全球地表的连续监测提供了数据支撑,因此意义重大。 历代Landsat卫星的发射以及运行情况如下图所示: 2. 卫星影像获取 Landsat 7和Landsat 8都是太阳同步卫星,轨道相同,都是轨道高为705km,成像宽度为185km,视场角为15°,运动轨迹为地球阳面从北向南,卫星绕地球一周时间为99分钟,每天能绕地球14周,重访周期为16天。 Landsat 卫星重访示意图:

Landsat 数据接收站位置: 3. 传感器和波段设置 Landsat 1,2和3的传感器都是多光谱扫描器MSS,该传感器能收集4个多光谱波段(3个可见光和1个近红外波段),影像分辨率为79m。影像最终被采样为了60m分辨率。Landsat 4和5同时荷载了MSS传感器和可接受可见光,近红外,短波中红外波段且影像分辨率为30m的TM传感器。除此之外Landsat 4和5同时增加了一个120m分辨率的热红外波段(后被采样为30m)。 Landsat 7荷载的是ETM+传感器,在2003年5月31日时,该传感器发生故

障,导致获取影像上出现条带缺失,影像上缺失信息占影像总面积的

22%,严重影响了遥感影像的使用。 各传感器详细光谱信息如下: Note:Landsat ETM+ 获取的热红外波段影像分辨率为60 m, Landsat TM获取的热红外波段为120米!Landsat TM只有一个热红外波段,Landsat ETM+有两个热红波段,但是同一个光谱区间分别在低和高增益下获取的,Landsat 8有两个热红外波段,分别在不同光谱区间获取。 Reference: Landsat-8: Science and product vision for terrestrialglobal change research 4. Landsat 8数据 2013年发射的Landsat8卫星包含11个波段。影像特征较之前的Landsat 7卫星有部分改进。该数据详细光谱信息如上表所示。在Landsat 8数据获取过程中有一个质量评估影像(QA),该影像反映了像元受到传感器和云污染的影响。

Landsat 各产品参数及常用波段组合

Landsat 各产品参数及常用波段组合

ETM+个波段组合的不同用途 741 741波段组合图像具有兼容中红外、近红外及可见光波段信息的优势,图面色彩丰富,层次感好,具有极为丰富的地质信息和地表环境信息;而且清晰度高,干扰信息少,地质可解译程度高,各种构造形迹(褶皱及断裂)显示清楚,不同类型的岩石区边界清晰,岩石地层单元的边界、特殊岩性的展布以及火山机构也显示清楚。 742 1992年,完成了桂东南金银矿成矿区遥感地质综合解译,利用1:10万TM7、4、2假彩色合成片进行解译,共解译出线性构造1615条,环形影像481处, 并在总结了构造蚀变岩型、石英脉型、火山岩型典型矿床的遥感影像特征及成矿模式的基础上,对全区进厅成矿预测,圈定金银A类成矿远景区2处,B类4处,C类5处。为该区优选找矿靶区提供遥感依据。 743 我国利用美国的陆地卫星专题制图仪图象成功地监测了大兴安岭林火及灾后变化。这是因为TM7波段(2. 08-2.35微米)对温度变化敏感;TM4、TM3波段则分别属于红外光、红光区,能反映植被的最佳波段,并有减少烟雾影响的功能;同时TM7、TM4、TM3(分别赋予红、绿、蓝色)的彩色合成图的色调接近自然彩色,故可通过TM743彩色合成图的分析来指挥林火蔓延与控制和灾后林木的恢复状况。 754 对不同时期湖泊水位的变化,也可采用不同波段,如用陆地卫星MSS7,MSS5,MSS4合成的标准假彩色图像中的蓝色、深蓝色等不同层次的颜色得以区别。从而可用作分析湖泊水位变化的地理规律

陆地卫星图像的标准假彩色指采用陆地卫星多光谱扫描仪所成的同一图幅的第四波段MSS4图像、第五波段MSS5图像和第七波段MSS7图像,分别配以兰、绿、红色的彩色合成图像上的彩色。并称此种合成的图像为陆地卫星标准假彩色图像。在此图像上植被分布显红色,城镇为兰灰色,水体为兰色、浅兰色(浅水),冰雪为白色等。 541 XX开发区砂石矿遥感调查是通过对陆地卫星TM最佳波段组fefee7合的选择(TM5、TM4、TM1)以及航空、航天多种遥感资料的解译分析进行的,在初步解译查明调查区第四系地貌。 543 例如把4、5两波段的赋色对调一下,即5、4、3分别赋予红、绿、蓝色,则获得近似自然彩色合成图像,适合于非遥感应用专业人员使用。 543 波段选取及主成份分析我们的研究采用1995年8月2日的TM数据。对于屏幕显示和屏幕图象分析,选用信息量最为丰富的5、4、3波段组合配以红、绿、兰三种颜色生成假彩色合成图象,这个组合的合成图象不仅类似于自然色,较为符号人们的视觉习惯,而且由于信息量丰富,能充分显示各种地物影像特征的差别,便于训练场地的选取,可以保证训练场地的准确性;对于计算机自动识别分类,采用主成分分析(K-L变换)进行数据压缩,形成三个组分的图象数据,用于自动识别分类。 543 742 该项工作是采用以遥感图像解译为主结合地质、物化探资料进行研究的综合方法。解译为目视解译,解译的遥感图像有:以1984年3月成像经处理放大为1:5万卫星TM假彩色片(5、4、3波段合成)和197 9年7月拍摄的1:1.6万黑白航片为主要工作片种;采用1986年11月的1:10万TM假彩色片(7、4、2波段合成》为参考片种。 432 卫星遥感图像示蓝藻暴发情况 我们先看一看蓝藻爆发时遥感监测机理。蓝藻暴发时绿色的藻类生物体拌随着白色的泡沫状污染物聚集于水体表面,蓝藻覆盖区的光谱特征与周围湖面有明显差异。由于所含高叶绿素A的作用,蓝藻区在Lands atTM2波段具有较高的反射率,在TM3波段反射率略降但仍比湖水高,在TM4波段反射率达到最大。因此,在TM4(红)、3(绿)、2(蓝)假彩色合成图像上,蓝藻区呈绯红色,与周围深蓝色、蓝黑色湖水有明显区别。此外,蓝藻暴发聚集受湖流、风向的影响,呈条带延伸,在TM图像上呈条带状结构和絮状纹理,与周围的湖水面也有明显不同。 453 本研究遥感信息源是中国科学院卫星遥感地面接收站于1995年10月接收美国MSS卫星遥感TM波段4 (红)、波段5(绿)、波段3(蓝)CCT磁带数据制作的1∶10万和1∶5万假彩色合成卫星影像图。图上山地、丘陵、平原台地等喀斯特地貌景观及各类用地影像特征分异清晰。成像时期晚稻接近收获,且稻田中不存积水,因此耕地类型中的水田色调呈粉红色;旱地由于作物大多收获,且土壤水分少而呈灰白色;菜地则由于蔬菜长势好,色调鲜亮并呈猩红色。园地色调呈浅褐色,且地块规则整齐、轮廓清晰。林地中乔木林色调呈深褐色,而分布于喀斯特山地丘陵等地区的灌丛则呈黄到黄褐色。牧草地大多呈黄绿色调。建设用地中的城镇呈蓝色;公路呈线状,色调灰白;铁路呈线条状,色调为浅蓝;机场跑道为蓝色直线,背景草地呈蓝绿色;在建新机场建设场地为白色长方形;备用旧机场为白色色调,外形轮廓清晰、较规则。 水库和河流则都呈深蓝色调。 453 采取4、5、3波段分别赋红、绿、蓝色合成的图像,色彩反差明显,层次丰富,而且各类地物的色彩显示规律与常规合成片相似,符合过去常规片的目视判读习惯。

相关主题