搜档网
当前位置:搜档网 › 三相异步电动机的优缺点以及启动方式

三相异步电动机的优缺点以及启动方式

三相异步电动机的优缺点以及启动方式
三相异步电动机的优缺点以及启动方式

三相异步电动机的优缺点

1、三相异步电动机的优点

三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生感生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。

2、异步电动机存在的缺点

2.1笼型感应电动机存在下列三个主要缺点。

(1)起动转矩不大,难以满足带负载起动的需要。当前社会上解决该问题的多数办法是提高电动机的功率容量(即增容)来提高其起动转矩,这就造成严重的“大马拉小车”,既增加购买设备的投资,又在长期的应用中因处于低负荷运行而浪费大量电量,很不经济。第二种办法是增购液力偶合器,先让电动机空载起动,在由液力偶合器驱动负载。这种办法同样要增加添购设备的投资,并因液力偶合器的效率低于97%,因此至少浪费3%的电能,因而整个驱动装置的效率很低,同样浪费电量,更何况添加液力偶合器之后,机组的运行可靠性大大下降,显著增加维护困难,因此不是一个好办法。

(2)大转矩不大,用于驱动经常出现短时过负荷的负载,如矿山所用破碎机等时,往往停转而烧坏电动机。以致只能在轻载状况下运行,既降低了产量又浪费电能。

(3)起动电流很大,增加了所需供电变压器的容量,从而增加大量投资。另一办法是采用降压起动来降低起动电流,同样要增加添购降压装置的投资,并且使本来就不好的起动特性进一步恶化。

2.2 绕线型感应电动机

绕线性感应电动机正常运行时,三相绕组通过集电环短路。起动时,为减小起动电流,转子中可以串入起动电阻,转子串入适当的电阻,不仅可以减小起动电流,而且由于转子功率因数和转子电流有功分量增大,起动转矩也可增大。这种电动机还可通过改

变外串电阻调速。绕线型电动机虽起动特性和运行特性兼优,但仍存在下列缺点:(1)由于转子上有集电环和电刷,不仅增加制造成本,并且降低了起动和运行的可

靠性,集电环和电刷之间的滑动接触,是这种电动机发生故障的主要原因。特别是集电环与电刷之间会产生火花,使传统绕线型电动机在矿山、井下、石油、华工等防爆要求的场所,对于灰土、粉尘浓度很高的地方,也不敢使用,这就限制了其应用范围。

(2)当前的传统绕线型电动机为了提高可靠性,多数不提刷,因此运行时存在下列电能浪费:集电环和电刷间的摩擦损耗和接触电阻上的电损耗,电刷至控制柜短路开关间三根电缆的电损耗,若电动机与控制柜之间距离很长,则该损耗将非常严重。并且由于集电环与电刷产生碳粉、电火花和噪声,长期污染周围环境,损害管理人员和周围居民健康。

(3)传统绕线型电动机的起动转矩比笼型电动机的有所提高,但仍往往不能满足满载起动的需要,以至仍然需要增容而形成“大马拉小车”。

上述传统感应电动机存在的严重缺点的根本原因在于“起动”、“运行”和“可靠性”三者之间存在难以调和的矛盾,因此势必顾此失彼,不可兼优。

三相异步电动机起动方式

三相交流异步电动机直接起动,虽然控制线路结构简单、使用维护方便,但起动电流很大(约为正常工作电流的4~7倍),如果电源容量不比电动机容量大许多倍,则起动电流可能会明显地影响同一电网中其它电气设备的正常运行。因此,对于鼠笼型异步电动机可采用:定子串电阻(电抗)降压起动、定子串自耦变压器降压起动、星形—三角形降压起动等方式;而对于绕线型异步电动机,还可采用转子串电阻起动或转子串频敏变阻器起动等方式以限制起动电流。

1、直接启动

定义:直接启动就是用闸刀开关或接触器把电机的定子绕组直接接在交流电源上,电机在额定电压下直接启动。

优点:在变压器容量允许的情况下,鼠笼式异步电动机应该尽可能采用全电压直接起动,控制线路简单,既可以提高控制线路的可靠性,又可以减少电器的维修工作量。

缺点:直接启动的启动电流一般可达额定电流的4~7倍,过大的启动电流会降低电动机寿命,使变压器二次电压大幅度下降,减小电动机本身的启动转矩,甚至时电动机无法启动,过大的电流还会引起电源电压波动,影响同一供电网中其他设备的正常工作。一

般异步电机的功率小于7.5千瓦时允许直接启动,对于更大容量的电机能否使用要视配电变压器的容量和各地电网部门而定。(电流过大)

应用:电动机单向起动控制线路常用于只需要单方向运转的小功率电动机的控制。例如小型通风机、水泵以及皮带运输机等机械设备。

图6是电动机单向起动控制线路的电气原理图。这是一种最常用、最简单的控制线路,能实现对电动机的起动、停止的自动控制、远距离控制、频繁操作等。

图6电动机单向起动控制线路的电气原理图

2、三相异步电动机的Y—Δ起动控制

对于正常运行时电动机额定电压等于电源线电压,定子绕组为三角形连接方式的三相交流异步电动机,可以采用星形—三角形降压起动。它是指起动时,将电动机定子绕组接成星形,待电动机的转速上升到一定值后,再换成三角形连接。这样,电动机起动时每相绕组的工作电压为正常时绕组电压的1/3,起动电流为三角形直接起动时的1/3,因而起动电流特性好,线路较简单,投资少。缺点是起动转矩也下降为三角形接法的1/3,转矩特性差。本线路适用于轻载或空载起动的场合,应当强调指出,Y—Δ连接时要注意其旋转方向的一致性。

图7 三相异步电动机Y—Δ降压启动控制线路图

控制原理:按下启动按钮SB2。

(1)接触器KM1线圈得电,电动机M接入电源。

(2)接触器KM3线圈的电,其常开触点闭合,Y形启动,辅助触点断开,保证了接触器KM2不得电。

(3)时间继电器KT线圈得电,经过一定时间延时,常闭触点断开,切断KM3线圈电源。

(4)KM3主触点断开,KM3常闭辅助触点闭合,KT常开触点断开,接触器KM2线圈得电,KM2主触点闭合,使电动机M由Y形启动切换为Δ运行。

按下停止按钮SB1,切断控制线路电源,电动机M停止运转。

3自耦变压器降压启动

对于容量较大且正常运行时定子绕组接成星形的笼型异步电动机,可采用自耦变压器降压起动。它是指起动时,将自耦变压器接入电动机的定子回路,待电动机的转速上升到一定值后,再切除自耦变压器,使电动机定子绕组获正常工作电压。这样,起动时电动

机每相绕组电压为正常工作电压的1 / K 倍(K ——自耦变压器的匝数比。K = N

1/ N

2

),

起动电流也为全压起动电流的1 / K2倍。

图8 电动机自耦降压起动接线图

图8是交流电动机自耦降压启动自动切换控制接线图,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故

控制过程如下:

a、合上空气开关QF接通三相电源。

b、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头(例如65%)将三相电压的65%接入电动。

c、KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁。

d、由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,主触头断开,使自耦变压器线圈封星端打开;同时 KM2线圈断电,其主触头断开,切断自耦变压器电源。KA的常闭触点闭合,通过KM1已经复位的常闭触点,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行。

e、KM1的常开触点断开也使时间继电器KT线圈断电,其延时闭合触点释放,也保证了在电动机启动任务完成后,使时间继电器KT可处于断电状态。

f、欲停车时,可按SB1则控制回路全部断电,电动机切除电源而停转。

g、电动机的过载保护由热继电器FR完成。

4、绕线式异步电动机转子串接电阻起动

由于大型电动机容量大,起动电流对电网的冲击较大,又因带负载,负载要求电动机提供较大的起动电流时,绕线式异步电动机就显示出明显优势,只有转子回路串的电阻合适,就既可减少起动电流又可增加起动转矩,因而电动机容量大、重载这两个要求可同时满足。

由于电动机的电磁转矩公式:T st=C Mφm I2cosφ2

cosφ2=

因为串电阻RΩ使得I2减小,但cosφ2值的增大,使得转子有功电流I2 cosφ2反而增大了,从而增大堵转转矩值。当然,过分增大所串电阻RΩ,虽

然cosφ2会增大,其极限值为1,因转子电流减小使堵转转矩也跟着减小。如果正确选取电阻器的电阻值,使转子回路的总电阻值R2=X20,,此时Sm=1,即最大转矩产

生在电动机启动瞬间,从而缩短起动时间,达到减小启动电流增大启动转矩的目的。随着电动机转速的升高,可变电阻逐级减小。启动完毕后,可变电阻减小到零,转子绕组被直接短接,电动机便在额定状态下运行。

图9(a)是绕线型异步电动机转子串电阻的示意图,为了简单,也有采用图9(b)不对称电阻

图10 转子串电阻启动控制图

线路工作原理如下:合上闸开关QS,按启动按钮SB2,运行如下

(1)接触器KM线圈得电,其主触点闭合,将电动机转子串入全部电阻进行启动,KM 辅助触点闭合自锁。

(2)时间继电器KT1得电,时间继电器KT1的常开触点经一定延时后闭合,使接触器KM1线圈得电吸合,切除第一级启动电阻1RQ。同时,时间继电器KT2得电。(3)时间继电器KT2的常开触点经一定延时后闭合,使接触器KM2得电吸合并自锁,短接第二级启动电阻2RQ。同时,时间继电器KT3得电。

(4)时间继电器KT3的常开触点经一定延时后闭合,使接触器KM3得电吸合并自锁,短接第三极启动电阻3RQ,启动过程全部结束。

(5)接触器KM3得电,KM3常闭触点断开,切断时间继电器KT1线圈电源,使KT1、

KM1、KT2、KM2、KT3依次释放。当电动机进入正常运行时,只有KM3和KM保持

得电吸合状态,其他电器全部复合。

按下停止按钮SB1,KM线圈失电切断电动机电源,电动机停转。

各种接线方式的优缺点

单母线接线 优点:接线简单,清晰,设备少,操作方便,便于扩建和采用 成套配电装置。 缺点:可靠性差,母线或母线隔离开关检修或故障时,所有回 路都要停止工作,也就是要造成全厂或全站长期停 电,调度不方便,电能只能并列运行,并且线路侧 发生短路时,有较大的短路电流。 2.1双母线接线 优点:有两组母线,可以互为备用,运行可靠性和灵活性高,调度灵方便、便于扩建,可以向母线左右任意一个方向顺延扩建,检修任一 母线时,隔离开关仅仅使本回路断开。 缺点:造价高,因为增加了一组母线及其隔离开关,增加了配电装置构架及 占地面积;当母线故障或检修时,隔离开关作倒换操作电器, 容易误操作,但可以装断路器的连锁装置加以克服。 单元接线 (1)优点:单元接线简单,开关设备少,操作简单以及因不设发电机电压级母线,而在发电机和变压器之间采用封闭母线,使得在发电机和变 压器低压侧短路的几率和短路电流相对于具有发电机电压级母线时, 有所减小。 (2)缺点:存在如下技术问题: 1)当主变压器或厂总变压器发生故障时,除了跳主变压器高压 侧出口断路器外,还需跳发电机磁场开关。 2)发电机定子绕组本身故障时,若变压器高压侧断路器失灵拒 跳,则只能通过失灵保护出口启动母差保护或发远方跳闸信 号使线路对侧断路器跳闸;若因通道原因远方跳闸信号失效, 则只能由对侧后备保护来切除故障,这样故障切除时间大大 延长,会造成发电机、主变压器严重损坏。 单母线分段接线 (1)优点: 1)供电可靠性和灵活性相对于单母线接线高,操作简单,接线方便,便于检修,投资较小,对重要用户可以从不同段引出两回馈电线路, 由两个电源供电。 2)当一段母线发生故障分段断路器自动将故障段切除,保证正常断母线

三相异步电动机软启动系统

浅析变频空调技术的发展与应用 摘要 本论文主要是对变频空调的原理、新技术、空调的结构、空调的日常保养进行简 单的分析讨论。变频空调器的最大特点在于其节能、舒适、制热效果好。从节能方面 来说,随着技术的发展与成熟,变频空调器已由最初的交流变频空调器、直流变频空 调器发展到现在pam(脉冲调幅)空调器。变频空调之所以有这么大的优势也是在于 它自身无可比拟的优点,简单的介绍其优点主要是:采用低频启动,启动电流小对电 网的干扰小,省电节能;能快速制冷、制暖;启动后长期运转温度控制精度可达到 ±0.5℃。 关键词:新技术变频发展应用 Abstract This paper is the principle of frequency conversion air-conditioning, newtechnologies,then structure of air- conditioning,air-conditioning maintenance to carry out simple day-to-day art an analysis of the discussion.The most important feature of variable frequency air conditioner in its energy-saving,comfortable, good heating effect. From the energy point of view,as the technolog development and maturity,frequency conversion air-conditioner from the original A inverter air conditioner,Dc inverter air conditioner developed to pam air conditioner.Inverter air conditioner advantages:the use of low-frequency start,starting current of the power system small disturbance small,energy-saving power;fast refrigeration,heating System;start functioning after the long-term temperature control precision can reach ± 0.5℃. Key words:new technology frequency conversion development application 目录 摘要 (1)

普通三相异步电动机与变频电动机的区别

普通三相异步电动机与变频电动机的区别 普通的三相异步电动机可以用变频器驱动吗 普通的三相异步电动机与变频调速的三相异电动机有何区别 普通异步电机与变频电机的区别——普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。 以下为变频器对电机的影响: 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。据资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。其次,普通异步电动机在转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。

电气主接线方式优缺点

电气主接线方式优缺点 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

电气主接线方式优缺点 1、单母线接线 优点:接线简单、清晰、操作方便、扩建容易; 缺点:运行方式不灵活、供电可靠性差。 2、单母线分段接线 单母线分段接线就是将一段母线用断路器分为两段或多段 优点:母线故障或检修时缩小停电范围; 缺点:当一段母线或母线隔离开关故障或检修时,必须断开该分段上的所有电源或出现,这样就减少了系统的发电量,并使该分段单回路供电的用户停电。 3、双母线接线 双母线接线就是将工作线、电源线和出线通过一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是工作线,而每一回路都可通过母线联络断路器并列运行。 优点:与单母线相比,它的优点是供电可靠性大,可以轮流检修母线而不使供电中断。 缺点:每一回路都增加了一组隔离开关,使配电装置的构架及占地面积、投资费用都相应增加;同时由于配电装置的复杂,在改变运行方式倒闸操作时容易发生误操作,且不宜实现自动化;尤其当母线故障时,须短时切除较多的电源和线路,这对特别重要的大型发电厂和变电站是不允许的。4、双母线分段接线

优点:可缩小母线故障停电范围、提高供电可靠性; 缺点:保护及二次接线复杂。 5、双母线带旁路接线 双母线带旁路接线就是在双母线接线的基础上,增设旁路母线。 优点:具有双母线接线的优点,当线路(主变压器)断路器检修时,仍可继续供电。 缺点:旁路的倒换操作比较复杂,增加了误操作的机会,也使保护及自动化系统复杂化,投资费用较大。 6、双母线分段带旁路接线? 双母线分段带旁路接线就是在双母线带旁路接线的基础上,在母线上增设分段断路器。 优点:具有双母线带旁路的优点。 缺点:投资费用较大,占用设备间隔较多。 一般采用此种接线的原则为: (1)当设备连接的进出线总数为12~16回时,在一组母线上设置 分段断路器; (2)当设备连接的进出线总数为17回及以上时,在两组母线上 设置分段断器。 7、3/2接线 3/2断路器接线就是在每3个断路器中间送出2回回路,一般只用于500kV(或重要220kV)电网的母线主接线。 优点:

三相异步电动机软启动器的设计

第2期(总第165期) 2011年4月机械工程与自动化 M ECHAN IC AL EN GIN EERIN G & A U TO M A T IO N N o.2 Apr. 文章编号:1672-6413(2011)02-0144-02 三相异步电动机软启动器的设计 刘芳霞 (山东经贸职业学院,山东 潍坊 261011) 摘要:三相异步电动机直接启动时,启动电流过大,转矩较小,给用电设备及电网带来了一定的影响。通过采用模糊控制与P LC 相结合的方法实现了电机的软启动,给出了软启动控制系统的硬件设计与软件设计,并用M A T L A B 软件进行实验仿真,实验结果验证了系统的有效性及理论的正确性。关键词:软启动;三相异步电动机;仿真中图分类号: T M 343+ .2 文献标识码: A 收稿日期: 2010-08-31;修回日期: 2010-10-27 作者简介:刘芳霞(1975-),女,山东聊城人,讲师,硕士。 0 引言 三相异步电动机以其低成本、高可靠性和易维护等特点,在电力拖动系统中得到了广泛的应用。但在其直接启动瞬间启动电流大约是额定电流的6倍,带负载启动时甚至达到8倍。大的启动电流会给电网及用电设备带来很大的负面影响,使电网电压产生波动,加速电动机绕组的绝缘老化,大大降低了电动机的使用寿命,导致大量的能量被消耗。针对上述问题,本文设计了一个软启动系统,给出了其硬件设计及软件设计,并通过实验验证了系统的有效性及理论的正确性。1 电机软启动系统结构 三相电动机软启动系统结构图见图1。采用晶闸管反并联电路给电动机定子提供电源,通过控制晶闸管触发角的大小来改变导通角的大小,使电动机电压平稳增加,从而调节电动机定子的端电压,使电动机的启动电流缓慢上升,减少电流对电网及电动机的影响,这一过程称为软启动。软启动的实现方法如下:通过对电路电压、电流的检测,将检测的信号模糊处理,经过A /D 模块转化为数字信号,送入PLC 控制器进行处理,用得到的信号来控制晶闸管的触发角,从而控制电动机的端电压,达到控制启动电流的目的 。 图1 三相电动机软启动结构图 2 软启动控制电路硬件设计 软启动器是一种交流调压装置,在本系统中主要是实现电机的软启动、停机及保护等多种功能。由于PLC 具有可靠性高、抗干扰能力强、功能完善、编程 简单、具有网络通讯功能等特点,所以本系统采用松下电工FP0系列可编程控制器作为主控制器,PLC 结构框图如图2所示。它的主要作用是:将模糊化处理得到的信号经过A /D 模块转化保存在数据寄存器中,

(完整版)三相异步电动机练习题及答案.doc

1 电动机分为(交流电动机)(直流电动机),交流电动机分为(同步电动机)(异步电动机)异步电动机分为(三相电动机)(单相电动机) 2电动机主要部件是由(定子)和(转子)两大部分组成。此外,还有端盖、轴承、风扇等 部件。定子铁心:由内周有槽的(硅钢片)叠成三相绕组,机座:铸钢或铸铁。 3根据转子绕组结构的不同分为:(笼型转子转子)铁心槽内嵌有铸铝导条,(绕线型转子)转子铁心槽内嵌有三相绕组。 4笼型电机特点结构简单、价格低廉、工作可靠;(不能人为)改变电动机的机械特性。绕线 式转子电机特点结构复杂、价格较贵、维护工作量大;转子(外加电阻可人为改变)电动 机的机械特性。 5分析可知:三相电流产生的合成磁场是一(旋转的磁场),即:一个电流周期,旋转磁场在空 间转过(360°)旋转磁场的旋转方向取决于(三相电流的相序),任意调换两根电源进线则旋 转磁场(反转)。 6若定子每相绕组由两个线圈(串联),绕组的始端之间互差(60°),将形成(两对)磁 极的旋转磁场。旋转磁场的磁极对数与(三相绕组的排列)有关。旋转磁场的转速取决于磁 场的(极对数)。 p=1 时 (n0=60f 1)。旋转磁场转速n0 与(频率f1)和(极对数p)有关。 7 旋转磁场的同步转速和电动机转子转速之差与旋转磁场的同步转速之比称为(转差率S)异步电动机运行中S=( 1--9)%。 8 一台三相异步电动机,其额定转速 n=1460 r/min ,电源频率 f1=50 Hz 。试求电动机在额定负载 下的转差率。 解:根据异步电动机转子转速与旋转磁场同步转速的关系可知:n0=1500 r/min ,即 s n0 n 100% 1500 1460 100% 2.7% n0 1500 9 定子感应电势频率 f 1 不等于转子感应电势频率 f 2。 10 电磁转矩公式 sR2 U 12 T K ) 2 R2 (sX 20 2 2 由公式可知 :1. T 与定子每相绕组电压 U 成(正比)。 U 1 ↓则 T↓ 。 2.当电源电压 U1 一定时, T 是 s 的函数 , 3. R2 的大小对T 有影响。绕线式异步电动机可外接电阻来改变(转子电阻R2 ),从而改变转距。 11 三个重要转矩:(1) ( 额定转矩 TN) 电动机在额定负载时的转矩(2) (最大转矩Tmax) 电机带动最大负载的能力,(3) ( 起动转矩Tst)电动机起动时的转矩。 12 如某普通机床的主轴电机(Y132M-4 型 ) 的额定功率为7.5kw, 额定转速为1440r/min, 则额定转矩为(T P N 9550 7 . 5 N . m )。 N 9550 49 . 7 n N 1440 13 转子轴上机械负载转矩T2 不能(大于 Tmax ),否则将造成堵转(停车 )。 过载系数 (能T m ax 一般三相异步电动机的过载系数为 1.8 ~ 2.2 T N 力 ) 14 K st T st 启动条件( Tst>TL )否则电动机不能启动,正常工作条 起动能力 T N 件:所带负载的转矩应为(TL

电气主接线各种连接方式优缺点与实际应用

电气主接线各种连接方式优缺点与实际应用 摘要:结合自身工作经验,通过大量文献资料分析了电气主接线各种连接方式优缺点,总结了电气主接线8种接线方式的设计要求和应用原则,并通过案例进行了论证? 关键词:电气主接线;连接方式;优缺点;分析;实际;应用 电气主接线主要是指在发电厂?变电所?电力系统中,为满足预定的功率传送和运行等要求而设计的?表明高压电气设备之间相互连接关系的传送电能的电路?电路中的高压电气设备包括发电机?变压器?母线?断路器?隔离刀闸?线路等?它们的连接方式对供电可靠性?运行灵活性及经济合理性等起着决定性作用?一般在研究主接线方案和运行方式时,为了清晰和方便,通常将三相电路图描绘成单线图?在绘制主接线全图时,将互感器?避雷器?电容器?中性点设备以及载波通信用的通道加工元件(也称高频阻波器)等也表示出来? 1 电气主接线接线要求 对一个电厂而言,电气主接线在电厂设计时就根据机组容量?电厂规模及电厂在电力系统中的地位等,从供电的可靠性?运行的灵活性和方便性?经济性?发展和扩建的可能性等方面,经综合比较后确定?它的接线方式能反映正常和事故情况下的供送电情况?电气主接线又称电气一次接线图? 电气主接线应满足以下几点要求: (1)运行的可靠性:主接线系统应保证对用户供电的可靠性,特别是保证对重要负荷的供电? (2)运行的灵活性:主接线系统应能灵活地适应各种工作情况,特别是当一部分设备检修或工作情况发生变化时,能够通过倒换开关的运行方式,做到调度灵活,不中断向用户的供电?在扩建时应能很方便的从初期建设到最终接线? (3)主接线系统还应保证运行操作的方便以及在保证满足技术条件的要求下,做到经济合理,尽量减少占地面积,节省投资? 2 电气主接线常见8种接线方式优缺点分析 2.1 线路变压器组接线 线路变压器组接线就是线路和变压器直接相连,是一种最简单的接线方式?线路变压器组接线的优点是断路器少,接线简单,造价省?相应220kV采用线路变压器组,110kV宜采用单母分段接线,正常分段断路器打开运行,对限制短路电流效果显著,较适合于110kV开环运行的网架?但其可靠性相对较差,线路故障检修停运时,变压器将被迫停运,对变电所的供电负荷影响较大?其较适合用于正常二运一备的城区中心变电所,如上海中心城区就有采用? 2.2 桥形接线 桥形接线采用4个回路3台断路器和6个隔离开关,是接线中断路器数量较少?也是投资较省的一种接线方式?根据桥形断路器的位置又可分为内桥和外桥两种接线?由于变压器的可靠性远大于线路,因此中应用较多的为内桥接线?若为了在检修断路器时不影响和变压器的正常运行,有时在桥形外附设一组隔离开关,这就成了长期开环运行的四边形接线? 2.3 多角形接线

电气主接线的基本形式及优缺点

第四章电气主接线 第2节单母线接线 主接线的基本形式,就是主要电气设备常用的几种连接方式。概括的讲可分为两大类:有汇流母线的接线形式;无汇流母线的接线形式。 变电所电气主接线的基本环节是电源(变压器)、母线和出线(馈线)。各个变电所的出线回路数和电源数不同,且每路馈线所传输的功率也不一样。在进出线数较多时(一般超过4回),为便于电能的汇集和分配,采用母线作为中间环节,可使接线简单清晰,运行方便,有利于安装和扩建。但有母线后,配电装置占地面积较大,使用断路器等设备增多。无汇流母线的接线使用开关电器较少,占地面积小,但只适于进出线回路少,不再扩建和发展的变电所。有汇流母线的接线形式主要有:单母线接线和双母线接线。 一、单母线接线 单母线接线的特点是整个配电装置只有一组母线,每个电源线和引出线都经过开关电器接到同一组母线上。供电电源是变压器或高压进线回路,母线即可以保证电源并列工作,又能使任一条出线路都可以从电源1或2获得电能。每条回路中都装有断路器和隔离开关,靠近母线侧的隔离开关称作母线隔离开关,靠近线路侧的称为线路隔离开关(在实际变电所中,通常把靠近电源侧的隔离开关称为甲刀闸,把靠近负荷侧的隔离开关称为乙刀闸。 断路器具有开合电路的专用灭弧装置,可以开断或闭合负荷电流和开断短路电流,用来作为接通或切断电路的控制电器。 隔离开关没有灭弧装置,其开合电流能力极低,只能用作设备停运后退出工作时断开电路,保证与带电部分隔离,起着隔离电压的作用。同一回路中在断路器可能出现电源的一侧或两侧均应配置隔离开关,以便检修断路器时隔离电源。 同一回路中串接的隔离开关和断路器,在运行操作时,必须严格遵守下列操作顺序:如对馈线L1送电时,须先合上隔离开关QS1和QS2,再投入断路器QF2;如欲停止对其供电,须先断开QF2,然后再断开QS3和QS2。为了防止误操作,除严格按照操作规程实行操作票制度外,还应在隔离开关和相应的断路器之间,加装电磁闭锁、机械闭锁。接地开关(又称接地刀闸)QS4是在检修电路和设备时合上,取代安全接地线的作用。当电压在110kV及以上时,断路器两侧的隔离开关和线路隔离开关的线路侧均应配置接地开关。对35kV及以上的母线,在每段母线上亦应设置1~2组接地开关或接地器,以保证电器和母线检修时的安全。

三相异步电动机软启动装置设计

三相异步电动机软启动装置设计 考生姓名:XXXXXXX 准考证号:XXXXXXXXXX 专业层次:XXXXXXX 院(系):XXXXXXXXXXXX 指导教师:XXXXXXX 职称:XXXXXXX 二O一二年七月二十日

三相异步电动机软启动装置设计 考生姓名:XXXXXXXX 准考证号:XXXXXXXXXXXXXX 专业层次:XXXXXXXXXXX 指导教师:XXXXXXXX 院(系):XXXXXXXXXXXXXXXXXXXXXX 二O一二年七月二十日

摘要 三相异步电动机因具有结构简单、制造方便、运行可靠、价格低廉等优点,而广泛应用在工业、农业、交通运输业、国防工业以及其他各行各业中。但它也有明显的缺点,那就是起动转矩小,起动电流过大。这种情况对电机本身及周围电网都有非常不利的影响。为了减小异步电动机起动过程中对电网的冲击、消除传统降压起动设备的有级触点控制对异步电动机的冲击、改善异步电动机的起动特性,本文对基于单片机控制的晶闸管调压软起动器进行讨论。 本文首先阐述了软起动器晶闸管调压电路(即主电路)的工作原理,主要是基于晶闸管的三相异步电动机软启动器主电路设计和触发电路设计。然后是对电动机软启动器模式的设计,但主要还是软起动器的硬件电路设计。 本文设计的软起动器操作方便简单,能够使电机顺利起动。使之能达到了改善三相异步电动机起动性能的要求。在满足异步电动机起动转矩要求及降低起动电流的前提下,使电机能够平稳可靠起动。 关键词:异步电动机,晶闸管,软启动

Three phase asynchronous motor soft start device design ABSTRACT The three-phase asynchronous motor because of its simple structure, convenient manufacture, reliable operation, low price and the like, and is widely applied in industry, agriculture, transportation, defense industry and other industries. But it also has obvious shortcomings, the starting torque is small, large starting current. This situation on the motor itself and the surrounding network has very adverse effect. In order to reduce the asynchronous motor starting process of the impact of power grid, the elimination of the traditional step-down start equipment with level control for asynchronous motor to improve impact, induction motor, this paper based on single-chip microcomputer controlled thyristor voltage soft starter were discussed. This article first elaborated the soft starter thyristor voltage regulating circuit (i.e., working principle, main circuit) is mainly based on thyristor three-phase asynchronous motor soft starter the design of main circuit and trigger circuit design. The electric motor soft starter in model design, but mainly the hardware circuit design of soft starter. In this paper, the design of the soft starter of convenient and simple

各种发电方式的优缺点对比

火力发电: 火电厂是利用煤、石油、天然气作为燃料生产电能的工厂,它的基本生产过程是:燃料在锅炉中燃烧加热水使成蒸汽,将燃料的化学能转变成热能,蒸汽压力推动汽轮机旋转,热能转换成机械能,然后汽轮机带动发电机旋转,将机械能转变成电能 火电的缺点 火电需要燃烧煤、石油等化石燃料。一方面化石燃料蕴藏量有限、越烧越少,正面临着枯竭的危险。据估计,全世界石油资源再有30年便将枯竭。另一方面燃烧燃料将排出二氧化碳和硫的氧化物,因此会导致温室效应和酸雨,恶化地球环境。 水力发电: 以水具有的重力势能转变成动能的水冲水轮机,水轮机即开始转动,若我们将发电机连接到水轮机,则发电机即可开始发电。如果我们将水位提高来冲水轮机,可发现水轮机转速增加。因此可知水位差愈大则水轮机所得动能愈大,可转换之电能愈高。这就是水力发电的基本原理。 能量转化过程是:上游水的重力势能转化为水流的动能,水流通过水轮机时将动能传递给汽轮机,水轮机带动发电机转动将动能转化为电能。因此是机械能转化为电能的过程。 由于水电站自然条件的不同,水轮发电机组的容量和转速的变化范围很大。通常小型水轮发电机和冲击式水轮机驱动的高速水轮发电机多采用卧式结构,而大、中型代速发电机多采用立式结构。由于水电站多数处在远离城市的地方,通常需要经过较长输电线路向负载供电,因此,电力系统对水轮发电机的运行稳定性提出了较高的要求:电机参数需要仔细选择;对转子的转动惯量要求较大。所以,水轮发电机的外型与汽轮发电机不同,它的转子直径大而长度短。水轮发电机组起动、并网所需时间较短,运行调度灵活,它除了一般发电以外,特别适宜于作为调峰机组和事故备用机组。 水电的缺点 水电要淹没大量土地,有可能导致生态环境破坏,而且大型水库一旦塌崩,后果将不堪设想。另外,一个国家的水力资源也是有限的,而且还要受季节的影响。 太阳能发电 利用太阳能发电的方法有三种: 其一为利用光电池,直接将日光转换为电流。(也称光伏发电) 基本原理就是“光伏效应” 光子照射到金属上时,它的能量可以被金属中某个电子全部吸收,电子吸收的能量足够大,能克服金属内部引力做功,离开金属表面逃逸出来,成为光电子。 “光生伏特效应”,简称“光伏效应”。指光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。它首先是由光子(光波)转化为电子、光能量转化为电能量的过程;其次,是形成电压过程。有了电压,就像筑高了大坝,如果两者之间连通,就会形成电流的回路。 光伏发电,其基本原理就是“光伏效应”。太阳能专家的任务就是要完成制造电压的工作。因为要制造电压,所以完成光电转化的太阳能电池是阳光发电的关键。 太阳能电池,通常称为光伏电池。目前的主要的太阳能电池是硅太阳能电池。用的硅是“提纯硅”,其纯度为“11个9”,比半导体或者说芯片硅片“只少两个9”;

三相异步电动机启动方法

三相异步电动机启动方法 降压启动就可以降低启动电流,减少线路压降。除直接启动外,降压启动一般有星-三角降压启动,自藕变压降压启动,变频启动、软启动等。 三相异步电动机接线图 三相异步电机接线图:三相电动机的三相定子绕组每相绕组都有两个引出线头。一头叫做首端,另一头叫末端。规定第一相绕组首端用D 1表示,末端用D 4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,见图(1)。三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D3分别接入A、B、C相电源,如图(2)所示。而三角形接法则是将第一相绕组的首端D 1与第三相绕组的末端D6相连接,再接入一相电源;第二相绕组的首端D2与第一相绕组的末端D4相连接,再接入第二相电源;第三相绕组的首端D3与第二相绕组的末端D5相连接,再接入第三相电源。即在接线板上将接线柱D1和D6、D2和D4、D3和D5分别用铜片连接起来,再分别接入三相电源,如图(3)所示。一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D4、D5、D6倒过来作为首端,而将D1、D2、D3作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。 1、三相电源绕组有几种接线方式?三相负载的连接方式有几种? 答:三相发电机或三相变压器的二次侧都具有三相绕组,它们都是用星Y形或三角△形的方式连接起来的。 三相负载的连接与发电机三相绕组的连接相似,也可接成形或三角形△。 2、什么叫三相三线制电路?什么叫三相四线制电路? 答:将负载与发电机用三根火线连接起来。就是三相三线制电路。 用三根火线和一根中线把电源和负载起来,就是三相四线制电路。 3、什么叫三相电源和负载的星型连接?什么叫相、线电压和相、线电流?他们之间的关系如何? 答:将三相绕级的末端连接在一起,从首端分别引出导线,这就是星形连接。通常三相绕组的始端用A、B、C表示,末端用X、Y、Z表示。绕组始端的引出线称为火线。三个绕组末端连接在一起的公共点“O”称为中性点,从中性点引出的一根导线称为零线(也称中线)。如果中性点接地,则零线也称做地线。 每相组两端间的电压(即每相绕组首端与中线之间的电压)uA、uB、uC叫做相电压。 两根火线之间(即两相之间)的电压uAB、uBC、uCA叫做线电压。 流过电源每相绕组或负载的电流,叫做相电流。火线中的电流iA、iB、iC,叫做线电流。在星形连接中,线电压的有效值是相电压有效值的倍,即U线=U相。线电流等于相电流。 即I线=I相。 4、三相四线制供电系统中,中性线(零线)的作用是什么?为什么零线不允许断路?答:中性线是三相电路的公共回线。中性线能保证三相负载成为三个互不影响的独立回路;

异步电动机软启动分析

异步电动机软启动分析 电动机作为重要的动力装置,已被广泛用于工业、农业、交通运输、国防军事设施以及日常生活中。直流电动机其调速在过去一直占统治地位,但由于本身结构原因,例如换向器的机械强度不高,电刷易于磨损等,远远不能适应现代生产向高速大容量化发展的要求。而交流电动机,特别是三相鼠笼式异步电动机,由于其结构简单、制造方便、价格低廉,而且坚固耐用,惯量小,运行可靠等优势,在工业生产中得到了极广泛的应用,也正在发挥着越来越重要的作用。 一、软启动的现状 交流电动机和直流电动机相比存在许多优点,但当异步电机在起动过程中又有许多弊病。所谓起动过程是在交流传动系统中,当异步电动机投入电网时,其转速由零开始上升,转速升到稳定转速的全过程。如不采用任何起动装置的情况下,直接加额定电压到定子绕组起动电动机时,电机的起动电流可达额定电流的4~8倍,其转速也在很短时间内由零上升到额定转速。同时三相感应电动机起动时的转矩冲击较大,一般可达额定转矩的两倍以上。起动时过高的电流一方面会造成严重的电网冲击,给电网造成过大的电压降落,降低电网电能质量并影响其他设备的正常运行。而过大的转矩冲击又将造成机械应力冲击,影响电动机本身及其拖动设备的使用寿命。因此,通常总是力求在较小的起动起动电流下得到足够大的起动转矩,为此就要选择合适的起动方法。在选择起动方法时可以根据具体情况具体要求来选择。 对三相鼠笼式异步电动机的起动电流的限制,通常有定子串接电抗器起动、Y-△起动、自藕变压器将压起动、延边三角形起动。而对绕线式交流电动机,常采用转子串接频敏变阻器起动、转子串电阻分级起动。但这些传统的起动方法都存在一些问题。 1.定子串接电阻起动:由于外串了电阻,在电阻上有较大的有功损耗,特别对中型、大型异步电动机更不经济,因此在降低了起动电流的同时、却付出了较大的代价- 起动转矩降低得更多,一般只能用于空载和轻载。 2.Y-△起动:丫-△起动方法虽然简单,只需一个Y-△转换开关。但是Y-△起动的电动机定子绕组六个出线端都要引出来,对于高电压的电动机有一定的困难,一般只用于△接法380v电动机。 3.自祸变压器将压起动:自祸变压器将压起动,比起定子串接电抗器起动,当限定的起动电流相同时,起动转矩损失的较少;比起卜△起动,有几种抽头供选用比较灵活,并且巩/峨较大时,可以拖动较大些的负载起动。但是自祸变压器体积大,价格高,也不能拖动重负载起动。 4.延边三角形起动:采用延边三角形起动鼠笼式异步电动机,除了简单的绕组接线切换装置之外,不需要其他专用起动设备。但是,电动机的定子绕组不但为△接,有抽头,而且需要专门设计,制成后抽头又不能随意变动。 随着电力技术(尤其是集成电路、微处理器以及新一代电力电子器件)的不断发展,异步电动机起动过程中的起动电流过高,起动转矩过小等问题得到了很好的解决。 从20世纪70年代开始推广利用晶闸管交流调压技术制作的软起动器,以及采用微控制器代替模拟控制电路,发展成为现代的电子软起动器。 二、软启动的特点 电子软起动器相对于传统的起动方式,其突出的优点体现在: 1.电力半导体开关是无电弧开关和电流连续的调节,所以电子软起动器是无级调节的,能够连续稳定调节电机的起动,而传统起动的调节是分档的,即属于有级调节范围。 2.冲击转矩和冲击电流小。软起动器在起动电机时,是通过逐渐增大晶闸管的导通角,使电机起动电流限制在设定值以内,因而冲击电流小,也可控制转矩平滑上升,保护传动机械、设备和人员。

各种连接方式的优缺点

现有管道的连接方式: 一,法兰连接:法兰连接是将垫片放入一对固定在两个管口上的法兰的中间,用螺栓拉紧使其紧密结合起来的一种可拆卸的接头。(故法兰连接的设计中主要解决的问题是防止介质泄漏) 1,法兰连接的优缺点:法兰联接有较好的强度和紧密性,适用的尺寸范围宽,在设备和管道上都能应用,所以应用最普遍。但法兰联接时,不能很快地装配与拆卸,制造成本较高. 2,法兰的分类:整体法兰,松式法兰,任意式法兰 整体法兰:(1),平焊法兰.法兰盘焊接在设备筒体或管道上,制造容易,应用广泛,但刚性较差。法兰受力后,法兰盘的矩形截面发生微小转动,与法兰相联的筒壁或管壁随着发生弯曲变形。于是在法兰附近筒壁的截面上,将产生附加的弯曲应力。所以平焊法兰适用的压力范围较低(PN<4.0MPa)。(2),对焊法兰又称高颈法兰或长颈法兰。颈的存在提高了法兰的刚性,同时由于颈的根部厚度比筒体厚,所以降低了根部的弯曲应力。此外,法兰与筒体(或管壁)的联接是对接焊缝,比平焊法兰的角焊 缝强度好,故对焊法兰适用于压力、温度较高或设备直径较大的场合。 松式法兰:法兰不直接固定在壳体上或者虽固定而不能保证法兰与

壳体作为一个整体承受螺栓载荷的结构,均划为松式法兰,如活套法兰、螺纹法兰、搭接法兰。活套法兰的法兰盘可以采用与设备或管道不同的材料制造,用于铜制、铝制、陶瓷、石墨及其非金属材料的设备或管道上。受力后无附加弯曲应力,只适用于压力较低场合 螺纹法兰广泛用于高压管道上,法兰对管壁产生的附加应力较小。但这种法兰刚度小,它的厚度较厚,一般只适用于压力较低的容器上。 任意式法兰:任意式法兰与壳体连成一体,刚性比整体法兰差,如未焊透的焊接法兰。 3,石油化工上常用的法兰标准:一类是压力容器法兰标准,一类是管法兰标准 (1)压力容器法兰标准可分为甲型平焊法兰,乙型平焊法兰,长颈对焊法兰 甲型平焊法兰:它直接与容器的筒体或封头焊接。在上紧和工作时均会作用给容器器壁一定的附加弯矩,且法兰盘自身的刚度也较小,所以适用于压力等级较低和筒体直径较小的范围内。 乙型平焊法兰:乙型法兰有一个壁厚不小于16mm的圆筒形短节,有了这个短节,既可增大整个法兰的刚度,又可使容器器壁避免承受

三相异步电动机启动图(精)

1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a所示。点动正转控制线路是由转换开关QS 、熔断器FU 、启动按钮SB 、接触器KM 及电动机M 组成。其中以转换开关QS 作电源隔离开关,熔断器FU 作短路保护,按钮SB 控制接触器KM 的线圈得电、失电,接触器KM 的主触头控制电动机M 的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS ,此时电动机M 尚未接通电源。按下启动按钮SB ,接触器KM 的线圈得电,带动接触器KM 的三对主触头闭合,电动机M 便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB ,使接触器KM 的线圈失电,带动接触器KM 的三对主触头恢复断

开,电动机M 失电停转。在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB 换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2. 三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM 的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB (起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时,接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

三相异步电动机软启动器

. . . . 辽宁工业大学 电力电子技术课程设计(论文)题目:三相异步电动机软启动器 院(系): 专业班级: 学号: 学生: 指导教师:(签字) 起止时间

. . . . 课程设计(论文)任务及评语 院(系):电气工程学院教研室:电 气

注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 摘要 现在传动工程中最常用的就是三相异步电动机。在许多场合,由于其启动特性,这些电机不可以直接连接电源系统。如果直接启动,会产生较高的峰值转矩,这种冲击不但对驱动电机有冲击,而且也会使机械装置受载。而软启动器通过平滑的升高端子电压,可以实现无冲击启动,最佳保护电源系统及电动机。 本文设计的三相异步电动机软启动器主要包括主电路和控制电路两部分。采用电压斜坡软启动,晶闸管脉冲触发,通过对电机启动过程中晶闸管的控制来实现软启动器平滑启动的功能。 关键词:异步电动机;软启动器;晶闸管

目录 第1章绪论 (1) 1.1电力电子技术概况 (1) 1.2本文设计容 (1) 第2章三相异步电动机软启动器电路设计 (2) 2.1三相异步电动机软启动器总体设计方案 (2) 2.2具体电路设计 (3) 2.2.1 主电路设计 (3) 2.2.2 控制电路设计 (4) 2.2.3 触发电路设计 (5) 2.2.4 同步电路设计 (5) 2.2.5 检测电路设计 (6) 2.2.6 保护电路设计 (7) 2.3元器件型号选择 (8) 2.4系统仿真 (9) 2.4.1 MATLAB仿真软件简介 (9) 2.4.2 三相异步电动机软启动器仿真模型建立 (10) 2.4.3 三相异步电动机软启动器仿真波形及数据分析 (10) 第3章课程设计总结 (13) 参考文献 (14)

%BB接线各种连接方式优缺点与实际应用

电气主接线各种连接方式优缺点与实际应用 袁文进 (四川华能嘉陵江水电有限责任公司,四川南充637000) 摘 要:结合自身工作经验,通过大量文献资料分析了电气主接线各种连接方式优缺点,总结了电气主接线8种接线方式的设计要求和应用原则,并通过案例进行了论证。 关键词:电气主接线;连接方式;优缺点;分析;实际;应用 电气主接线主要是指在发电厂、变电所、电力系统中,为满足预定的功率传送和运行等要求而设计的、表明高压电气设备之间相互连接关系的传送电能的电路。电路中的高压电气设备包括发电机、变压器、母线、断路器、隔离刀闸、线路等。它们的连接方式对供电可靠性、运行灵活性及经济合理性等起着决定性作用。一般在研究主接线方案和运行方式时,为了清晰和方便,通常将三相电路图描绘成单线图。在绘制主接线全图时,将互感器、避雷器、电容器、中性点设备以及载波通信用的通道加工元件(也称高频阻波器)等也表示出来。 1 电气主接线接线要求 对一个电厂而言,电气主接线在电厂设计时就根据机组容量、电厂规模及电厂在电力系统中的地位等,从供电的可靠性、运行的灵活性和方便性、经济性、发展和扩建的可能性等方面,经综合比较后确定。它的接线方式能反映正常和事故情况下的供送电情况。电气主接线又称电气一次接线图。 电气主接线应满足以下几点要求: (1)运行的可靠性:主接线系统应保证对用户供电的可靠性,特别是保证对重要负荷的供电。 (2)运行的灵活性:主接线系统应能灵活地适应各种工作情况,特别是当一部分设备检修或工作情况发生变化时,能够通过倒换开关的运行方式,做到调度灵活,不中断向用户的供电。在扩建时应能很方便的从初期建设到最终接线。 (3)主接线系统还应保证运行操作的方便以及在保证满足技术条件的要求下,做到经济合理,尽量减少占地面积,节省投资。 2 电气主接线常见8种接线方式优缺点分析 2.1 线路变压器组接线 线路变压器组接线就是线路和变压器直接相连,是一种最简单的接线方式。线路变压器组接线的优点是断路器少,接线简单,造价省。相应220kV采用线路变压器组, 110kV宜采用单母分段接线,正常分段断路器打开运行,对限制短路电流效果显著,较适合于110kV开环运行的网架。但其可靠性相对较差,线路故障检修停运时,变压器将被迫停运,对变电所的供电负荷影响较大。其较适合用于正常二运一备的城区中心变电所,如上海中心城区就有采用。2.2 桥形接线 桥形接线采用4个回路3台断路器和6个隔离开关,是接线中断路器数量较少、也是投资较省的一种接线方式。根据桥形断路器的位置又可分为内桥和外桥两种接线。由于变压器的可靠性远大于线路,因此中应用较多的为内桥接线。若为了在检修断路器时不影响和变压器的正常运行,有时在桥形外附设一组隔离开关,这就成了长期开环运行的四边形接线。 2.3 多角形接线 多角形接线就是将断路器和隔离开关相互连接,且每一台断路器两侧都有隔离开关,由隔离开关之间送出回路。多角形接线所用设备少,投资省,运行的灵活性和可靠性较好。正常情况下为双重连接,任何一台断路器检修都不影响送电,由于没有母线,在连接的任一部分故障时,对电网的运行影响都较小。其最主要的缺点是回路数受到限制,因为当环形接线中有一台断路器检修时就要开环运行,此时当其它回路发生故障就要造成两个回路停电,扩大了故障停电范围,且开环运行的时间愈长,这一缺点就愈大。环中的断路器数量越多,开环检修的机会就越大,所一般只采四角(边)形接线和五角形接线,同时为了可靠性,线路和变压器采用对角连接原则。四边形的保护接线比较复杂,一、二次回路倒换操作较多。 2.4 单母线分段接线 单母线分段接线就是将一段母线用断路器分为两段,它的优点是接线简单,投资省,操作方便;缺点是母线故障或检修时要造成部分回路停电。 2.5 双母线接线 双母线接线就是将工作线、电源线和出线通过一台断路器和两组隔离开关连接到两组(一次/二次)母线上,且两组母线都是工作线,而每一回路都可通过母线联络断路器并列运行。 与单母线相比,它的优点是供电可靠性大,可以轮流检修母线而不使供电中断,当一组母线故障时,只要将故障母线上的回路倒换到另一组母线,就可迅速恢复供电,另外还具有调度、扩建、检修方便的优点;其缺点是每一回路都增加了一组隔离开关,使配电装置的构架及占地面积、投资费用都相应增加;同时由于配电装置的复杂,在改变运行方式倒闸操作时容易发生误操作,且不宜实现自动化;尤其当母 — 2 9 1 —

相关主题