搜档网
当前位置:搜档网 › 教师版:圆锥曲线综合问题

教师版:圆锥曲线综合问题

教师版:圆锥曲线综合问题
教师版:圆锥曲线综合问题

圆锥曲线综合问题

一、直线与圆锥曲线

1.直线l 与圆锥曲线C 位置关系的判断: 相交: 相切: 相离:

2.过圆锥曲线C 上一点(,)o o P x y 的切线方程、过圆锥曲线C 外一点(,)o o P x y 的切点弦方程:

椭圆:22

221x y a b +=

双曲线:22

221x y a b

-=

抛物线:22y px =

3.已知圆锥曲线C 中的弦AB 中点00(,)M x y ,求AB 的斜率和方程:

(点差法) 椭圆:22

221x y a b

+=

双曲线:22

221x y a b

-=

抛物线:22y px =

例1 (05,湖北,21)设,A B 是椭圆223x y λ+=上的两点,点(1,3)N 是线段AB 的中点,试求λ的取值范围和直线AB 的方程.

与夹角有关的问题,一般可以考虑用向量积或余弦定理求解.

例2(07,四川,20)设1F 、2F 分别是椭圆14

22

=+y x 的左、右焦点,设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 斜率k 的取值范围. 解:显然直线0x =不满足题设条件,可设直线()()1222:2,,,,l y kx A x y B x y =-,

联立222

14y kx x y =-???+=??,消去y ,整理得:22

14304k x kx ??+++= ??? ∴12122243,1144

k x x x x k k +=-?=++ 由()2

2

14434304k k k ?

??=-+

?=-> ?

??

得:k <

或k >①. 又0

0090cos 000A B A B OA OB <∠??>

∴12120OA OB x x y y ?=+>

又()()()2

121212122224y y kx kx k x x k x x =++=+++2

2

22

3841144

k k k k -=++++

22114k k -+=+

2223

1

01144

k k k -++>++

,即24k < ∴22k -<< ②

故由①、②得2k -<<

2k << 注:斜率存在的直线方程可设为:y kx b =+;斜率不为0的直线方程可设为:x ty m =+.

练习1过抛物线22(0)x py p =>的焦点F 作直线交抛物线于,A B 两点,O 为坐标原点.判断ABO ?是什么三角形(锐角、直角或钝角).

一般曲线过定点,把曲线方程变为12(,)(,)0f x y f x y λ+=(λ为参数),解方程组12

(,)0

(,)0f x y f x y =??=?,即得定点.

例3(07,山东,21)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.

(Ⅰ)求椭圆C 的标准方程;

(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.

解:(Ⅰ)由题意设椭圆的标准方程为22

221(0)x y a b a b

+=>>,由已知得:3a c +=,1a c -=,

2a ∴=,1c =,2

2

2

3b a c ∴=-=.∴椭圆的标准方程为22

143

x y +=.

(Ⅱ)设11()A x y ,,22()B x y ,,联立22 1.4

3y kx m x y =+??

?+=??,

得222(34)84120k x mkx m +++-=.

2222226416(34)(3)043m k k m m k ?=-+-><+,即.由韦达定理:1222

122834412.34mk x x k

m x x k ?

+=-??+?-??=?+?, 因为以AB 为直径的圆过椭圆的右焦点(20)D ,

,故1122(2,)(2,)0x y x y -?-=, 即:1212122()40x x x x y y -+++=.又2212121212()()()y y kx m kx m k x x mk x x m =++=+++ 即:221212(1)(2)()40k x x mk x x m +--+++=,代入整理得:2

2

71640m mk k ∴++=. 解得:12m k =-,227

k m =-

,且均满足22

340k m +->, 当12m k =-时,l 的方程为(2)y k x =-,直线过定点(20),

,与已知矛盾; 当227k m =-

时,l 的方程为27y k x ??=- ???,直线过定点207??

???

,. 所以,直线l 过定点,定点坐标为2

07?? ???

,.

注:三大圆锥曲线中的顶点直角三角形的斜边所在直线过定点.

例4已知抛物线22(0)y px p =>,定点00(,)P x y 不在抛物线上,过点P 的动直线交抛物线于,A B 两点,在直线AB 上取点Q ,满足AP AQ

PB QB

= .求证:点Q 在某定直线上,并求其方程.

练习2(08,安徽,22)设椭圆22

22:1(0)x y C a b a b

+=>>

过点M

,且着焦点为1(F

(Ⅰ)求椭圆C 的方程;

(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足

AP QB AQ PB ?=?

,证明:点Q 总在某定直线上

解:(1)由题意: 2222222211c a b c a b

?=?

?+=???=-? ,解得22

4,2a b ==,所求椭圆方程为 22142x y +=.

(2) 设点1122(,),(,),(,)Q x y A x y B x y ,由题设,,,,PA PB AQ QB

均不为零。且 PA PB AQ QB

=

又 ,,,P A Q B 四点共线,可设,(0,1)PA AQ PB BQ λλλ=-=≠±

,于是

1141,11x y

x y λλλλ--=

=-- (1) 2241,11x y

x y λλλλ

++==++ (2) 由于1122(,),(,)A x y B x y 在椭圆C 上,将(1),(2)分别代入C 的方程2224,x y +=整理得

222(24)4(22)140x y x y λλ+--+-+= (3) 222(24)4(22)140x y x y λλ+-++-+= (4)

(4)-(3) 得 8(22)0x y λ+-=

0,220x y λ≠+-=∵∴.即点(,)Q x y 总在定直线220x y +-=上

五、最值问题

两种求解方法:一是几何方法,即利用几何性质结合图形直观求解;

二是建立目标函数,通过求函数最值求解.

例5(11,广东,21)在平面直角坐标系xOy 中,已知E 的方程是244y x =+或1

0x y <-??=?

.已知(1,1)T -,设H

是E 上动点,求HO +HT 的最小值,并给出此时点H 的坐标.

2:(,).(1)||||||||,,,,||||.||||,.1,14433

,(,1).

44

H l N N x y E O l HO HT HN HT H N T HN HT HO HT T l N y y y x x N ∴+=++∴+=-=-=+=---解过点作直线的垂线,垂足为,设由知轨迹是以为焦点、为准线的抛物线.

当三点共线时的值最小的最小值为点到直线的距离等于3此时点的纵坐标为把代入方程中,

得所以的坐标为

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

圆锥曲线的综合问题(答案版)讲课教案

圆锥曲线的综合问题 【考纲要求】 1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入 和设而不求的思想. 2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向 量等在解决问题中的综合运用. 【复习指导】 本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 【基础梳理】 1.直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时 为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或 变量y )的一元方程. 即?? ?==++0 ),(0y x F c By Ax ,消去y 后得02 =++c bx ax (1)当0≠a 时,设方程02 =++c bx ax 的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交;Δ=0?直线与圆锥曲线C 相切;Δ<0?直线与圆锥曲线C 无公共点. (2)当0=a ,0≠b 时,即得一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点, 此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线, 则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长 (1)定义:直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做 圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长. (2)圆锥曲线的弦长的计算 设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB | =1+k 2 |x 1-x 2|=]4))[(1(212212x x x x k -++=a k ? ? +2 1=1+1 k 2·|y 1-y 2|. (抛物线的焦点弦长|AB |=x 1+x 2+p =2p sin 2 θ ,θ为弦AB 所在直线的倾斜角). 3、一种方法 点差法:在求解圆锥曲线并且题目中交代直线与圆锥曲线相交和被截的线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,

高考数学(精讲+精练+精析)专题10_4 圆锥曲线的综合应用试题 文(含解析)

专题10.4 圆锥曲线的综合应用试题 文 【三年高考】 1. 【2016高考四川文科】在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为 '2222 ( ,)y x P x y x y -++;当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题: 若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A. 单元圆上的“伴随点”还在单位圆上. 若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是 . 【答案】②③ 线分别为2222( ,)0y x f x y x y -=++与 2222 (,)0y x f x y x y --=++的图象关于y 轴对称,所以②正确;③令单位圆上点的坐标为(cos ,sin )P x x 其伴随点为(sin ,cos )P x x '-仍在单位圆上,故③正确;对于④,直线 y kx b =+上取点后得其伴随点2222 ( ,)y x x y x y -++消参后轨迹是圆,故④错误.所以正确的为序号为②③. 2.【2016高考山东文数】已知椭圆C :(a >b >0)的长轴长为4,焦距为2 . (I )求椭圆C 的方程;

(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B . (i)设直线PM 、QM 的斜率分别为k 、k',证明为定值. (ii)求直线AB 的斜率的最小值. (Ⅱ)(i)设()()0000,0,0P x y x y >>,由()0,M m ,可得()()00,2,,2.P x m Q x m - 所以 直线PM 的斜率 002m m m k x x -= = ,直线QM 的斜率0023'm m m k x x --==-.此时'3k k =-,所以' k k 为定值3-. (ii)设()()1122,,,A x y B x y ,直线PA 的方程为y kx m =+,直线QB 的方程为3y kx m =-+.联立 22142 y kx m x y =+???+ =?? ,整理得()222214240k x mkx m +++-=.由20122421m x x k -=+可得()()212 02221m x k x -=+ ,所以() ()2112 02221k m y kx m m k x -=+= ++,同理() ()() ()22222 2 2262,181181m k m x y m k x k x ---= = +++.所以 () ()() ()() ()()2222212 2 2 2 00 22223221812118121m m k m x x k x k x k k x -----= - = ++++, ()()()()()()()() 2 2 2 2 21 2 2 2 2 622286121812118121k m m k k m y y m m k x k x k k x ----+--=+--=++++ ,所以2212161116.44AB y y k k k x x k k -+??===+ ?-?? 由00,0m x >>,可知0k >,所以1626k k +≥,等号当且仅

高考圆锥曲线解题技巧和方法综合

圆锥曲线的解题技巧 一、常规七大题型: (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为 , ,代入方程,然 后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。 如:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 典型例题 给定双曲线。过A (2,1)的直线与双曲线交于两点 及 ,求线段 的中点 P 的轨迹方程。 (2 构成的三角形问题,常用正、余弦定理搭桥。 ,为焦点,,。 (1 (2)求 的最值。 (3)直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。 典型例题 (1)求证:直线与抛物线总有两个不同交点 (2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。 (4)圆锥曲线的相关最值(范围)问题 圆锥曲线中的有关最值(范围)问题,常用代数法和几何法解决。 <1>若命题的条件和结论具有明显的几何意义,一般可用图形性质来解决。

最新高考数学二轮专题综合训练-圆锥曲线(分专题-含答案)

圆锥曲线综合训练题 一、求轨迹方程: 1、(1)已知双曲线1C 与椭圆2C :22 13649 x y +=有公共的焦点,并且双曲线的离心率1e 与椭 圆的离心率2e 之比为7 3,求双曲线1C 的方程. (2)以抛物线2 8y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0, 27e = 由127 3 e e = 得13e =设双曲线的方程为2 2 221(,0)y x a b a b -=>则22222 13 139a b a b a ?+=??+=? ? 解得229,4a b == 双曲线的方程为 22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00 62 2 x x y y +? =????=??,∴00262x x y y =-??=?. 代入2008y x =得:2 412y x =-.此即为点P 的轨迹方程. 2、(1)ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=5 3 sinA,求点A 的轨迹方程. 解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a , 8=c ,有6=b ,故其方程为 ()0136 1002 2≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有???????='='33 y y x x ,代入①,得A 的轨迹方程为 ()01324 9002 2≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).

圆锥曲线中的定点定值问题(教师版)

第四讲 圆锥曲线中的定点定值问题 一、直线恒过定点问题 例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2 :4C x y =的切线,EA EB , 切点为 A 、 B , 求证:直线AB 恒过一定点,并求出该定点的坐标; 解:设),2,(-a E )4,(),4,(2 22211x x B x x A ,x y x y 2 1 4'2=∴= , )(21 41121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(2 1 421121x a x x -=--∴整理得:082121=--ax x 同理可得:2 22280x ax --= 8 ,2082,2121221-=?=+∴=--∴x x a x x ax x x x 的两根是方程 )2 4,(2+a a AB 中点为可得,又22 12 121212124442 AB x x y y x x a k x x x x - -+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2 a y x AB =+∴即过定点0,2. 例2、已知点00(,)P x y 是椭圆22:12x E y +=上任意一点,直线l 的方程为0012 x x y y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒 过一定点G ,求点G 的坐标。 解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --= 设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n 则0000001 212022x n m y x n m y x y ?=-?+??-??--=??,解得3200020432 0000 2002344424482(4)x x x m x x x x x n y x ?+--=?-??+--?=?-? ∴ 直线PN 的斜率为4320000032 00004288 2(34) n y x x x x k m x y x x -++--==---+

圆锥曲线的综合问题-教案

第三讲圆锥曲线的综合问题 1.直线与圆锥曲线的位置关系 (1)直线与椭圆的位置关系的判定方法: 将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离. (2)直线与双曲线的位置关系的判定方法: 将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0). ①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0 时,直线与双曲线相离. ②若a=0时,直线与渐近线平行,与双曲线有一个交点. (3)直线与抛物线的位置关系的判定方法: 将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0). ①当a≠0时,用Δ判定,方法同上. ②当a=0时,直线与抛物线的对称轴平行,只有一个交点. 2.有关弦的问题 (1)有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点 弦长问题,要重视圆锥曲线定义的运用,以简化运算. ①斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2 |x2-x1|或|P1P2|=1+1 k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形: |x2-x1|=(x1+x2)2-4x1x2, |y2-y1|=(y1+y2)2-4y1y2. ②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式). (2)弦的中点问题 有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算. 3.圆锥曲线中的最值 (1)椭圆中的最值 F1、F2为椭圆x2 a2+y2 b2=1(a>b>0)的左、右焦点,P为椭圆的任意一点,B为短轴的一个端点,O为坐标原点,则有

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

高考数学 考前30天冲刺押题系列 专题05 圆锥曲线(下)理(教师版)

【名师备考建议】 鉴于圆锥问题具有综合性强、区分度高的特点,名师给出以下四点备考建议: 1、主观形成圆锥的知识结构;椭圆、双曲线、抛物线,在这三类曲线身上是有很多的基本性质具 有相关性,因此,在复习备考的过程中,应当主观的形成对三类圆锥曲线方程以及性质的认识,形成一张深刻记忆的知识列表;同时对基本的题型也要有一定的把握; 2、认真研究三年高考的各种题型;由于圆锥曲线的难度系数较高,不易把握,但仍然有理可循; 复习备考的过程中,无论是老师还是学生都应当认真研究近三年文理科的出题方向,至于从何研究,可以从近三年的质检卷、名校卷以及高考卷中得到启示,努力理清每一道问题的思路、做法,这样可以有效的培养解题意识; 3、熟练掌握部分题型的解题模式;三轮复习中,由于做题的经验得到一定的积累,多多少少对题 目的解题方法和手段有了一定的认识,比如,直线与圆锥曲线的问题,大部分是必须联立直线与圆锥曲线的方程进行解题,这是一种模式;再比如,圆锥曲线的探究性问题,可以先采用一些特殊值进行计算,得到结论以后加以证明;这都是必须熟练掌握的解题模式; 4、调整对待圆锥曲线的心理状态;由于圆锥曲线问题的综合性较强,并且经常作为倒二题出现, 这就要求学生合理的分配自己的时间;如果实在无法求解,无须在此问题上进行逗留,以免失去了做压轴题和检查的时间;对于优等生来说,必须精益求精;对于中等生来说,只需尽其所能;对于差等生来说,一定不必强求. 【高考冲刺押题】 e=,椭圆上的点到焦点【押题6】已知椭圆C的中心为坐标原点O,焦点在y轴上,离心率 2 M m,且与椭圆C交于相异两点,A B,且的最短距离为2,直线l经过y轴上一点(0,) =. 3 AM MB

圆锥曲线解题技巧和方法综合(经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式: 2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 距离式方程2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种

标准方程:22 1(0)x y m n m n +=?< 距离式方程 :|2a = (3)、三种圆锥曲线的通径你记得吗? 22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足 221=-MF MF 则动点M的轨迹是( ) A、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1) 00 ;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为“左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有

2017高三数学一轮复习圆锥曲线综合题(拔高题-有标准答案)

2017年高三数学一轮复习圆锥曲线综合题(拔高题) 一.选择题(共15小题) 1.(2014?成都一模)已知椭圆C:+y2=1的右焦点为F,右准线为l,点A∈l,线段AF交C于点B,若=3, 则||=( ) A.B.2 C.D.3 2.(2014?鄂尔多斯模拟)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=() A.B. C. D. 3.(2014?和平区模拟)在抛物线y=x2+ax﹣5(a≠0)上取横坐标为x1=﹣4,x2=2的两点,经过两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆5x2+5y2=36相切,则抛物线顶点的坐标为() A.(﹣2,﹣9)B.(0,﹣5)C.(2,﹣9)D.(1,6) 4.(2014?焦作一模)已知椭圆(a>b>0)与双曲线(m>0,n>0)有相同的焦点(﹣c,0) 和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是( ) A.B. C. D. 5.(2014?焦作一模)已知点P是椭圆+=1(x≠0,y≠0)上的动点,F1,F2是椭圆的两个焦点,O是坐标原点,若M是∠F1PF2的角平分线上一点,且?=0,则||的取值范围是() A.[0,3) B.(0,2)C.[2,3)D.[0,4] 6.(2014?北京模拟)已知椭圆的焦点为F1、F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线交椭圆于P,则使得的M点的概率为() A.B.C.D. 7.(2014?怀化三模)从(其中m,n∈{﹣1,2,3})所表示的圆锥曲线(椭圆、双曲线、抛物线)方程中 任取一个,则此方程是焦点在x轴上的双曲线方程的概率为() A.B.C. D.

智行数学-圆锥曲线(带答案,教师专用)

智行数学-圆锥曲线(带答案,教师专用) 一、单选题(注释) 1、已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D. 2、F1,F2是双曲线的左、右焦点,过左焦点F1的直线 与双曲线C的左、右两支分别交于A,B两点,若,则双曲线的离心率是() A.B.C.2 D. 3、在平面直角坐标系中,直线与圆相交于两点,则弦的长等于( ) A.B.C.D. 4、已知圆M经过双曲线的两个顶点,且与直线相切,则圆M方程为() A.B. C.D. 5、已知椭圆的焦点,,是椭圆上一点,且是, 的等差中项,则椭圆的方程是() A.B. C.D. 6、以的顶点为焦点,长半轴长为4的椭圆方程为 A.B.C.D. 7、若 k 可以取任意实数,则方程 x 2 + k y 2 =" 1" 所表示的曲线不可能是()A.直线B.圆C.椭圆或双曲线D.抛物线 8、方程的两个根可分别作为的离心率。 A.椭圆和双曲线B.两条抛物线C.椭圆和抛物线D.两个椭圆

评卷人得分 二、填空题(注释) 10、若一条抛物线以原点为顶点,准线为,则此抛物线的方程为 . 11、双曲线的渐近线方程是_▲____ 13、中心在坐标原点,焦点在轴上的双曲线的一条渐近线方程为,则该双曲线的离心率为 . 14、椭圆的左焦点为,直线与椭圆相交于点、,当 的周长最大时,的面积是. 17、若点是以为焦点的双曲线上一点,满足,且 ,则此双曲线的离心率为▲ . 评卷人得分 三、解答题() 与直线相切,是 抛物线上两个动点,为抛物线的焦点,的垂直平分线与轴交于点,且. (1)求的值; (2)求点的坐标; (3)求直线的斜率的取值范围. 19、已知抛物线,为抛物线的焦点,椭圆;(1)若是与在第一象限的交点,且,求实数的值; (2)设直线与抛物线交于两个不同的点,与椭圆交于两个 不同点,中点为,中点为,若在以为直径的圆上,且 ,求实数 的取值范围. 20、(本小题满分12分) 已知定直线l:x=1和定点M(t,0)(t∈R),动点P到M的距离等于点P到直线l距离的2倍。(1)求动点P的轨迹方程,并讨论它表示什么曲线; (2)当t=4时,设点P的轨迹为曲线C,过点M作倾斜角为θ(θ>0)的直线交曲线C

圆锥曲线的综合应用及其求解策略

圆锥曲线的综合应用及其求解策略 有关圆锥曲线的综合应用的常见题型有:①、定点与定值问题;②、最值问题;③、求参数的取值范围问题;④、对称问题;⑤、实际应用问题。 解答圆锥曲线的综合问题,应根据曲线的几何特征,熟练运用圆锥曲线的相关知识,将曲线的几何特征转化为数量关系(如方程、不等式、函数等),再结合代数知识去解答。解答过程中要重视函数思想、方程与不等式思想、分类讨论思想和数形结合思想的灵活应用。 一、定点、定值问题: 这类问题通常有两种处理方法:①、第一种方法:是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;②、第二种方法:是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。 ★【例题1】(2007年高考〃湖南文科〃19题〃13分)已知双曲线222x y -=的右焦点为F ,过点F 的 动直线与双曲线相交于A 、B 两点,又已知点C 的坐标是(10),.(I )证明CA 〃CB 为常数;(II )若动 点M 满足CM CA CB CO =++(其中O 为坐标原点),求点M 的轨迹方程. ◆解:由条件知(20)F , ,设11()A x y ,,22()B x y ,. (I )当AB 与x 轴垂直时,可求得点A 、B 的坐标分别为(2 ,(2, ,此时则有 (12)(11CA CB =?=-,. 当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.代入222x y -=,则有 2222(1)4(42)0k x k x k -+-+=.则12x x ,是上述方程的两个实根, 所以212241k x x k +=-,2122421 k x x k +=-,于是 212121212(1)(1)(1)(1)(2)(2) CA CB x x y y x x k x x =--+=--+--2 2 2 1212(1)(21)()41k x x k x x k =+-++++22222 22 (1)(42)4(21)4111 k k k k k k k +++=-++--22(42)411k k =--++=-. ∴ 综上所述,CA CB 为常数1-. (II )设()M x y ,,则(1)CM x y =-,,11(1)CA x y =-,,22(1)CB x y =-,,(10)CO =-,,由 CM CA CB CO =++得:121213x x x y y y -=+-??=+?,即1212 2x x x y y y +=+??+=?,于是AB 的中点坐标为222x y +?? ???,.

圆锥曲线的综合问题-教案

第三讲圆锥曲线的综合问题 考点整合 1. 直线与圆锥曲线的位置关系 (1) 直线与椭圆的位置关系的判定法: 将直线程与椭圆程联立,消去一个未知数,得到一个一元二次程?若少0,则直线与椭圆相交;若A= 0,则直线与椭圆相切;若A<0,则直线与椭圆相离. (2) 直线与双曲线的位置关系的判定法: 将直线程与双曲线程联立,消去y或x),得到一个一元程ax2+ bx+ c= 0(或ay2+ by+ c =0) ? ①若a工0,当A>0时,直线与双曲线相交;当A= 0时,直线与双曲线相切;当A<0 时,直线与双曲线相离. ②若a= 0时,直线与渐近线平行,与双曲线有一个交点. (3) 直线与抛物线的位置关系的判定法: 将直线程与抛物线程联立,消去y(或x),得到一个一元程ax2+ bx+ c= 0(或ay2+ by+ c =0) ? ①当a z 0时,用△判定,法同上. ②当a= 0时,直线与抛物线的对称轴平行,只有一个交点. 2. 有关弦的问题 (1) 有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算. ①斜率为k的直线与圆锥曲线交于两点P i(x i,y i), P2(x2, y2),则所得弦长|P i P2|=』1 + k2 |x2- X1或|P1P2= - , 1 +胡2—y1|,其中求|x2- X1|与|y2- y11时通常使用根与系数的关系, 即作如下变形: |x2 —X1 = \/ X1 + X2 2—4X1x2 , ②当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式). (2) 弦的中点问题 有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算. 3. 圆锥曲线中的最值 (1)椭圆中的最值

圆锥曲线的综合问题(含答案)

课题:圆锥曲线的综合问题 【要点回顾】 1.直线与圆锥曲线的位置关系 判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量 x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0). 若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0?直线与圆锥曲线相交; Δ=0?直线与圆锥曲线相切; Δ<0?直线与圆锥曲线相离. 若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题 设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2), 则弦长|AB |= 1+k 2|x 1-x 2|或 1+1 k 2|y 1-y 2|. 【热身练习】 1.(教材习题改编)与椭圆 x 212+y 2 16=1焦点相同,离心率互为倒数的双曲线方程是( ) A .y 2- x 2 3 =1 B. y 2 3 -x 2=1 C.34x 2-38 y 2=1 D. 34 y 2- 38 x 2=1 解析:选A 设双曲线方程为y 2a 2- x 2 b 2 =1(a >0,b >0), 则????? a 2+ b 2= c 2, c a =2, c =2, 得a =1,b = 3.故双曲线方程为y 2- x 2 3 =1. 2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 2 4 =1的位置关系是( )

A .相交 B .相切 C .相离 D .不确定 解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交. 3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条 D .4条 解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0). 4.过椭圆x 2a 2+ y 2 b 2 =1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交 点为B ,若|AM |=|MB |,则该椭圆的离心率为________. 解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐 标为? ?? ??-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =6 3. 5.已知双曲线方程是x 2-y 2 2=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2 的中点,则此直线方程是________________. 解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由 x 21- y 21 2 =1,x 22- y 22 2 =1,得k = y 2-y 1x 2-x 1 = 2x 2+x 1y 2+y 1 = 2×4 2 =4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=0 【方法指导】 1.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用. 2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”. 【直线与圆锥曲线的位置关系】

圆锥曲线经典结论总结(教师版)

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+.

圆锥曲线的综合应用

圆锥曲线的综合 【复习目标】 1、在理解和掌握圆锥曲线的定义和简单几何性质的基础上,把握有关圆锥曲线的知识的内在联系,灵活运用解析几何的常用方法解决问题,培养运用各种知识解决问题的能力; 2、通过问题的解决,理解函数与方程、等价转化、数形结合、分类讨论等数学思想。 【教学重点、难点】 1.灵活运用圆锥曲线的几何性质解决问题; 2.理解函数与方程、等价转化、数形结合、分类讨论等数学思想,通过问题解决的过程中,提高分析问题、解决问题的能力,同时培养运算能力。 【教学过程】 一、圆锥曲线的几何性质在高考中的地位 圆锥曲线的几何性质是在每年的高考中必考的一个知识点,这一类问题的考查大多数出现在填空题中,属于中低档题,有时也会出现在解答题的第一、第二问中,分值大约在4至8分。 【相关知识链接】 1.椭圆、双曲线第一、第二定义各是什么? 2.圆锥曲线的标准方程形式反应了其怎样的特点? 3.椭圆、双曲线中c b a ,,存在什么样的等量关系? 4.性质中的不等关系: 对于圆锥曲线标准方程中变量y x ,的范围、离心率的范围等,在求与圆锥曲线有关的一些量的范围,或者求这些量的最大值,最小值时,经常用到这些不等关系。 5.求椭圆、双曲线的离心率问题的一般思路: 求椭圆、双曲线的离心率时,一般是依据题设得出一个关于c b a ,,的等式(或不等式),利用c b a ,,之间的等量关系消去b ,即可求得离心率(或离心率的范围)。 题型一 活用圆锥曲线的几何性质 1.若椭圆122 22=+b y a x 的左右焦点分别为)0,(),0,21c F c F -(, 以点2F 为圆心,半径为c 画圆,圆2F 交椭圆于点M ,直线1MF 与圆2F 相切,则该椭圆离心率为

选修1-1圆锥曲线测试卷(含答案)

第二章测试题 (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知抛物线的准线方程为x =-7,则抛物线的标准方程为( ) A .x 2=-28y B .y 2=28x C .y 2=-28x D .x 2=28y 解析 由条件可知p 2=7,∴p =14,抛物线开口向右,故方程为y 2=28x . 答案 B 2.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于1 2,则C 的方程是( ) A.x 23+y 2 4=1 B.x 24+y 2 3=1 C.x 24+y 2 2=1 D.x 24+y 2 3=1 解析 依题意知c =1,e =c a =1 2,∴a =2,b 2=a 2-c 2=3.故椭圆C 的方程为x 24+y 2 3=1. 答案 D 3.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是( ) A .m >12 B .m ≥1

C .m >1 D .m >2 解析 由e 2 =? ?? ??c a 2=1+m 1=1+m >2,m >1. 答案 C 4.椭圆x 225+y 2 9=1上一点P 到两焦点的距离之积为m ,则m 取最大值时,P 点坐标是( ) A .(5,0)或(-5,0) B .(52,332)或(52,-332) C .(0,3)或(0,-3) D .(532,32)或(-532,32) 解析 |PF 1|+|PF 2|=2a =10, ∴|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2 )2 =25. 当且仅当|PF 1|=|PF 2|=5时,取得最大值, 此时P 点是短轴端点,故选C. 答案 C 5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( ) A.x 236-y 2 108=1 B.x 29-y 2 27=1 C.x 2108-y 2 36=1 D.x 227-y 2 9=1 解析 本题主要考查双曲线与抛物线的几何性质与标准方程,属于容易题.

圆锥曲线中离心率及其范围地求解专题(教师版)

圆锥曲线中离心率及其围的求解专题 【高考要求】 1.熟练掌握三种圆锥曲线的定义、标准方程、几何性质,并灵活运用它们解决相关的问题。 2.掌握解析几何中有关离心率及其围等问题的求解策略; 3.灵活运用教学中的一些重要的思想方法(如数形结合的思想、函数和方程的思想、分类讨论思想、等价转化的思想学)解决问题。 【热点透析】 与圆锥曲线离心率及其围有关的问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线等)列出所讨论的离心率(a,b,c )适合的不等式(组),通过解不等式组得出离心率的变化围; (3)函数值域求解法:把所讨论的离心率作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求离心率的变化围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。因此,它们的应用价值在于: ① 通过参数θ简明地表示曲线上点的坐标; ② 利用三角函数的有界性及其变形公式来帮助求解围等问题; (6)构造一个二次方程,利用判别式?≥0。 2.解题时所使用的数学思想方法。 (1)数形结合的思想方法。一是要注意画图,草图虽不要求精确,但必须正确,特别是其中各种量之间的大小和位置关系不能倒置;二是要会把几何图形的特征用代数方法表示出来,反之应由代数量确定几何特征,三要注意用几何方法直观解题。 (2)转化的思想方汉。如方程与图形间的转化、求曲线交点问题与解方程组之间的转化,实际问题向数学问题的转化,动点与不动点间的转化。 (3)函数与方程的思想,如解二元二次方程组、方程的根及根与系数的关系、求最值中的一元二次函数知识等。 (4)分类讨论的思想方法,如对椭圆、双曲线定义的讨论、对三条曲线的标准方程的讨论等。 【题型分析】 1. 已知双曲线22 122:1(0,0)x y C a b a b -=>>的左、右焦点分别为1F 、2F ,抛物线2C 的顶点在原点, 准线与双曲线1C 的左准线重合,若双曲线1C 与抛物线2C 的交点P 满足212PF F F ⊥,则双曲线1C 的离 心率为( ) A . B C D . 解:由已知可得抛物线的准线为直线2 a x c =- ,∴ 方程为2 2 4a y x c =;

相关主题