搜档网
当前位置:搜档网 › Multisim仿真教程及实例

Multisim仿真教程及实例

multisim仿真教程

Multisim软件简介 二极管电路 基本功放 差分放大器电路 负反馈放大器 集成运算放大器信号运算处理电路互补对称(OCL)功率放大器 信号产生与转换电路 可调三端集成直流稳压电源电路13.1 Multisim用户界面和基本操作在此处插入图片说明 13.1.1 Multisim用户界面

在许多EDA仿真软件中,Multisim软件具有友好的界面,强大的功能,易于学习和使用,受到电气设计和开发人员的青睐。Multisim是一种虚拟仿真软件,用于通过软件方法对电子元器件进行虚拟设计和电路测试。 Multisim来自交互式图像技术(IIT)的基于Windows的仿真工具,以前称为EWB。 1988年,IIT公司推出了用于电子电路仿真和设计的EDA工具软件,电子工作台(EWB),它以其直观的界面,便捷的操作,强大的分析功能以及易于学习和使用而迅速普及和使用。 IIT在1996年推出了EWB5.0版本。ewb5之后。在X版本和EWB6.0版本中,IIT 将EWB更改为Multisim(多功能模拟软件)。 IIT被美国国家仪器公司Ni收购后,其软件更名为Ni Multisim。第9版之后,Multisim 经历了多个版本的升级,包括Multisim2001,Multisim7,Multisim8,Multisim9,Multisim10等。增加了单片机和LabVIEW虚拟仪器的仿真和应用。

下面以Multisim10为例介绍其基本操作。图13.1-1显示了Multisim10的用户界面,包括菜单栏,标准工具栏,主工具栏,虚拟仪器工具栏,组件工具栏,仿真按钮,状态栏,电路图编辑区域等。 图13.1-1 Multisim10用户界面 菜单栏类似于Windows应用程序,如图13.1-2所示。 图13.1-2 Multisim菜单栏 其中,选项菜单下的全局首选项和工作表属性可用于个性化界面设置。Multisim10提供了两组电气元件符号标准: ANSI:美国国家标准协会,美国标准,默认为标准,本章采用默认设置; 丁:德国国家标准协会,欧洲标准,与中国符号标准一致。 工具栏是标准的Windows应用程序样式。 标准工具栏: 查看工具栏:

模拟电路_Multisim软件仿真教程

第13章Multisim模拟电路仿真本章Multisim10电路仿真软件, 本章节讲解使用Multisim进行模拟电路仿真的基本方法。 目录 1. Multisim软件入门 2. 二极管电路 3. 基本放大电路 4. 差分放大电路 5. 负反馈放大电路 6. 集成运放信号运算和处理电路 7. 互补对称(OCL)功率放大电路 8. 信号产生和转换电路 9. 可调式三端集成直流稳压电源电路 13.1 Multisim用户界面及基本操作 13.1.1 Multisim用户界面 在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。 Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。 IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。 1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。 IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。 下面以Multisim10为例介绍其基本操作。图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。

怎样利用电路仿真软件进行模拟电路课程的学习

怎样利用电路仿真软件进行模拟电路课程的学习电路分析实验报告 实验二 学习用multisim软件对电路进行仿真 一.实验要求与目的 1.进一步熟悉multisim软件的各种功能。 2.巩固学习用multisim软件画电路图。 3.学会使用multisim里面的各种仪器分析模拟电路。 4.用multisim软件对电路进行仿真。 二、实验仪器 电脑一台及其仿真软件。 三.实验内容及步骤

(1)在电子仿真软件Multisim 基本界面的电子平台上组建如图所示的仿真电路。双击电位器图标,将弹出的对话框的“Valve”选项卡的“Increment”栏改成“1”,将“Label”选项卡的“RefDes”栏改成“RP。 ” 2)调节RP大约在35%左右时,利用直流工作点分析方法分析直 流工作点的值。直流工作点分析(DC Operating Point Analysis)是用来分析和计算电路静态工作点的,进行分析时,Multisim 自动将电路分析条件设为电感、交流电压源短路,电容断开。 单击Multisim 菜单“Simulate/Analyses/DC operating Point…”,在弹出的对话框中选择待分析的电路节点,如2图所示。单击Simulate 按钮进行直流工作点分析。分析结果如图3所示。列出了

单级阻容耦合放大电路各节点对地电压数据,根据各节点对地电压数据,可容易计算出直流工作点的值,依据分析结果,将测试结果填入表1中,比较理论估算与仿真分析结果。 表1 静态工作点数据 电压放大倍数测试 (1)关闭仿真开关,从电子仿真软件Multisim 10基本界面虚拟仪器工具条中,调出虚拟函数信号发生器和虚拟双踪示波器,将虚拟函数信号发生器接到电路输入端,将虚拟示波器两个通道分别接到电路的输入端和输出端,如图4所示。 (2)开启仿真开关,双击虚拟函数信号发生器图标“XFG1”,将打开虚拟函数信号发生器放大面板,首确认“Waveforms”栏下选取的是正弦信号,然后再确认频率为1kHZ”;再确认幅度为 10mVp,如图5所示。 四.仿真分析 动态测量仿真电路

Matlab第五章 Simulink模拟电路仿真

第五章Simulink模拟电路仿真 武汉大学物理科学与技术学院微电子系常胜

§5.1 电路仿真概要 5.1.1 MATLAB仿真V.S. Simulink仿真 利用MATLAB编写M文件和利用Simulink搭建仿真模型均可实现对电路的仿真,在实现电路仿真的过程中和仿真结果输出中,它们分别具有各自的优缺点。 武汉大学物理科学与技术学院微电子系常胜

ex5_1.m clear; V=40;R=5;Ra=25;Rb=100;Rc=125;Rd=40;Re=37.5; R1=(Rb*Rc)/(Ra+Rb+Rc); R2=(Rc*Ra)/(Ra+Rb+Rc); R3=(Ra*Rb)/(Ra+Rb+Rc); Req=R+R1+1/(1/(R2+Re)+1/(R3+Rd)); I=V/Req 武汉大学物理科学与技术学院微电子系常胜

ex5_1 武汉大学物理科学与技术学院微电子系常胜

武汉大学物理科学与技术学院微电子系常胜

注意Simulink仿真中imeasurement模块 /vmeasurement模块和Display模块/Scope模块的联合使用 Series RLC Branch模块中R、C、L的确定方式 R:Resistance设置为真实值Capacitance设置为inf(无穷大)Inductance设置为0 C:Resistance设置为0 Capacitance设置为真实值Inductance设置为0 L:Resistance设置为0Capacitance设置为inf Inductance设置为真实值 武汉大学物理科学与技术学院微电子系常胜

模拟电子技术课程设计(Multisim仿真)

《电子技术Ⅱ课程设计》 报告 姓名 xxx 学号 院系自动控制与机械工程学院 班级 指导教师 2014 年 6 月18日

目录 1、目的和意义 (3) 2、任务和要求 (3) 3、基础性电路的Multisim仿真 (4) 3.1 半导体器件的Multisim仿真 (4) 3.11仿真 (4) 3.12结果分析 (4) 3.2单管共射放大电路的Multisim仿真 (5) 3.21理论计算 (7) 3.21仿真 (7) 3.23结果分析 (8) 3.3差分放大电路的Multisim仿真 (8) 3.31理论计算 (9) 3.32仿真 (9) 3.33结果分析 (9) 3.4两级反馈放大电路的Multisim仿真 (9) 3.41理论分析 (11) 3.42仿真 (12) 3.5集成运算放大电路的Multisim仿真(积分电路) (12) 3.51理论分析 (13) 3.52仿真 (14) 3.6波形发生电路的Multisim仿真(三角波与方波发生器) (14) 3.61理论分析 (14) 3.62仿真 (14) 4.无源滤波器的设计 (14) 5.总结 (18) 6.参考文献 (19)

一、目的和意义 该课程设计是在完成《电子技术2》的理论教学之后安排的一个实践教学环节.课程设计的目的是让学生掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养学生的综合知识应用能力和实践能力,为今后从事本专业相关工程技术工作打下基础。这一环节有利于培养学生分析问题,解决问题的能力,提高学生全局考虑问题、应用课程知识的能力,对培养和造就应用型工程技术人才将能起到较大的促进作用。 二、任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成电路的设计和仿真。完成该次课程设计后,学生应该达到以下要求: 1、巩固和加深对《电子技术2》课程知识的理解; 2、会根据课题需要选学参考书籍、查阅手册和文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反映设计和仿真结果。

multisim仿真教程

Multisim电子电路仿真教程: Multisim电子电路仿真教程作者朱彩莲,介绍了一种电子电路仿真软件——Multisim 2001。通过对该软件的学习和使用,读者可以轻松地拥有一个元件设备非常完善的虚拟电子实验室,进而可以完成电子电路的各种实验和设计。 本书介绍了一种电子电路仿真软件——Multisim 2001。通过对该软件的学习和使用,读者可以轻松地拥有一个元件设备非常完善的虚拟电子实验室,进而可以完成电子电路的各种实验和设计。 全书共9章。第l~4章主要介绍Multisim 2001软件的基本功能和操作,主要有Multisim 200l中电路的创建、元件库和元件的使用、虚拟仪器的使用和Multisim基本分析方法;第5~9章主要介绍Mulfisim 200l软件的应用,其中第5~8章分别从电路基础、模拟电子技术、数字电子技术、高频电子技术中选取了若干个典型实验进行:Multisim仿真分析,每个实验给出了实验目的、实验电路、仿真操作步骤和实验结果,第9章是Multisim2001在电子综合设计中的应用实例。 本书可作为高等院校电子技术类课程的软件实验教材,也可作为从事电子电路设计的工程技术人员的参考书。 计算机高效率绿色电源 高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进入了电子、电器设备领

域。 计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。 通信用高频开关电源 通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V 的直流电源;目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。 因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可

基于Multisim的模拟电路仿真技术

本科毕业设计(论文) 题目基于Multisim的 模拟电路仿真技术 部系地方生部 专业电子信息工程 学员郑怿 指导教员梁发麦 中国人民解放军海军航空工程学院 2007 年7 月

基于Multisim的模拟电路仿真技术 摘要:介绍了Multisim 软件的功能和特点,提出运用Multisim 实现模拟电路的仿真方法。通过几个电子原理性电路的仿真实例阐述了模拟电路建立、元器件的选用和仿真参数的设置方法等关健问题,同时得到了正确的仿真结果。 关键词:模拟电路;Multisim ;仿真技术;EDA 从20 世纪80 年代以来,电子系统日趋数字化、复杂化和大规模集成化。同时深亚微米半导体工艺、B 表面安装技术的发展又支持了产品集成化程度的进步,使电子产品进入了片上系统(SOC )时代。另外电子产品厂商不懈追求缩短产品设计周期,从而获取高收益。在这些因素的影响下,EDA 技术应运而生。EDA ( Electronic Design Automation ,电子设计自动化)技术是一门综合了现代电子与计算机技术,以计算机为平台对电子电路、系统或芯片进行设计、仿真和开发的计算机辅助设计技术。利用EDA 技术对电力电子电路进行仿真一直是研究电力电子技术的工程技术人员所期望实现的目标。Multisim 就为此提供了一个良好的平台。在这个平台上可以容易地实现了基本的电力电子电路的仿真,包括不控整流电路、可控整流电路、逆变电路等电路的仿真分析。仿真得到的结果与理论分析的结果基本一致,这对电子电路的设计具有重大的意义。本文主要介绍利用Multisim 10平台对基本电子电路进行仿真的方法,得出与理论相符合的结果,有利于实际的工程设计。 1 Multisim 的功能和特点 加拿大Interactive Image Technologie 公司在1958 年推出了一个专门用于电子电路仿真和设计的EDA 工具软件EWB ( Electronics Workbench )。由于EWB 具有许多突出的优点,引起了电子电路设计工作者的关注,迅速得到了推广使用。但是随着电子技术的飞速发展,EWB 5 . x 版本的仿真设计功能已远远不能满足复杂的电子电路的仿真设计要求。因此IIT 公司将用于电路级仿真设计的模块升级为Multi sim ,并于2001 年推出了Multisim 的最新版本Multisim 2001 。 Multisim 2001 继承了 EWB 界面形象直观、操作方便、仿真分析功能强大、分析仪器齐全、易学易用等诸多优点,并在功能和操作上进行了较大改进。主要表现为:增加了射频电路的仿真功能;极大扩充了元器件库;新增了元件编辑器;扩充了电路的测试功能;增加了瓦特表、失真仪、网络分析仪等虚拟仪器,并允许仪器仪表多台同时使用;改进了元件之间的连接方式,允许任意走向;支持VHDL 和Verilo g 语言的电路仿真与设计;允许把子电路作为一个元器件使用,允许用户自定义元器件的属性等。 工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 (一)模拟电路举例: 1.1 晶体管基本放大电路 共射极,共集电极和共基极三种组态的基本放大电路是模拟电子技术的基础,通过EWB对其进行仿真分析,进一步熟悉三种电路在静态工作点,电压放大倍数,频率特性以及输入,输出电阻等方面各自的不同特点。

最详细最好的multisim仿真教程

最详细最好的multisim仿真教程第13章 Multisim模拟电路仿真 本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。目录 1. Multisim软件入门 2. 二极管电路 3. 基本放大电路 4. 差分放大电路 5. 负反馈放大电路 6. 集成运放信号运算和处理电路 7. 互补对称(OCL)功率放大电路 8. 信号产生和转换电路 9. 可调式三端集成直流稳压电源电路 13.1 Multisim用户界面及基本操作 13.1.1 Multisim用户界面 在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。 Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。 IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。

1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。 IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、 Multisim7、 Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。 下面以Multisim10为例介绍其基本操作。图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。 图13.1-1 Multisim10用户界面 菜单栏与Windows应用程序相似,如图13.1-2所示。

模拟电路仿真实例

模拟电子电路仿真 1.1 晶体管基本放大电路 共射极,共集电极和共基极三种组态的基本放大电路是模拟电子技术的基础,通过EWB 对其进行仿真分析,进一步熟悉三种电路在静态工作点,电压放大倍数,频率特性以及输入,输出电阻等方面各自的不同特点。 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1.静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2.动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3.参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4.频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,

最全面的Multisim14仿真设计流程指南

1 第2章 Multisim 仿真流程 本节我们用一个案例(模拟小信号放大及数字计数电路)来演示Multisim 仿真大体流程,这个案例来自Multisim 软件自带Samples ,Multsim 也有对应的入门文档(Getting Started ),只要用户安装了Multsim 软件,就会有这样的一个工程在软件里,这样就不需要再四处搜索案例来学习。 执行菜单【File 】→【Open samples…】即可弹出“打开文件”对话框,从中找到“Getting Started ”下的“Getting Started Final ”(Final 为最终完成的仿真文件)打开即可 此案例的难度与复杂度都不高,因为过于复杂的电路会让Multisim 仿真初学者精力过于分散,难以从宏观上把握Multisim 电路仿真设计流程。在这个案例中,我们对于Multisim 软件的使用操作(如调用元器件、连接元器件、编辑参数、运行仿真)都会做尽量详细的描述,以期达到尽快让新手熟悉Multisim 目的,这也是为更简要阐述后续案例打基础。 本书在行文时描述的Multisim 步骤操作,均使用菜单方式,事实上,大多数操作可以直接使用工具栏上的快捷按钮,读者可自行熟悉,执行的结果与菜单操作都是一致的 2.1 电路原理 我们将要完成的仿真电路如下图所示:

2 一切不以原理为基础的仿真都是耍流氓,所以这里我们简要阐述一下原理:以U4-741运算放大器 为核心构成的同相比例放大器,对来自V1的交流信号进行放大(其中,R4为可调电阻,可对放大倍数 进行调整)。放大后的信号,一路送入示波器进行观测,另一路作为时钟脉冲信号送入U2-74LS190N(可 预置同步BCD十进制加减法计数器)进行计数,计数结果输出为十进制,经U3-74LS47N(BCD-七段 数码管译码器)译码后驱动七段数码管进行数字显示。另外U2-74LS190N配置为加法器,同时将行波时 钟输出第13脚(RCO)驱动发光二极管。 左下区域有两个单刀双掷开关进行计数控制,S1接到U2的第4脚(CTEN)计数使能控制引脚, 低有效,当S1切换到接地(GND)时,计数才开始,否则计数停止;S2接到U2的第11脚(LOAD),也是低有效,当S2切换到接地(GND)时,就把预置数(ABCD)赋给(Q A Q B Q C Q D),这里电路配置 的(ABCD)都是接地(GND),因此相当于S2开关为清零功能。 右上区域还有三个旁路电路,左侧的插座与仿真没有关系。 2.1.1 新建仿真文件 1、首先我们打开Multsim软件,如下图所示,默认有一个名为Design1的空白文件已经打开在工作 台(WorkSpace)中。

模拟电路仿真

模拟电路的仿真 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 北京中科微电子技术有限公司· 北京中科微电子技术有限公司·设计部培训教程:培训教程:模拟电路的仿真 (v1.0) 文档标识文档类别文档状态文档编号模拟电路的仿真设计部内部资料修改中、已完成培-001 版本完成日期制作人备注 v1.0 2003 年7 月 24 日冯翰雪 模拟电路的仿真 北京中科微电子技术有限公司·设计部 2003 年 7 月 第 1 页共 25 页 北京中科微电子技术有限公司· 北京中科微电子技术有限公司·设计部培训教程:培训教程:模拟电路的仿真 (v1.0) 摘要:摘要:本文介绍了模拟电路仿真的一些基本概念和 Cadence 的模拟仿真环境。排版约定楷体,无衬线字体(楷体,Sans-Serif)第一次出现的术语。软件名称。宋体,等宽字体(宋体, constant-width):用于例子和普通文本,显示 Unix 命令,各种代码、文本文件内容等。粗体等宽字体表示用户输入的 Unix 命令粗体等宽字体 1 模拟电路仿真基础 1.1 模拟分析类型 为了便于分析电路的特性,电路在不同条件下有不同的近似模型。最为典型的例子就是 MOS 管的大信号模型和小信号模型:大信号模型用于分析计算电路的直流工作点、偏置等;小信号模型用于分析电路的频率响应、开环增益等等。在模拟电路仿真中,也有类似的区分,称为“分析类型” 。不同的分析类型使用不同的近似模型,用于分析电路不同方面的特性。常见的分析类型有以下几种。 1.1.1 直流分析 (dc) 直流分析用于确定电路的直流工作点,例如运放偏置电路产生的偏置电流、电压。做直流分析时认为电容断路、电感短路。在交流分析、瞬态分析之前自动进行直流分析。直流分析也可通过扫描某

实验一模拟电路仿真实验

实验一模拟电路仿真实验 一、实验目的 1、掌握仿真软件的使用方法。 2、学习仿真软件在模拟电路中的使用方法。 3、通过仿真软件的应用,进一步加深对所学理论知识的理解。 二、实验内容 1、参看教材《电路分析基础》(张苑农主编)的附录A“PROTEUS仿真软件的使用”。 2、根据实验要求,运用PROTEUS仿真软件对给定电路进行仿真,观察仿真结果,记录相关波形、数据,通过仿真加深对相关理论知识的理解。 *3、自学EWB或Multisim仿真软件的使用方法。 三、实验任务 任务一、画出如下图所示的共射极单管放大器 图1-1所示电路为电阻分压式工作点稳定单管放大器电路图。(注意:用PROTEUS软件画原理图时,电路中的电位器必须选择仿真时可调的电位器,比如可选:POT-HG。其他元器件的选择可参看图1-2。) 它的偏置电路采用R B1和R B2 组成的分压电路,并在发射极中接有电阻R E ,以 稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器 的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u ,从而实现 了电压放大。 图1-1共射极单管放大器实验电路

图1-2 PROTEUS 软件画的原理图 在上图电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1 B U R R R U +≈ U CE =U CC -I C (R C +R E ) 电压放大倍数 be L C V r R R β A // -= 输入电阻 R i =R B1 // R B2 // r be 输出电阻 R O ≈R C 任务二:放大器静态工作点的设置 (1) 静态工作点的测量 C E BE B E I R U U I ≈-≈

可靠性仿真典型案例分析(模拟)教材

一、模拟电路的仿真案例 1. 整体电路功能说明 过流检测电路用于监视电路工作电流的大小,当电路负载上的电流超过某一数值,电路会给出报警信号。检测电流可以在流入负载一侧取样,也可以在流出负载一侧取样,这两种检测方法可以分别称为高端和低端电流检测。它们都是通过取样电阻采样电流然后通过电压放大器放大,都要求放大器有较高的输入阻抗、放大倍数线性度和一定的共模范围。以下时一个可能的应用场景,0.1欧姆的电阻串接在1.8V电源和负载之间,一个仪表放大器将0.1欧姆电阻上的电压放大100倍(实际略低)后输入给运放的正相输入端,带隙电路产生的基准电压输入给运放的反相输入端,3.3V的电源给仪表放大器、基准和运算放大器供电,其中仪表放大器是由三个运算放大器组成的。该电路一共由4个运算放大器模块和1个带隙基准模块组成,电路元件总数超过300个。 1.8V电源上的负载电流超过某一个设定值,运算放大器会输出一个高电平的报警信号。总体电路的电路图如图1-1所示,总电路包括偏置电压模块bandgaptest1、由3个基本运放组成的仪表放大器yifang和输出级运放cmop。

图1-1 过流检测总电路图 2.使用自建模型进行可靠性仿真 本方案使用reliability.scs可靠性模型文件传递所需的模型参数,建模的所有步骤都是基于Cadence软件的Spectre中的URI接口,接下来分别用自建模型对偏置电压模块、运算放大器、总体电路进行可靠性仿真。 2.1 带隙基准电压电路可靠性仿真 打开已经设计完整的带隙基准电压电路,界面显示如图1-2: 图1-2带隙基准电压源电路图

图1-3 等效电路结构图(a) 图1-4 等效电路结构图(b)

模拟电路仿真实际讲解

模拟电路仿真实例 1.1 晶体管基本放大电路 共射极,共集电极和共基极三种组态的基本放大电路是模拟电子技术的基础,通过EWB 对其进行仿真分析,进一步熟悉三种电路在静态工作点,电压放大倍数,频率特性以及输入,输出电阻等方面各自的不同特点。 1.1.1 共射极基本放大电路 按图7.1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等 。 1.静态工作点分析 选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。 2.动态分析 用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。由波形图可观察到电路的输入,输出电压信号反相位关系。再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。 3.参数扫描分析 在图7.1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。 4.频率响应分析 选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。 由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为-100倍,下限频率(X1)

模拟电路的仿真

模拟电路的仿真 北京中科微电子技术有限公司·设计部 2003年7月

摘要:本文介绍了模拟电路仿真的一些基本概念和Cadence的模拟仿真环境。 排版约定 楷体,无衬线字体(楷体,Sans-Serif) 第一次出现的术语。软件名称。 宋体,等宽字体(宋体,constant-width): 用于例子和普通文本,显示Unix命令,各种代码、文本文件内容等。 粗体等宽字体表示用户输入的Unix命令 1模拟电路仿真基础 1.1 模拟分析类型 为了便于分析电路的特性,电路在不同条件下有不同的近似模型。最为典型的例子就是MOS管的大信号模型和小信号模型:大信号模型用于分析计算电路的直流工作点、偏置等;小信号模型用于分析电路的频率响应、开环增益等等。 在模拟电路仿真中,也有类似的区分,称为“分析类型”。不同的分析类型使用不同的近似模型,用于分析电路不同方面的特性。常见的分析类型有以下几种。 1.1.1直流分析(dc) 直流分析用于确定电路的直流工作点,例如运放偏置电路产生的偏置电流、电压。做直流分析时认为电容断路、电感短路。在交流分析、瞬态分析之前自动进行直流分析。 直流分析也可通过扫描某个参数来分析电路的直流传输特性,被扫描的参数可以是电压、电流、频率、温度、元件参数、模型参数等等。例如,扫描温度参数可以分析电路的温度特性;扫描MOS管栅极电压可以画出MOS的V GS-I D曲线。 1.1.2交流分析(ac) 交流分析主要用于分析电路的频率响应,例如用交流分析可以画出运放的幅频响应曲线、相频响应曲线,计算开环增益、相位裕度等等。交流分析时,使用器件在直流工作点附近的线性的交流小信号模型进行计算,电路的激励是正弦交流小信号。 交流分析也可以在某一个频率上扫描电路的某个参数,例如分析运放在低频时开环增益随温度的变化。被扫描的参数可以是频率、温度、元件参数、模型参数等等。如果被扫描的参数会改变电路的直流工作点,则重新计算直流工作点。

模拟电子仿真实验教本(Multisim)资料精

模拟电子仿真实验教程 摘要 本教程涉及Multisim10在模拟电路教学中的应用。第一部分通过实例介绍常用仪器仪表的测量方法和高级命令分析方法,主要应用了安培表、伏特表、万用表、信号发生器、示波器、波特图示仪、失真度测量仪、字符发生器、逻辑转换仪、逻辑分析仪、网络分析仪、频谱分析仪等常用电子仪器;在这一部分还应用了安捷伦(Agilent)示波器、信号源、万用表,以及泰克(Tektronix)示波器、信号实时监测表等;并重点介绍了电路的直流工作点分析、交流分析、瞬态分析、温度扫描分析、参数扫描分析、蒙特卡罗分析等常用分析方法。读者可依据所选教材、侧重内容、学习进度适当取舍。 参考书目推荐: 1.李良荣罗伟雄杨鲁平等.《EWB9电子设计技术》,北京:机械工业出版社,2007.7。 2.李良荣周骅林洁馨等.《EDA技术及实验》,成都:电子科技大学出版社,2008.8。 3.李良荣罗伟雄杨鲁平等.《现代电子设计技术》,北京:机械工业出版社,2004.7。

Multisim 10基本应用 第一节资源简介 1.Multisim 10设计界面 设计界面如图1-1所示, 2.元件工具条 主数据库的元器件资源如图1-2所示。 图1-1 Multisim10的工作界面 主菜单系统工具条 查看工具条元器件工具条 设计工具条虚拟器件工具条 正在使用的元件列表 仿真开关仪表工具条 设计翻页标签 设计管 理窗口设计工作窗口 图1-2元件库资源

选择元器件工具条中每一个按钮都会弹出相应的元器件选择窗口,如图1-3 所示是元件组的器件选择界面,其中一个Group (元器件组)有多个Family (元器件系列),每一个元器件系列有多个Component (器件)。 3.仪器工具条 仪表工具条如图1-4所示,它是进行虚拟电子实验和电子设计仿真的最快捷而又形象的特殊工具,各仪表的功能名称与Simulate 菜单下的虚拟仪表相同,如图1-5所示。 图1-3通用器件选择窗口 功能描述模型商 模型名 封装商 也叫封装名 封装类型超连接元器件组 元件系列 元器件选 择窗口电路符号 图1-4仪表工具条

multisim仿真教程 案例模拟

SPICE / MultiSim 教程 1.引言 蜂窝电话和计算机只能算是当今复杂电子系统的两个典型示例。这种设备通常包含了数百万个电路组件,普通的重复试验并不能保证最终产品的有效性。所以,设计人员在制造之前经常需要使用电路模拟器来验证电路的性能。 目前常用的组件级电路仿真器称为SPICE(带有集成电路重点的仿真程序),它是在1970年代由佩德森教授在加利福尼亚大学伯克利分校开发的。市场上有许多不同版本的SPICE,它们的主要区别在于用户界面,但内部结构与早期的 Berkeley SPICE没有太大区别。本教程主要介绍SPICE的MultiSim 版本。 用MultiSim模拟电路主要涉及两个步骤: (1)输入电路原理图(使用MultiSim的图形用户界面)。 (2)选择分析类型并运行模拟。 2.该教程组成 1.引言 2.组成 I MultiSim中的基本电路仿真技术 3.MultiSim 环境 4.示例电路图 5.模拟与结果演示 II MultiSim中电路仿真的替代形式. 6.模拟仪器 7.使用面包板 8.结论 注意事项: ?在运行电路前,你应该熟悉你所模拟电路的原理 ?I在本文档中,黑体字表示您在计算机上执行的操作。示例:单击菜单项。

3.MultiSim 环境 1.第一步登录Multisin系统,也可以远程登录. 2.登录后, 双击界面中图标. 如果出现窗口 “Evaluation License” , 单击 Evaluation 按钮. MultiSim 完成登录,你会看到图 1界面. 这是 “Capture and Simulate” 捕捉与模拟环境,因为您通过在MultiSim中进行绘制来“捕获”原理 图,然后对其进行“仿真” 图1还显示了MultiSim工作区的不同部分; 您的MultiSim窗口中工具栏的位置可能不同 图 1 MultiSim工作区中重要的功能键 如果您没有看到上面显示的工具栏,请单击“View”菜单,然后转到“toolbars”工 具栏。确保至少检查了图2所示的工具栏。

proteus实例仿真

proteus实例仿真:32位超级流水灯 Proteus 是个很优秀的单片机外围器件模拟软件,它可以仿真51 系列、AVR,PIC 等常用的MCU及其外围电路器件,如: LCD,RAM,ROM,键盘,马达,LED,AD/DA等等。虽然也有很多非常成熟实用的硬件仿真器,但proteus还是有着不少的特点和优势,如:可以随意方便的更换和改变电路中的器件及线路,仿真的过程中不会损坏器件,从而降低了产品开 发的成本. 今天用proteus来做一个流水灯的实例,模拟89c51的32个IO口来驱动32个LED做流水灯的演示.图1是做好后运行时的效果.

图1 下面简要说说原理图的编辑及仿真过程. 绘制原理图 启动proteus后将本是实例所需要的元件放入原理图编辑区中,并将位置摆放好.元件的添加可通过点击左边工具栏中的,然后点打开元件挑选对话框,在keywords框中输入所需元件的型号,按OK后元件就会在元件列表中显示出来,然后选择要添加的元件,将鼠标移到右边的原理图编辑区,点击左键即将元件添加到原理图编辑区中,(见下图中的红色框和红色字).这个例子中所需的元件型号有: 单片机AT89C51、显示组件LED-BARGRAPH-RED、电阻MINRES2OOR . 添加完元件后如下图:

元件添加完成 放置完元件后按照图1连好线. 仿真 1.添加仿真文件 按右键选择AT89C51,点左键即可打开AT89C51的元件编辑对话框,单击Program File 选项后面的,出现文件浏览对话框,选择所需仿真的程序文件,单击OK即完成仿真文件添加.

2.仿真 添加仿真文件后单击仿真工具栏中的即开始仿真.为单步运行,为暂停,为停止. 流水灯的程序大家可以根据自己喜欢的花样去编写,也可以下载我写的几个流水灯花样先感觉一下,另外还提供了做好的proteus供下载. 各位朋友如果对上面的文章有什么不同的看法或不明之处可以与我联系,大家互相学习.

multisim仿真教程

在众多eda 模拟软体中,multisim 软件界面友好,功能强大,易学易用,深受电气设计人员和开发人员的青睐。Multisim 是基于windows 平台的仿真工具,前身为ewb,由加拿大交互图像技术公司(iit)于1988年推出。1996年,iit 公司推出了一款电子设计自动化工具软件电子工作台(ewb) ,用于电子电路仿真和设计,该软件界面直观、操作方便、分析功能强大、易学易用。在ewb5.x 和ewb6.0之后,它对ewb 做了很大的改动,改名为multisim.iit,后被ni (national instruments)收购,软件更名为ni multisim。在第9版之后,对multisim2001、multisim7、multisim8、multisim9、multisim10等多个版本进行了升级,并介绍了单片机和虚拟仪器的仿真和应用。 包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、组件工具栏、模拟按钮、状态栏、电路图编辑区和其他组件。图13.1-1 multisim10用户界面菜单栏类似于windows 应用程序,如图13.1-2所示。图13.1-2 multisim 菜单baramong 他们,全球偏好和表属性下的选项菜单可以个性化的界面设置,和multisim10提供了两套电子元件符号标准: ansi: 美国国家标准协会,美国标准,这是默认的标准。本章采用了默认设置。德国国家标准协会,欧洲标准,符合中国标准。工具栏是标准的windows 应用程序样式。标准工具栏: 视图工具栏: 图13.1-3显示主工具栏和按钮的名称,图13.1-4显示组件工具栏和按钮的名称,图13.1-5显示虚拟仪器工具栏和仪器的名称。

multisim仿真教程

Multisim电子电路仿真教程: 《Multisim电子电路仿真教程》是2007年西安电子科技大学出版社出版的图书,作者是朱彩莲。 内容简介: Multisim电子电路仿真教程作者朱彩莲,介绍了一种电子电路仿真软件——Multisim 2001。通过对该软件的学习和使用,读者可以轻松地拥有一个元件设备非常完善的虚拟电子实验室,进而可以完成电子电路的各种实验和设计。 本书介绍了一种电子电路仿真软件——Multisim 2001。通过对该软件的学习和使用,读者可以轻松地拥有一个元件设备非常完善的虚拟电子实验室,进而可以完成电子电路的各种实验和设计。 全书共9章。第l~4章主要介绍Multisim 2001软件的基本功能和操作,主要有Multisim 200l中电路的创建、元件库和元件的使用、虚拟仪器的使用和Multisim基本分析方法;第5~9章主要介绍Mulfisim 200l软件的应用,其中第5~8章分别从电路基础、模拟电子技术、数字电子技术、高频电子技术中选取了若干个典型实验进行:Multisim仿真分析,每个实验给出了实验目的、实验电路、仿真操作步骤和实验结果,第9章是Multisim2001在电子综合设计中的应用实例。 本书可作为高等院校电子技术类课程的软件实验教材,也可作为从事电子电路设计的工程技术人员的参考书。 计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进入了电子、电器设备领域。 计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。 通信用高频开关电源 通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V 的直流电源;目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

相关主题