搜档网
当前位置:搜档网 › 蛋白质组学技术与药物作用新靶点研究进展

蛋白质组学技术与药物作用新靶点研究进展

蛋白质组学技术与药物作用新靶点研究进展
蛋白质组学技术与药物作用新靶点研究进展

蛋白质组学技术与药物作用新靶点研究进展

[关键词]:蛋白质组学,新药发现,药物作用靶点,研究进展

药物开发是一个漫长的过程,包括以下步骤:样品制备、新化学实体的发现、靶的探测与验证、先导物选择、小分子筛选和优化以及临床前、临床试验研究等。其中药物作用靶点的探测与验证是新药发现阶段中的重点和难点,成为制约新药开发速度的瓶颈。基因组学研究表明,人体中全部药靶蛋白为1万~2万种,而在过去100年中发现的靶点,仅约有500种。因此,自1994年Wilkins等提出蛋白质组(pro- teome)和蛋白质组学(proteormcs)概念后,就迅速引起广大研究者和制药公司的兴趣和投资。近几年来,蛋白质组学技术和研究思路都有了令人鼓舞的进展,新技术的出现和发展,如多维色质联用(multidimensional liquid chromatography and tan- dem mass spectrometry, MudLC-MS/MS)、表面增强激光解吸离子化-蛋白质芯片系统(surface enhanced laser desorption ion-

ization-proteinchip, SELDI-ProteinChip)、同位素亲和标签(iso- tope-coded affinity tags, ICAT)、胶上差示电泳(differential in- gel electrophoresis, DIGE)等技术,弥补了普通双向电泳上样量和检测极限的局限,自动化、特异性和重复性都得到了加强。

蛋白质组学是研究疾病发生过程中蛋白质变化、生化代谢途径改变和鉴定的有力工具。在药物开发中的作用主要表现在疾病检测、药物靶点发现、药物代谢转化、药物不良反应研究等方面。通过比较正常体与病变体、给药前后蛋白质谱的变化,蛋白质组学技术可提供疾病发生、药物作用和药物不良反应的分子机制信息。通过蛋白质组学鉴定的特异生物标记可作为排查药物的功效、抗性和优选。因此,蛋白质组学在药物研究开发中的各个方面得到了细化,如化学蛋白质组学(chemical proteomics),拓扑蛋白质组学(topological proteomics),临床蛋白质组学(clinical proteomics),毒性蛋白质组学(toxicoproteomics)和药物蛋白质组学(phamiaco- proteormcs),这些“亚蛋白质组学”技术的发展,与基因组学结合,将对药物靶标验正和药物开发引起重大变革。笔者就蛋白质组学及相关技术在药物作用靶

点的探测和验证方面的应用作一概述。

1药靶的探测

与药物作用相关的靶或蛋白质主要有3类:①疾病相关(特异性)蛋白质;②生物标记分子;③信号传导分子。蛋白质组学探测药物作用相关靶点的基本策略是蛋白质

组的比较,即健康与病变组织、细胞或体液(如血清、脊髓液、尿液和气管呼出物等)的蛋白质表达谱差异和表达量变化。蛋白质组学已成功用于肿瘤、糖尿病、艾滋病、关节炎等多种疾病相关蛋白或标记蛋白的检测,成为疾病诊断、监测、治疗的有力工具。例如丹麦人类基因组研究中心Julio Celis实验室从膀胱鳞片状细胞癌(SCC)患者的尿液中分离鉴定了一个生物标记—牛皮癣素(psoriasin),免疫组织化学分析表明该蛋白质在正常人的泌尿系统中不存在,因而成为临床检测膀胱鳞片状细胞癌的标记蛋白。

给药前后蛋白质组比较,是比较蛋白质组学的另一个重要内容,是探测新靶蛋白,深入了解药物作用机制,评价药物不良反应,更合理地设计药物的一个新途径。Chen等利用这个方法,找到了抗MCF-7人乳腺癌药物阿霉素的一个作用靶—Hsp27。

类似的方法也用于探测信号传导途径中

的药物作用靶。信号级联放大系统中信号的传递一般与蛋白质磷酸化/去磷酸化密切

相关。通过合适的预分离技术,如亚细胞蛋白质组制备或用免疫色谱分离磷酸化的亚

蛋白质组,得到与信号传导途径相关的蛋白质组以及在细胞中的定位信息,然后通过双向电泳技术分析蛋白质修饰和表达变化。利用这个方法,Stancato等在人原淋巴细胞

中(经IFN-α或IL2处理)找到了与IFN作用相关的信号传导靶点。

化学蛋白质组学是药靶检测的另一重要

方法。化学蛋白质组是全蛋白质组的一个亚类,指的是经化学标记浓缩的那部分特殊蛋白质。疟原虫入侵血红细胞的阻断靶点探测就是化学蛋白质组学成功应用的一个例子:半胱氨酸蛋白水解酶是疟原虫(plasmodium falciparum)生存必需的酶,Green- baum等利用靶向半胱氨酸蛋白水

解酶的化学探针(1251- DCG-04)打靶,然后通过抗DCG04的生物素纯化,得到了半胱氨酸蛋白水解酶类的亚蛋白质组,通过酶活性分析,最终发现在疟原虫的入侵血红细胞的裂殖期,仅有一个有半胱氨酸蛋白水解酶活性的蛋白质—falcipain 1。从化学数据库筛选到falcipain I的抑制剂YA29-Eps,结果证实YA29-Eps可阻断疟原虫的入侵血红细胞。

最近,一种被称为生色团辅助激光灭活(chromophore-as- sisted laser inactivation,CALI)的化学蛋白质组学方法也被用于蛋白质靶的检测与验证过程。CALL能够直接对蛋白质进行操作,而不是通过对蛋白质量的变化进行检测。将标记有孔雀绿染料的非功能灭活抗体与特异性蛋

白质结合,然后对蛋白质复合物进行激光照射。染料受激光激发短暂的产生活性分子,对结合的蛋白质造成破坏而起到灭活作用,但不影响其他蛋白质组分。所采用的激光波长为620nm,该波长不容易为细胞吸收,因而激光不会对细胞产生破坏作用。所以CALI 是一种能够对活细胞蛋白质精确灭活的新

技术,是药物作用靶点探测和验证的有力工具。目前CALI已经在肿瘤的不同信号传导途径靶的检测中得到应用。例如Jay 等利用CALL技术对ezrin和pp60-c-src蛋白质功能分析,表明这两个蛋白质参与了肿瘤发生过程。

此外,由于传染病仍是引起死亡的主要病症之一,抗感染药物的开发仍是各国研究的热点。蛋白质组学技术可以让人们清楚地了解病原菌蛋白质在抗生素作用下发生改变

的情况,并以此进行新型抗生素药物开发。微生物基因组序列测定的完成为基因组蛋

白质的鉴定提供了基准。利用蛋白质组学技术,Mcatee等研究了幽门螺杆菌(HP)对甲硝唑(NM)的耐药性。对因rdxA基因突变引起中度耐NM的HP2b695株增殖、裂解后进行蛋白质组表达蛋白差异分析,发现有几种蛋白质比正常细菌增加了一倍,并发现AHP(一种存在于各种原核和真核系统中的氧中毒耐受相关的必需酶)的各种亚型的表达水平增加,从而认为HP的Mu耐受表型株的AHP水平升高有较大意义,对HP

的治疗有很大的帮助。因此,除了对动物(包括人)的蛋白质组学研究外,细菌的蛋白质组学也逐渐成为新药研究的一个重要内容,包括病原菌与宿主蛋白质相互作用研究。

蛋白质组学还可以用于药物不良反应作

用靶点的探测,包括药物毒性检测和药物候选时毒性预测。用已知的毒素处理机体组织,比较处理或未处理组织的蛋白质谱变化,可显示出药物的毒性。环孢菌素

A(cyclosporine A, CsA)成功用于器官移植手术和自身免疫疾病的治疗中,但同时具有严重的肾毒性。Aicher等研究了环孢菌素A 对小鼠肾组织的毒性。比较CsA处理/不处理的小鼠肾组织蛋白质2DE图谱,找到了一个经CsA药物作用后表达下调的一个蛋白质calbindin。该蛋白质在肾小管中发现,能与Ca2+结合,起转运功能。病理组织学研究表明calbindin的下降与肾小管内钙化有关。

2 靶点的验证

仅仅检测出与疾病相关的蛋白质(靶)还不足以开始药物的筛选,验证这些蛋白的功能、确定蛋白质在疾病发生过程中所起的作用,对于继续药物发现的过程非常关键。因此靶的验证也是药物发现中的瓶颈之一。研究蛋白质功能、相互作用是靶点验证的主要方法。

酵母双杂交系统(yeast two-hybrid system)是分析蛋白质相互作用强有力的方法之一,不但可以用来在体内检验蛋白质的相互作用,而且还能用来发现基因文库中相互作用的新蛋白质,研究某一特殊蛋白质复合体和蛋白质相互作用网络。其原理是将转录激活因子的DNA结构域(DB)和转录激活结构域(AD)与待检测的一对蛋白质融合(分别称作“诱饵” 和“猎物”),检查报告基因(reporter gene)的表达。因为转录激活因子结构上是组件式的,如果待检测的蛋白质存在相互作用,DB和AD可以形成复合体,报告基因就表达。Vidal 等在酵母双杂交系统基础上发展一种“逆双杂交系统(re- -two-hybrid system)。这项技术的关键是引入了URA 3基因。该基因编码的酶能将5-氟乳清酸(5-FOA)转化为对细胞有毒的物质,蛋白质之间存在相互作用时,URA3基因表达,细胞生长受到抑制,起到了反选择作用。这种逆双杂交系统主要用于鉴定可以干扰蛋白质间相互作用的化合物和多肽。

膜蛋白是一类重要的药物作用靶和受体。因为膜蛋白不能在核内融合构建,所以经典的酵母双杂交系统不能用来分析膜蛋白的

相互作用。Stagljar等发展了一种胞质双杂交系统(cytoplasmic two-hybrid system),也称作断裂-泛素双杂交系统(split-ubiquitin two-hybrid system),可用来研究膜蛋白间的相互作用。泛素是一种在真核细胞中普遍存在的由76个氨基酸组成的蛋白质,结构保守。泛素结合在蛋白质的N 端,可作为泛素特异蛋白酶(ubiquitin-specific protease, UBP)剪切蛋白质的标记。研究发现,如果将泛素C端(Cub,第35-76

位氨基酸)与一个报告蛋白(通常是转录激活因子)构成融合蛋白,让它与N端部分(NubI,第1~34位氨基酸)一起在酵母细胞中共表达,结果发现NubⅠ与Cub能够重新形成有功能的泛素(断裂-泛素),并由UBP识别并切断Cub-报告蛋白之间的共价键,结果报告蛋白从泛素中释放出来。该系统巧妙地解决了膜蛋白之间的相互作用与

核报告基因激活两者在空间上的矛盾。实践中构建NubⅠ融合蛋白时使用了NubⅠ的一个点突变形式NubG,避免了NubⅠ与酵母自身的Cub结合产生假阳性。利用该系统,以proteinA-LexA-VP16为报告蛋

白,Stagljar证明内质网膜上的寡糖基转移酶的两个亚基Wbplp与Ostlp之间存在相互作用,而膜上的另一个蛋白AIg5则与Wbplp 不存在相互作用。

蛋白质芯片的原理是将各种纯化的蛋白

质有序地排列于滤膜或玻片上,然后用荧光标记的蛋白质或小分子、药物为探针与蛋白质芯片保温,漂洗去除未结合探针,进行荧光分析。蛋白质芯片是一种类似于基因芯片的高通量筛选方法,在药物开发中的作用主要有以下几方面:①为药靶筛选先导化合物;②检测与小分子结合的物质(如药物、先导化合物);③研究小分子结构与蛋白质结构结合方式等。Kukam等在蛋白质芯片基础上,发展了红色(RFP)和绿色(GFP)荧光标记蛋白,可实现蛋白质多样品的并行研究和快速高通量功能检测。

生物传感芯片(biosensor chip)是一种新的芯片蛋白质组学方法,可用来鉴定蛋白质复合物、蛋白相互作用的位点、监测蛋白质复合体形成和解离的动态变化、筛选孤儿受体的配体。该技术是基于蛋白质芯片,结合两种仪器分析新技术的基础上发展起来的:表面离子化共振-生物分子相互作用分析传感(surface plasmon

resonance-biomolecular interaction analy- sis,SPR-BIA)或共振镜传感(resonant mirror,RM-BIA)和基质辅助激光解吸飞行时间质谱技术(matrix-assisted

laser-desorp- tion ionization time of flight mass spectrometry,MALDI-TOF- MS)。SPR和RM分别使用玻璃棱镜和波导器传感。SPR的工作原理是:当一束平面单色偏振光以一定角度人射到镀有薄层金膜的

玻璃棱镜表面,入射光的波向量与金膜表面电子振荡频率匹配,引发表面电子共振。入射光以一定角度照射棱镜表面,可使反射光强度达到最小,此人射光角度称作SPR角。

如果金膜表面结合有其他分子,可引起人射光折射率的改变,这种改变与结合的分子质量成正比关系。SPR-BIA基于这一原理,将探针或配体固定于传感器芯片金镀膜的

表面,含分析物的液体流经传感器表面,分子间的特异性结合引起折射率的改变,通过检测SPR信号监测分子相互作用。并可获知相互作用的特异性、浓度关系、动力学过程、亲和性大小,以及是否存在异构效应等。应用MALDI- TDF-MS鉴定传感器表面的分析物,实现了分子相互作用的定性和定量的结合。Werawatgoompa等采用SPR技术对人体内铁蛋白含量进行实时监测,他们将兔抗人铁蛋白抗血清固定于传感器上,通过监测SPR信号检测铁蛋白与抗体的特异性结合。利用该方法可监测血液中浓度范围为25~800 ng. mL _‘的铁蛋白,为临床疾病的诊治提供依据。生物传感芯片已经成为功能蛋白质组学研究的重要方法。

转染细胞微阵列(transfected cell microarray, TCM)是蛋白质芯片的一个补充技术。该阵列(芯片)的特征是由含有过量表达已知cDNA的细胞簇组成。即纳升级的含cDNA的质粒溶于水质的凝胶溶液,然后点于玻片上。含质粒的芯片置于脂质试剂中,形成脂质体DNA复合体,玻片放于培养皿内,然后加入哺乳动物细胞和黏附剂后,质粒可转染到与之接触的细胞中,细胞因而获得了外源DNA而具有新性状。细胞固定化后,可通过原位杂交、免疫荧光或放射自显影显色。转染细胞微阵列可通过功能特征筛选细胞芯片基因表达产物中潜在的

靶点,评价药物先导物的特异性,以及鉴定蛋白质作为未知作用机制的药物或基于表

型芯片的先导物。Ziauddin等检测了转染细胞微阵列表达的192种不同的cDNA,鉴定了包括酪氨酸激酶信号途径、细胞凋亡和黏附相关的多种蛋白质,以及它们在细胞中的不同分布。

另一种常用的蛋白质筛选和鉴定方法是

抗体的使用。如用噬菌体抗体展示(phage antibody display system)建立一个抗体文库,抗体基因与噬菌体衣壳蛋白基因融合,表达后可分泌到噬菌体衣壳的表面(表面呈现,surface display)。然后用目标多肽或蛋白质探针从噬菌体文库种钓出特异的抗

体用于筛选。该技术目标是基于抗体文库构建一个与目标配体相关的蛋白质表达信息

数据库。

3靶点的优化

一种理想的药物应能够特异有效地与干

扰疾病的靶点结合,并且要求安全。对药物靶点的优化,即作为靶点的蛋白质是否为候筛药物的最佳选择,是否为治疗的最佳位点的研究,也是药物发现中非常重要的内容。靶点优化的过程,实际上是综合各种信息的最优算法。

Swindells等报道了优化的蛋白质组学方法用于药物相关靶点的优化和鉴定。利用表达芯片(expression array)鉴定在不同细胞中差异表达的蛋白质转录物。并将实验技术与信息学结合起来,对蛋白质家族进行分类,利用已入药的(蛋白质家族)成员来定义结构域家族,通过BLAST配对将蛋白质归纳入各个划定的家族。应用3D结构数据优化药物相关蛋白与实验检测到的可能靶

的模拟计算预测,并且根据疾病的单核苷酸多态性(SNPs),以及质谱数据解析疾病过程中蛋白质的功能和疾病发生途径,确定最佳的药物作用靶点。此外,将蛋白质组学技术体系与涉及小分子抑制剂、抗体、抗原的一些技术手段整合,将有助于更好地评价、考察靶点的有效性。

药物受体相关蛋白质数据库也为药物开

发过程提供参考。G蛋白偶联受体、离子通道、核受体、蛋白激酶、磷酸化酶、蛋白酶、磷酸二酯酶等是主要的治疗靶标。治疗靶标数据库(therapeutic target database,TTD)(http://

https://www.sodocs.net/doc/2e18624174.html,.sg/group/ttd.ttd.asp)包括了以上几种主要的靶标,数据库总共含有125种疾病的433种治疗靶,以及相对应的809种药物。药物的ADME(absorption,

distribution, metabolism, excretion)相关蛋白质数据库,包括了药物在体内吸收、分布、代谢和排泄过程的331种蛋白质,是合理设计药物的重要参考依据。这些数据库资源,是药物作用靶点的检测、确定和优化过程的重要参考资料,对研究药物的治疗效果、不良反应、药物代谢过程ADME和人体反应有重要辅助作用。

4 展望

蛋白质组学是在基因组学、蛋白质分离分析、质谱技术等成熟和结合的基础上发展起来的一门新学科。它从全局角度研究某一特定蛋白质组的表达、相互作用和不同状态下的动态变化。短短几年内,蛋白质组学的技术和方法有了很大发展,并且不断与其他学科(组合化学,基因组学,生物信息学,药理学等)相整合,呈现出自动化、多维化、信息化的发展态势,一个不断成熟的蛋白质组学方法技术体系正在形成。有理由相信,蛋白质组学的应用将不断扩大,为人类揭开越来越多的生命活动奥秘和规律。从细胞和分子水平上探讨人类重大疾病的机制、诊断、防治和新药开发将提供重要的理论基础,为人类进步和发展作出贡献。

药物毒理学18907

染色体畸变 在某些条件下,染色体的形态结构或树目所发生的异常改变是染色体畸变。 核内复制 核内复制是指在一次细胞分裂过程中,染色体不是复制一次,而是复制两次,而细胞只分裂了一次。 首过代谢或首过效应 指某些药物首次通过肠壁或经门静脉进入肝脏时,被其中的酶所代谢,体致使进入循环的药量减少的一种现象。 体细胞突变学说 体细胞突变学说(somatic mutation theory)认为突变引起的细胞形态变化及功能失调或丧失是人体衰老的重要原因。二倍体细胞中两条染色体上等位基因都被某些突变因素击中时,子代细胞会很快发生形成、功能的改变,甚至死亡。由此可见,二倍体细胞的衰老性改变取决于这种等位基因被击中的比率以及所造成缺陷的水平。 突变 突变是指物种遗传基因在某些物理、化学、生物因素作用下,短期内发生的某些基因序列的变化。 基因突变 基因突变指基因的核苷酸序列或数目发生改变。 蓄积作用

外来化合物一次性进入机体之后,可经代谢或原型排出体外,但当化合物与机体发生亚慢性接触,将反复进入机体,而且当进入的速度或总量超过代谢转化与排出的速度或总量时,化合物就有可能在机体内逐渐增加并贮留,这种现象称为化合物的蓄积作用。 可靠安全系数 药理学的名词,是指会使1%实验总体死亡的1%致死量,相对于可以治疗99%实验总体的99%有效剂量之间的比例(LD1/ED99)。 安全指数及意义 是指基本无害量与基本有效量之比值。其公式为 SI=LD5/ED95。SI价值可以说明药物的临床安全性,但该值往往难以精确地测定出来,因为LD5及ED95处于S型曲线平坦端,测定误差很大。 剂量 剂量:剂量的概念相当广泛,可指给予机体药物的量或与机体各部位接触药物的量,也可指药物被吸收入机体的量、或药物在靶器官作用部位或体液中的浓度等。由于被吸收进入机体靶器官的量不易测定,故剂量一词,一般指给予机体或与机体接触的量,并以每单位体重给予药物的重量来表示,如 g/kg体重,mg/kg体重。 急性毒作用带及其意义 答:急性毒作用带(Zac)是药物的半数致死量与急性毒性最小有作用剂量(阈剂量)的比值来表示。此值愈大,则急性毒性最小有作用剂量与可能引起死亡的剂量(以LD50表示)的差距就愈大,此种药物引起死亡的危险性就愈小;反之,比值愈小,则引起死亡的危险性就愈大。 急性毒性试验剂量水平选择的基本原则 1、以测定LD50及剂量-反应曲线的斜率为目的(10%-50%-90%)

药物毒理学01

药物毒理学Drug Toxicology 陈立峰研究员

第一节药物的基本作用

药物毒理学 第一节毒理学概述 第二节中药不良反应 第三节急性毒性试验 第四节长期毒性试验 第五节特殊毒性试验

第一节毒理学概述 药物毒理学(drugtoxicology):是研究药物对机体有害作用的科学。 主要研究药物不可避免地导致机体全身或局部发生病理学改变,甚至引起不可逆损伤或死亡; 同时也研究药物对机体有害作用的发生、发展与转归,以及毒理机制与危险因素。 由于药品是专供人类防治疾病使用的特殊物质,具有两重性,需要正确评价其药理效应和不良反应,与其他各毒理学分支有所区别。

药物毒理学研究也包括新药上市前的安全性评价和危险性评估。 药物毒理学包括描述性毒理学(descriptive toxicology)、机制毒理学(mechanistic toxicology)和应用毒理学(ap-plied toxicology)。 描述性毒理学:通常仅直接考虑药物毒性的结果,为药物安全性评价和其他常规需要提供毒理学信息。 一般通过动物试验而获得毒性资料,评估药物使用时对人类的毒性作用。

通常在商业性或政府机构的毒性实验室进行研究,以获得药物基本毒性信息(数据库等),用于确定大多数 用药情况下对各种器官的毒性(危害)。 通常研究的内容有急性或长期毒性,包括遗传毒性、生殖毒性和致癌性;机体对毒物的代谢和清除,毒物的吸收、分布与蓄积;以及产生毒性作用的量效试验。机制毒理学:通过研究药物对细胞或组织产生毒性的生理、生化改变,阐明药物对机体毒性作用的机制。通常在细胞组织学、生物化学和分子生物学水平,明确药物产生毒性的生物学过程。

药物毒理复习题B

药物毒理学复习题B 一、概念 1. 剂量 2. 安全指数及意义 3. 非损害作用 4. 非临床研究 5. 急性毒作用带及其意义 6. 致畸性 7. 皮肤毒性试验 8. 毒药 9.微核 二、填空 1. 在点突变中,如果在DNA多核苷酸链上发生嘌呤相互取代或嘧啶相互取代的突变,叫,如果嘌呤取代嘧啶或嘧啶取代嘌呤,称。 2. 是口服药物的主要吸收部位。 3. Ames试验菌株鉴定实验包括:;;。 4. 一个药物的脂水分配系数大,表明其易溶于脂,反之表明易溶于水。凡易溶于脂的物质,在机体内就呈现,而易溶于水则呈现。 5. 是药物对骨髓造血机能最严重的损伤。 6. 胚胎对药物致畸最敏感的时期是,在此时期之前及后则敏感性均较差,如超过一定的时期,则失去敏感性,即使加大剂量也仅仅引起胚胎或胎儿死亡无致畸。 三、判断,正确的划√,错误的划×,不用改正 1. 微粒沉积到呼吸道前其大小可能发生变化。 2. 口服的药物在胃内的停留过程中大部分可被崩解、分散、和溶解。但由于胃缺乏绒毛,故吸收面积有限,除一些弱碱性药物有较好吸收外,大多数药物吸收较差。 3.急性毒作用带(Zac)值愈大,则急性毒性最小有作用剂量与可能引起死亡的剂量( 以LD50 表示) 的差距就愈小,此种药物引起死亡的危险性就愈大。 4. 过敏反应的形成必须具备三个要素:致敏原,致敏条件、激发。

5.芳香族药物中引入羟基后,由于极性增强而减小了毒性。 6. 药物通过结肠的速度较快,并且结肠中分泌液量小,不利于药物的吸收。 7.皮肤急性毒性试验是观察完整皮肤在一次接触外用药物短期内所产生的毒性反应。8.作用量积蓄及功能性蓄积均可用化学方法检测出。 9.葡萄糖—6—磷酸脱氢酶(G6PD) 缺陷人群要慎用伯氨喹啉、磺胺类等氧化类药物。10. 四氯化碳是公认的典型的肝脏毒物,毒性较强,对各种实验动物和人均能造成肝损害,常以它的毒性指数来比较其它肝脏毒物的毒性。 四、简答 1、慢性中毒 2.安全指数及意义 3.Ames试验原理 4. 药物对内分泌系统的毒性作用特点 5. 微生物回复突变的原理 6. GLP的研究过程中需要修改实验方案时,如何办? 五、论述 Ames试验菌株鉴定实验包括哪些内容 药物毒理学复习题B答案 一、概念 1. 剂量:剂量的概念相当广泛,可指给予机体药物的量或与机体各部位接触药物的量,也可指药物被吸收入机体的量、或药物在靶器官作用部位或体液中的浓度等。由于被吸收进入机体靶器官的量不易测定,故剂量一词,一般指给予机体或与机体接触的量,并以每单位体重给予药物的重量来表示,如 g/kg体重,mg/kg体重。 2. 安全指数及意义:安全指数(SI)是指基本无害量与基本有效量之比值。其公式为 :SI=LD5/ED95 3. 非损害作用:非损害作用亦称无损害作用。一般认为非损害作用的特点是不引起机体形态、生长发育和寿命的改变;不引起机体功能容量和机体对额外应激状态代偿能力的损伤,应激状态是外界有害因素在机体引起的所有非特异性生物学作用的总称。

代谢组学在医药领域的应用与进展

代谢组学在医药领域的应用与进展 一、学习指导 1.学习代谢组学的概念及内涵,掌握代谢组学的研究对象与分析方法。 2.熟悉代谢组学数据分析技术手段 3.了解代谢组学优势特点 4.了解代谢组学在医药领域的应用 5.了解代谢组学发展趋势 二、正文 基因组功能解析是后基因组时代生命科学研究的热点之一,由于基因功能的复杂性和生物系统的完整性,必然要从“整体”层面上来理解构成生物体系的各个模块功能。随着新的测量技术、高通量的分析方法、先进的信息科学和系统科学新理论的发展,加上生物学研究的深入和生物信息的大量积累,使得在系统水平上研究由分子生物学发现的组件所构成的生命体系成为可能[1]。系统生物学家们认为,将生命科学上升为“综合”科学的时机已经成熟,生命科学再次回到整合性研究的新高度,逐步由分子生物学时代进入到系统生物学时代[2]。系统生物学不同以往的实验生物学仅关注个别基因和蛋白质,它要研究所有基因、蛋白质,代谢物等组分间的所有相互关系,通过整合各组成成分的信息,以数学方法建立模型描述系统结构[3,4]。 (一)代谢组学的概念及内涵 代谢组学是继基因组学、转录组学和蛋白质组学之后,系统生物学的重要组成部分,也是目前组学领域研究的热点之一。代谢组学术语在国际上有两个英文名,即metabolomics 和metabonomics。Metabolomics是由德国的植物学家Fiehn等通过对植物代谢物研究提出来的,认为代谢组学(metabolomics)是定性和定量分析单个细胞或单一类型细胞的代谢调控和代谢流中所有低分子量代谢产物,从而监测机体或活细胞中化学变化的一门科学[5]。英国Nicholson研究小组从毒理学角度分析大鼠尿液成份时提出了代谢组学(Metabonomics)的概念,认为代谢组学是通过考察生物体系受扰动或刺激后(如某个特定基因变异或环境变化后),其代谢产物的变化或代谢产物随时间的变化来研究生物体系的代谢途径的一种技术[6]。国内的代谢组学研究小组基本用metabonomics一词来表示“代谢组学”。严格地说,代谢组学所研究的对象应该包括生物系统中所有的代谢产物。但由于实际分析手段的局限性,只对各种代谢路径底物和产物的小分子物质(MW<1Kd)进行测定和分析。 (二)代谢组学优势特点 代谢组学作为系统生物学的一个重要组成部分,代谢组可以更好地反映体系表型生物机体是一个动态的、多因素综合调控的复杂体系,在从基因到性状的生物信息传递链中,机体需通过不断调节自身复杂的代谢网络来维持系统内部以及与外界环境的正常动态平衡[7]。

药物代谢酶和药物作用靶点基因检测技术指南(试行)

药物代谢酶和药物作用靶点基因检测技术指南(试行)

前言 药物体内代谢、转运及药物作用靶点基因的遗传变异及其表达水平的变化可通过影响药物的体内浓度和敏感性,导致药物反应性个体差异。近年来随着人类基因组学的发展,药物基因组学领域得到了迅猛发展,越来越多的药物基因组生物标记物及其检测方法相继涌现。药物基因组学已成为指导临床个体化用药、评估严重药物不良反应发生风险、指导新药研发和评价新药的重要工具,部分上市的新药仅限于特定基因型的适应症患者。美国FDA已批准在140余种药物的药品标签中增加药物基因组信息,涉及的药物基因组生物标记物42个。此外,部分行业指南也将部分非FDA批准的生物标记物及其特性(如MGMT基因甲基化)的检测列入疾病的治疗指南。药物反应相关基因及其表达产物的分子检测是实施个体化药物治疗的前提。 药理学与遗传学结合的关键环节包括药物代谢动力学(pharmacokinetics,PK)和药物效应动力学(pharmacodynamics,PD)两方面。药物代谢动力学主要是定量研究药物在生物体内吸收、分布、代谢和排泄规律,侧重于阐明药物的体内过程;药物效应动力学主要研究药物对机体的作用、作用规律及作用机制,其内容包括药物与作用靶位之间相互作用所引起的生化、生理学和形态学变化,侧重于解释药物如何与作用靶点发生作用。对药物代谢酶和药物靶点基因进行检测可指导临床针对特定的患者选择合适的药物和给药剂量,实现个体化用药,从而提高药物治疗的有效性和安全性,防止严重药物不良反应的发生。目前美国FDA和我国食品药品监督管理局(CFDA)都已批准了一系列的个体化用药基因诊断试剂盒。这些试剂盒基本都是对人DNA样本进行基因检测。而在基因表达的检测方面,由于RNA的稳定性差,样本处置不当可导致目标RNA降解,使得检测结果不准确,影响临床判断。因此,RNA检测试剂的研发相对滞后。 本指南旨在为个体化用药基因检测提供一致性的方法。本指南中所指的药物基因组生物标志物不包括影响抗感染药物反应性的微生物基因组变异。此外,肿瘤靶向治疗药物个体化医学检测指南见《肿瘤个体化治疗的检测技术指南》。 本指南起草单位:中南大学湘雅医院临床药理研究所、中南大学临床药理研究所、中南大学湘雅医学检验所,并经国家卫生计生委个体化医学检测技术专家委员会、中国药理学会药物基因组学专业委员会、中国药理学会临床药理学专业委员会和中华医学会检验分会组织修订。 本指南起草人:周宏灏、陈小平、张伟、刘昭前、尹继业、李智、李曦、唐洁、俞

发现毒理学的研究进展

*基金项目:国家高技术研究发展计划(863计划)基金(2002AA2Z342D 和2004A A2Z3774) 综 述 发现毒理学的研究进展 * 王全军,吴纯启,廖明阳 (军事医学科学院毒物药物研究所,国家北京药物安全评价研究中心,北京100850) [摘要] 发现毒理学又称为开发前毒理学(Predevelopmental Toxicology),是指在创新药物的研发早期,对所合成的系列新化合物实体(New Chemical Entities,NCEs)进行毒性筛选,以发现和淘汰因毒性问题而不适于继续研发的化合物,指导合成更安全的同类化合物。发现毒理学的研究既可加快药物研发进程,提高研发成功率,又减少资源消耗。笔者就发现毒理学研究的定义、必要性、研究内容、研究方法和我国当前的研究现状作一简述。 [关键词] 发现毒理学;新化合物实体(NCEs);毒性筛选 [中图分类号]R994 1;R965 1 [文献标识码]A [文章编号]1003-3734(2005)08-0958-04 Progresses of discovery toxicology research W ANG Quan jun,W U Chun qi,LI AO Ming yang (Institute o f Pharmacology and To xicology ,Academ y o f Military Medical Sciences ,National Beijing Center f o r Drug Sa fety Evaluation and Research ,Beijing 100850,China )[Abstract ] Discovery toxicology,also named predevelopmental toxicology,is to screen toxicities of new che mical entities (NCEs)in the discovery phase of ne w drug research,to discover and eliminate the compounds that are unsuitable for further development due to their toxicity as early as possible,and to optimize the next more safe compounds.Discovery toxicology research can break through the limitation and improve the efficiency of drug research.This article will present the concept of discovery toxicology,the essentiality of discovery toxicology research.The content,methods and current status of discovery toxicology in China are described too. [Key words ] discovery toxicology;new chemical entities(NCEs);toxicity screening 药物研发成功与否部分取决于在研发早期严格淘汰不适合进一步研发的化合物。在药物临床前阶段,毒性问题是研发失败的主要原因。在研发早期尽早发现候选化合物的潜在毒性是毒理学研究的重要问题。 多年来,新药研发越来越多地依赖于生命科学技术的研究进展。在新药设计方面,化学家参考药物作用靶、内源性配体和底物的化学结构特征,应用计算机辅助药物设计手段发现选择性作用于靶位的新药;在新药活性筛选方面,现代药物组合化学与体外高通量筛选的成功结合极大地提高了先导化合物的发现速度;在新药的药动学(ADME)研究方面,多种基于药物代谢酶或转运体的药动学筛选模型已开始应用于新药开发研究。这些新技术的成功运用大 大加快了药物研发早期的药物发现、药物合成、药效筛选的进程,从而产生大量的候选化合物。传统药物毒理学研究在时间、经费、样品消耗量和动物数等方面都花费巨大,在药物毒作用机制研究方面难以阐明一些临床使用药物的毒性机制和理想的应急解毒措施,因此传统药物毒理学无法满足因新的生物技术而产生的海量候选化合物的毒性筛选研究,成为限制整个药物研发的瓶颈。而发现毒理学(Discovery Toxicology)的研究将打破这个瓶颈,既可加快药物研发进程,提高研发成功率,又减少资源消耗。笔者就发现毒理学研究的含义、必要性、研究内容、研究方法和我国当前的研究现状作一简要综述。1 定义、产生背景和产生的必要性 伴随着科学技术的发展,当代毒理学的发展将 958

药物毒理学重点复习知识总结

药物毒理学简答总结 第三章 一、简述肝损伤的类型及主要代表药 1.肝细胞死亡:对乙酰氨基酚、烷化剂 2.脂肪肝:丙戊酸、四环素 3.小管胆汁淤积:第一代头孢菌素、环孢素 4.胆道损害:亚甲基二本胺 5.肝纤维化:甲氨蝶呤、维生素A 6.血管损伤:达卡巴嗪 7.过敏性肝炎:氯丙嗪、氟烷 8.肝肿瘤:雄激素类、亚硝酸盐 二、肝脏是药物毒性靶器官的原因 1.血供丰富(1.5L/min) 2双重血供(门静脉2/3) 3.肝脏是重要代谢器官 4.肝血窦结构特殊 5.胆汁形成排泄 三、简述肝损伤的类型和主要代表药 第四章 一、.药物引起肾脏损伤的类型有哪些 ①性肾小管坏死 药物:氨基糖苷类、一、二代头孢、多粘菌素、过量阿司匹林、过量对乙酰氨基酚、金属离子、两性霉素B、麻醉药 ②小球肾炎和肾病综合征 药物:非甾体类抗炎药、锂盐、含巯基药物、阿霉素、丝裂霉素C、金属、汞制剂、吲哚美素、保泰松、利福平、磺胺类、海洛因 ③质性肾炎 药物:青霉素、头孢菌素类、氨基糖苷类、利福平、非甾体抗炎药、磺胺类、普萘洛尔、干扰素等 ④阻性肾脏衰竭(原因:结晶在肾小管沉积)药物:呋塞米、抗癌药、磺胺类 ⑤疮样综合征圈6其它:锂盐 药物:异烟肼、普鲁卡因胺、甲基多巴、苯妥英钠、氯丙嗪、利血平、奎尼丁、金制剂

二、肾是药物毒性靶器官的原因 1.血流丰富 2.肾小管浓缩 3.尿液PH变化 4.也可进行生物转化 5.免疫复合物易沉着 第五章 一、请例举临床上常见的心血管毒性药物 抗心律失常药: 奎尼丁,利多卡因等,是心脏传导速率减慢,早期心律失常,心动过缓,传导阻滞等; 洋地黄毒苷,地高辛等影响动作电位延续时间,AV传导减慢; 儿茶酚胺类药物如多巴酚丁酚,扎莫特罗等导致心动过速,心肌细胞死亡; 支气管扩张药:如肾上腺素,异丙肾上腺素等导致心动过速; 抗肿瘤药:如多柔比星等导致心肌病,心力衰竭; 抗病毒药:如利巴韦林等导致心肌病。 二、药物对心血管损伤类型 1.心力衰竭 2.心律失常(冲动形成异常冲动传导异常) 3.心肌炎与心肌病 4.心包炎 5.心脏瓣膜病 6.高血压 7.低血压 8.血管炎 三、.药物对心血管系统的毒性作用的机制有哪些 ①干扰离子通道和离子稳定:干扰Na离子通道、K离子通道、Ca离子通道、影响细胞内Ca 离子稳定 ②改变冠脉流量和心肌能量代谢 ③细胞凋亡与坏死,可诱导心肌凋亡药物:可卡因、罗红霉素、异丙肾上腺 第六章 一、试述药物对呼吸系统的毒性作用 1、呼吸抑制 (1)吗啡:急性中毒致死的主要原因 (2)巴比妥类:抑制呼吸中枢 (3)筒箭毒碱:阻断呼吸及神经肌肉接头的N2受体,引起呼吸麻痹。 2、哮喘 (1)解热镇痛抗炎药:某些哮喘患者服阿司匹林或其他解热镇痛抗炎药后可诱发哮喘,称为“阿司匹林哮喘”。 (2)β-受体阻断药:阻断支气管平滑肌上β2受体,导致支气管收缩,引发哮喘。 (3)拟胆碱药:毛果芸香碱、乙酰胆碱等可兴奋支气管平滑肌上的M受体,导致支气管收缩,引发哮喘。 (4)麻醉性药物:氯胺酮、普鲁卡因胺、利多卡因可引起支气管痉挛,引发哮喘 (5)其他:青霉素、头孢、磺胺类、喹诺酮类、多粘菌素B、新霉素、四环素等抗菌药,疫苗、抗毒素、血清等生物制品(机制:1型变态反应)

代谢组学研究进展综述

代谢组学技术及其在中医研究中的探讨 姓名:郭欣欣学号:22009283 导师:刘慧荣 代谢组学(metabonomics) 是20世纪90年代中期发展起来的一门新兴学科,是关于生物体系受刺激或扰动后(如将某个特定的基因变异或环境变化后) 其代谢产物(内源代谢物质) 种类、数量及其变化规律的科学。它研究的是生物整体、系统或器官的内源性代谢物质的代谢途径及其所受内在或外在因素的影响。常用的方法是检测和量化一个生物整体代谢随时间变化的规律;建立内在和外在因素影响下,代谢整体的变化轨迹,反映某种病理(生理) 过程中所发生的一系列生物事件。 1 代谢组学研究技术平台 代谢组学研究的技术平台包括以下几个部分:前期的样品制备,中期的代谢产物检测、分析与鉴定以及后期的数据分析与模型建立。 前期代谢组学研究常用的检测技术,一般不需要对标本行特别的分离、纯化等。但离体条件下,细胞或组织内的代谢状态可迅速改变,代谢物的质与量亦随之变化,为正确反映在体的真实信息,须立即阻断内在酶的活性。最为常用的是冰冻/液氮降温法及冷冻、干燥的保存技术,尽管如此,细胞间仍始终有一低水平的代谢活动,需尽量避免氧化等活化因素。 中期代谢产物的检测、分析与鉴定是代谢组学技术的核心部分,最常用的是NMR及质谱(MS)两种。 核磁共振技术是利用高磁场中原子核对射频辐射的吸收光谱鉴定化合物结构的分析技术,生命科学领域中常用的是氢谱( 1H NMR ) 、碳谱(13C NMR)及磷谱(31P NMR)三种。可用于体液或组织提取液和活体分析两大类。 NMR技术在代谢组学中的应用越来越广泛,它具有如下优点: ①无损伤性,不破坏样品的结构和性质; ②可在一定的温度和缓冲范围内进行生理条件或接近生理条件的实验; ③与外界特定干预相结合,研究动态系统中机体化学交换、运动等代谢产物的变化规律; ④实验方法灵活多样。但仪器价格及维护费用昂贵限制了该技术的进一步普及。 质谱技术是将离子化的原子、分子或是分子碎片按质量或是质荷比(m/e)大小顺序排列成图谱,并在此基础上,进行各种无机物、有机物的定性或定量分析。新的离子化技术则使质谱技术的灵敏度和准确度均有很大程度的提高。NMR技术与MS技术相比,各有其优缺点,需要在研究中灵活选用。总体而言,NMR技术应用的更为广泛。此外,根据代谢组学的研究需要,还常用于其他的一些分析技术,如气相色谱(GC) ,高效液相色谱仪(HPLC) ,高效毛细管电泳(HPCE)等。它们往往与NMR或MS技术联用,进一步增加其灵敏性。但不容忽视的是,随着分析手段更新,敏感性及分辨率提高,“假阳性”的概率也就越大,可能是仪器技术方法固有的,亦或是数据分析过程中产生的。 后期代谢组学研究的后期需借助于生物信息学平台。它往往借助于一定的软件,联合多种数据分析技术,将多维、分散的数据进行总结、分类及判别分析,发现数据间的定性、定量关系,解读数据中蕴藏的生物学意义,阐述其与机体代谢的关系。如果说分析技术在我们面前打开了“一扇门”,正确的数据分析方法和模型建立便是“找到宝藏”的钥匙。 主成分分析法( PCA) 是最常用的分析方法。其将分散于一组变量上的信息集中于几个综合指标(PC)上,如糖代谢、脂质代谢、氨基酸代谢等,利用主成分描述机体代谢的变化情况,发挥了降维分析的作用,避免淹没于大量数据中。其他的模式识别技术,如聚类分析、辨别式功能分析、最小二乘法投影法等在代谢组学研究中亦有其重要的地位。 现实情况下,代谢组学的数据更为复杂,特别是NMR对病理生理过程的研究,将代谢物的表达谱与时间相联系,分析时更加困难,需要借助复杂的模型或是专家系统进行分析(在应用

药用植物代谢组学的研究进展

药用植物代谢组学的研究进展 【摘要】从技术步骤、分析方法以及实际应用三个方面对当前药用植物代谢组学研究领域的一些理论问题和实践中面临的挑战进行综述。 【关键词】药用植物;代谢组学;功能基因组学 代谢组学是对生物体内代谢物进行大规模分析的一项技术[1],它是系统生物学的重要组成部分(如图1所示),药用植物代谢组学主要研究外界因素变化对植物所造成的影响,如气候变化、营养胁迫、生物胁迫,以及基因的突变和重组等引起的微小变化,是物种表型分析最强有力的工具之一。在现代中药研究中,代谢组学在药物有效性和安全性、中药资源和质量控制研究等方面具有重要理论意义和应用价值。另外,在对模式植物突变体文库或转基因文库进行分析之前,代谢组学往往是首先考虑采用的研究方法之一。目前,国外已有成功利用代谢组学技术对拟南芥突变株进行大规模基因筛选的例子,这为与重要性状相关基因功能的阐明和选育可供商业化利用的转基因作物奠定了基础 目前,还有许多经济作物的全基因组测序计划尚未完成,由于代谢组学研究并不要求对基因组信息的了解,所以在与这些作物有关的研究领域具有更大的利用价值,这也是其与转录组学和蛋白组学研究相比的优势之一。代谢组学研究涉及与生物技术、分析化学、有机化学、化学计量学和信息学相关的大量知识,Fiehn[2]对代谢组学有关的研究方向进行了分类(见表1)。 1代谢组学研究的技术步骤 代谢组学研究涉及的技术步骤主要包括植物栽培、样本制备、衍生化、分离纯化和数据分析5个方面(见图2)。 1.1植物栽培 对研究对象进行培育的目的是为了对样本的稳定性进行控制,相对于微生物和动物而言,植物的人工栽培需要考 表1代谢组学的分类及定义略 虑更多的问题,如中药材在不同年龄、不同发育阶段、不同部位以及光照、水肥、耕作等环境因素的微小差异都可引起生理状态的变化,而这些非可控及可控双重因素的影响很难进行精确的控制,从而影响药用植物代谢组研究的重复性。为了解决以上问题,推荐使用大容量的培养箱[3],定时更换培养箱中栽培对象的位置,以及使用无土栽培技术等,Fukusaki E[4]利用无土栽培系统将水和养分直接引入植物根部,并且对供给量进行精确地控制,大大提高了实验的重复性。 1.2样本制备 为了获得稳定的实验结果,样本制备需要考虑样本的生长、取样的时间和地点、取样量以及样本的处理方法等问题,并根据分析对象的分子结构、溶解性、极性等理化性质及其相对含量大小对提取和分离的方法进行选择,逐一优化试验方案。Maharjan RP等[5]用6种方法分别对大肠杆菌中代谢产物进行提取,发现用-40℃甲醇进行提取的效果最好。现阶段代谢组学的分析对象主要集中在亲水性小分子,尤其是初级代谢产物,气相色谱 质谱联用(GC MS)和毛细管电泳 质谱(CE MS)联用都是分析亲水小分子的重要技术。Fiehn O等[6]使用GC MS 对拟南芥叶片中的亲水小分子进行了分析,发现酒石酸半缩醛、柠苹酸、别苏氨酸、羟基乙酸等15种植物代谢物。 1.3衍生化处理 对目标代谢产物的衍生化处理取决于所使用的分析设备,GC MS系统只适

13 药物毒理学绪论

第一章药物毒理学绪论 药物毒理学(drug toxicology):研究药物对机体的毒性反应、中毒机制及其防治方法的一门独立的学科,它也就是药理学研究不可缺少的内容之一。 ?就是研究药物对生命有机体有害作用的科学 ?就是毒理学的分支学科之一 ?就是一门与药学、药理学、临床药物治疗学密切相关与交叉的药学边缘学科。 第一节毒理学概述 毒理学 (toxicology) : 传统毒理学:研究外源化学物对生物体损害作用的学科。 现代毒理学:以毒物为工具,在实验医学与治疗学的基础上,发展为研究化学、物理与生物因素对机体的损害作用、生物学机制、危险度评价与危险度管理的科学。 一、毒理学简史: (一)古代与中世纪毒理学 ?萌芽 5000前(3000-2000 B、C),有文字记载约3500年历史。 ?最早的毒物研究开始于1500 B、C,人类最早的医书、古埃及的《埃伯斯草文稿》已记载了700多种的毒物与药物,如毒芹、铅与锑等。 ?公元50年希腊医生迪奥斯克理德斯(Dioscorides)所著的《药物论》,把毒物分成动物、植物与矿物,描述配图,成为之后16世纪毒物的主要资料。 ?我国明朝初的《本草纲目》等也记载了有关毒物。如砒石、钩吻、乌头、番木鳖等。 (二 )启蒙时代毒理学 ?产业革命前 由于社会上中毒、误服——法医毒理学 化学药物的合成——药物毒理学 ?产业革命后(19世纪) 工业革命快速发展,职业中毒——工业毒理学

(三 )现代毒理学 ?二次世界大战药品、农药、工业化学物生产的大量增加,毒理学研究亦应运而生。 ? 20世纪20年代许多药物毒性事件的发生,形成了毒理学研究的雏形:砷中毒、氨基比林退热、 2,4二硝基酚减肥、磺胺事件等。 ? 20世纪50年代,FDA对毒理学的职能开始加强 ? 20世纪60年代,震惊世界的“反应停事件”极大地推动了毒理学科学的发展。 1、现代毒理学特点: ?研究范围不断扩大,合作研究机构应运而生。 ?研究内容不断深入,并取得了一些突破性进展。 ?在宏观管理与立法方面的作用日益重要,危险度评定开始成为现代毒理学研究的主要目的与任务。 ?趋于早期参与新产品开发,与经济发展的关系更加密切。 ?学术队伍不断壮大,国际间学术交流不断发展。 2、众多学科交叉渗透 3、从高度综合到高度分化 4、新技术新方法在毒理学研究的应用 基因组学、蛋白质组学的原理与技术的发展与应用,为建立高通量毒性检测、有害因素鉴定方法提供了技术支特 生物标志物的研究与确定,为工业毒物、药物、环境毒物的危险度评价提供了工具。 5、系统毒理学 人类基因组计划(HGP,1990启动) 环境基因组计划(EGP,1998启动) 毒理基因组学(Toxicogenomics,2000) 系统毒理学(Systems toxicology,2002) …… 二、毒物(toxicant)

代谢组学的发展与药物研究开发

专 论代谢组学的发展与药物研究开发X 刘昌孝 (天津药物研究院,天津药代动力学与药效动力学省部共建国家重点实验室,天津 300193) 摘 要 代谢组学是近年来新发展起来的一门组学,其主要研究体系有生物体液、生物组织及单个细胞的代谢组,利 用一些现代的分析技术,如N M R、L C-M S、G C-M S等,取得整个研究体系的多维数据后,利用模式识别和专家系统技术寻 找其中的系统生物学信息。本文从代谢组学的发展,代谢组学的研究范围和研究方法,以及在药物的作用机制和安全性评 价,疾病模型,特别是中药研究的应用等方面予以阐述。 关键词 代谢组学,药物研究开发,作用机制,安全性评价,中药现代研究,疾病诊断 中图分类号:R969 文献标识码:A 文章编号:1006-5687(2005)02-0001-06 Development of metabonomics and drug research and development Liu Chang xiao T ianjin K ey L abor ato ry of P harmaco kinetics and phar macodynamics,T ianjin I nstitute of Phar maceutical R esea rch,T ian-jin,300193 Abstract M etabo no mics is a new"-omics"science developed in r ecent year s.Its major r esearch objects co ver bio-fluid, bio-tissue and metabolome of sing le cell.M odern a nalyt ical techno lo gies such as N M R,L C-M S and G C-M S are used to obtain multi-dim ensio nal data fo r the w hole resear ch sy st em,then pat tern r eco gnit ion and ex pert sy stems are emplo yed to ext ract systemat ic bioinfo rmat ion.In this r eview,the development of met abo nomics,r esearch field,resear ch metho ds and applicatio ns fo r mechanism o f drug action,dr ug to xicity screening,clinical safety and disease diag no sis,specifically in tr aditio na l Chinese medicines ar e intr oduced. Key words M etabonomics,dr ug r esearch and development,m echanism o f dr ug action,dr ug to xicity,tr aditio nal Chinese medicine,disease diagnosis 1 代谢组学研究的形成和发展 基因组(g enome)是指某一生物的所有DNA;基因组学是一门研究生物的整个基因组的科学。转录物组(transcriptome)是指某一生物或细胞所有基因表达的RN A;转录物组学是一门对某一生物或细胞所有基因表达的RNA(如mRNA)进行全面分析的科学。蛋白质组(pro teom e)是指某一生物或细胞在各种不同环境条件下表达的所有蛋白质;蛋白质组学是一门对某一生物或细胞在各种不同环境条件下表达的所有蛋白质进行定性和定量分析的科学。转录组学和蛋白质组学是分别在基因的转录和转录后的蛋白质翻译与修饰两个水平上,研究基因的功能。代谢组学相对于其它组学而言还是一门较新的组学,不过已经显示了其在药物发现过程中的巨大潜力,它可以在药物发现过程的前期就能识别药物的毒性,避免了药物发现过程中的损耗。代谢组学研究有希望成为新药发现与研发过程的一个必需部分[1]。代谢组学作为一门新发展的技术,它是通过考察生物体系受刺激或扰动后(如将某个特定的基因变异或环境变化后)其代谢产物的变化或其随时间的变化,来研究生物体系的代谢途径的一种技术[2]。最初人们提出了代谢物组(m etabo lome)的概念,严格地说,代谢物组应该是指某一生物或细胞所有的代谢产物(m etabolite)。在实际工作中,由于分析手段的局限性,更多的人倾向于把代谢物组局限于某一生物或细胞中所有的低分子量代谢产物。与基因组学、转录组学和蛋白质组学相对应,即代谢物组学是一门对某一生物或细胞所有低分子量代谢产物进行定性和定量分析,以监测活细胞中化学变化的科学。 在人们逐步的研究过程中,提出了一些相关概念,如代谢物靶目标分析(m etabo lite target analysis),代谢轮廓(谱)分析(m etabolic profiling analy sis),代谢组学(metabo no mics)或代谢物组学(m etabo lomics), 1 X收稿日期:2005-04-01 作者简介:刘昌孝,男(1942-),中国工程院院士,研究员,教授,博士生导师,主要从事药理学和药物代谢动力学的研究。现任天津药代动力学与药效动力学部省共建国家实验室主任,国家医药管理局天津药代动力学与临床药理学研究室主任等职。承担国家重大研究项目25项,领导完成100余个新药的药代动力学研究,获得27项科技成果奖,在国内外发表论文200多篇,中英文版专著12部。

药物毒理学绪论

第一章药物毒理学绪论 药物毒理学(drug toxicology):研究药物对机体的毒性反应、中毒机制及其防治方法的一门独立的学科,它也是药理学研究不可缺少的内容之一。 ?是研究药物对生命有机体有害作用的科学 ?是毒理学的分支学科之一 ?是一门与药学、药理学、临床药物治疗学密切相关和交叉的药学边缘学科。 第一节毒理学概述 毒理学 (toxicology) : 传统毒理学:研究外源化学物对生物体损害作用的学科。 现代毒理学:以毒物为工具,在实验医学和治疗学的基础上,发展为研究化学、物理和生物因素对机体的损害作用、生物学机制、危险度评价和危险度管理的科学。 一、毒理学简史: (一)古代与中世纪毒理学 ?萌芽 5000前(3000-2000 B.C),有文字记载约3500年历史。 ?最早的毒物研究开始于1500 B.C,人类最早的医书、古埃及的《埃伯斯草文稿》已记载了700多种的毒物和药物,如毒芹、铅和锑等。 ?公元50年希腊医生迪奥斯克理德斯(Dioscorides)所著的《药物论》,把毒物分成动物、植物和矿物,描述配图,成为之后16世纪毒物的主要资料。 ?我国明朝初的《本草纲目》等也记载了有关毒物。如砒石、钩吻、乌头、番木鳖等。 (二 )启蒙时代毒理学 ?产业革命前 由于社会上中毒、误服——法医毒理学 化学药物的合成——药物毒理学 ?产业革命后(19世纪)

工业革命快速发展,职业中毒——工业毒理学 (三 )现代毒理学 ?二次世界大战药品、农药、工业化学物生产的大量增加,毒理学研究亦应运而生。 ? 20世纪20年代许多药物毒性事件的发生,形成了毒理学研究的雏形:砷中毒、氨基比林退热、 2,4二硝基酚减肥、磺胺事件等。 ? 20世纪50年代,FDA对毒理学的职能开始加强 ? 20世纪60年代,震惊世界的“反应停事件”极大地推动了毒理学科学的发展。 1.现代毒理学特点: ?研究范围不断扩大,合作研究机构应运而生。 ?研究内容不断深入,并取得了一些突破性进展。 ?在宏观管理和立法方面的作用日益重要,危险度评定开始成为现代毒理学研究的主要目的和任务。 ?趋于早期参与新产品开发,与经济发展的关系更加密切。 ?学术队伍不断壮大,国际间学术交流不断发展。 2、众多学科交叉渗透 3、从高度综合到高度分化 4、新技术新方法在毒理学研究的应用 基因组学、蛋白质组学的原理和技术的发展和应用,为建立高通量毒性检测、有害因素鉴定方法提供了技术支特 生物标志物的研究和确定,为工业毒物、药物、环境毒物的危险度评价提供了工具。 5. 系统毒理学 人类基因组计划(HGP,1990启动) 环境基因组计划(EGP,1998启动) 毒理基因组学(Toxicogenomics,2000) 系统毒理学(Systems toxicology,2002) ……

代谢组学研究技术进展

·综述· 代谢组学研究技术进展 胡正青a,林夏珍a,郭明b*(浙江林学院,a. 园林学院;b. 理学院化学系,浙江临安 311300) 摘要:目的介绍代谢组学研究技术的最新进展。方法综合国内外文献报道,介绍当前代谢组学研究中样品制备、仪器分析技术、数据处理方法和结果分析的最新研究概况。结果代谢组学研究技术取得了一定进步,拓宽了代谢组学的应用范围。结论自动化、标准化、整合化和完整化将是代谢组学研究技术的发展方向。 关键词:代谢组学;研究进展;系统生物学;分析技术;综述 中图分类号:Q591 文献标志码:A 文章编号:1007-7693(2010)06-0485-06 Advances in Research Techniques of Metabonomics HU Zhengqing a, LIN Xiazhen a, GUO Ming b*(Zhejiang Forestry University, a.School of Landscape Architecture, b. Department of Chemistry, Lin’an 311300, China) ABSTRACT: OBJECTIVE To introduce the new advances in research techniques of metabonomics. METHODS Make a summary of both national and overseas papers about matabonomics, and introduce the latest development in sample preparation, instrument analytical techniques, data processing and results analysis. RESULTS Research techniques of metabonomics have made certain progress and extend applied fields of metabonomics. CONCLUSION Automation, standardization, integration of multi-disciplinary and completeness will be the orientation for the future development of metabonomic techniques. KEY WORDS: metabonomics; research evolution; systems biology; analytical technique; review 代谢组学是继基因组学、转录组学和蛋白质组学之后迅速发展起来的一门新兴学科,它以生物系统中的代谢产物(由于实际分析手段的局限性,目前主要针对相对分子质量1 000以下的小分子)为分析对象,以高通量、高灵敏度、高分辨率的现代仪器分析方法为手段,结合模式识别等化学计量学方法,分析生物体系受刺激或扰动后(如将某个特定的基因变异或环境变化后)其代谢产物的变化或其随时间的变化规律。英文文献中,早期的代谢组学研究使用了两个不同的术语:metabolomics和metabonomics。前者侧重以单个细胞作为研究对象,Fiehn等[1]将其定义为定性和定量分析单个细胞或单一类型细胞的代谢调控和代谢流中所有低分子量的代谢产物。后者一般以动物的体液和组织为研究对象,Nicholson等[2]将其定义为生物体对病理生理或基因修饰等刺激产生代谢物质动态应答的定量测定。随着代谢组学的研究发展,不管是在植物和微生物研究领域,还是在病理生理研究领域,这两个名词已经基本等同使用。目前国内的代谢组学研究小组达成共识,以metabonomics来表示“代谢组学”。 在代谢组学的研究过程中,代谢组学的一些相关概念也不断被提出来,目前已获得广泛认同的研究层次有:①代谢物靶标分析;②代谢轮廓(谱)分析;③代谢指纹分析;④代谢组学。严格地说,只有第4层次才是真正意义上的代谢组学研究,但是目前还没有发展出一种可以涵盖所有代谢物而不管分子大小和性质的代谢组学技术。 代谢组学相对于其他组学更能反映生物体的整体信息,这是因为代谢物处于生物系统生化活动调控的末端,反映的是已经发生了的生物学事件,基因表达和蛋白质的变化对系统产生的影响都可在代谢物水平上得到体现,所以从理论上来说,代谢组学分析所提供的信息更能够揭示生物体系生理和生化功能状态,对进行功能基因组的研究提供了极大便利。代谢组学与转录组学和蛋

相关主题