搜档网
当前位置:搜档网 › 数学归纳法的应用

数学归纳法的应用

数学归纳法的应用
数学归纳法的应用

数学归纳法的应用

姓名 甘国优 指导教师 赵慧炜

中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛.本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力. 关键词:数学归纳法;步骤;证明方法.

Abstract: Mathematical induction is a common evidence method in mathematics, it is have very broad application. In this paper, author research into the step of the Mathematical induction , it includes summariz ,evidence and guess embody the idea of the evidence of mathematical induction. Also at here ,we summariz the method of the mathematical induction application in solve algebra identities , geometric ,order and portfolio ,and so on .also analyze the common errors on application and into duct skill of the proof ,proof of skills introduced. It is help to increased the level of the Mathematical induction’s application .

Key words :Mathematical induction; Steps ; Proof.

引言

演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法.我们在学习运用数学归纳法应具备两个条件:①当1n =时,这个命题为正确的(奠基),②当n k =时,这个命题也为正确的.推出当+1n k =时,这个命题也为正确的(递推).通过“递推”链接,实现从特殊到一般的转化,抽象的进行数学归纳.首先

我们要了解归纳法与数学归纳法的思想,由思想转换为思路来解决实际问题.当然我们在中学所学习的比较浅显,因此需要进行整理疏通总结,并学以致用其思想,在应用数学归纳法时所需的一些问题进行整理,了解数学归纳法在中学代数及几何问题方面的应用更深刻总结数学归纳法的重难点及解题技巧,选取典型例题来体现这一思想,抓住其最基本的步骤并掌握数学归纳法的证明方法.

1 数学归纳法的概论

1.1 数学常用证明方法

数学是门极其注重学习方法的学科,数学恒等式的证明使这些方法体现的完美无缺,而常用的数学证明方法有以下几种;

1.1.1 演绎推理

由一般推理到特殊的推理方法称为演绎推理,又叫演绎法.

1.1.2 归纳推理

由特殊到一般的推理方法称为归纳推理法,又叫归纳法.其中归纳法又分为完全归纳法与不完全归纳法.

1.1.3 完全归纳法

探讨事物的全部特殊情况后得出一般结论的推理方法称为完全归纳法,又叫枚举法.

1.1.4 不完全归纳法

由某类事物中一部分事物所具有的某种属性,推出此类事物全部都具有这种属性的归纳推理方法称为不完全归纳法.

1.1.5 数学归纳法

数学归纳法证明是与自然数N有关的命题的一种特殊方法.(在高中数学中常用来证明不等式成立和数列通项公式成立)

1.2 数学归纳法的定义

数学归纳法定义: 是一种先得出首个例子的正确性,再通过递推的方式证明命题是否正确的一种方法.它是以考察特殊、个别的情况后作出的判断作为基础.再从这些个别情况的判断归纳出一般的结论,也可以说,它是从特殊到一般的推理方法.即当n=1正确时,若在n=k正确的情况下,n=k+l也是正确的,便可递推下去.虽然我们没有对所有的自然数逐一的加以验证,但事实上,这种递推就已经把所有自然数都验证了,这种方法就是数学归纳法.

2 数学归纳法的背景与原理

2.1背景

数学归纳法最早的痕迹可以在古希腊时代和印度的著作中找到丝缕痕迹,如欧几里德素数无限的证明中和印度婆什迦罗的“循环方法”都可以找到这种痕迹.有资料和数据表明,在中世纪伊斯兰数学中就已经比较清晰、广泛地使用了数学归纳法中归纳推理.而数学归纳法真正明确使用的是意大利数学家、天文学家和工程师莫洛里科斯,而他也尚未对数学归纳法证明中的归纳奠基和归纳推理两个步骤进行清楚的阐述.真正清楚数学归纳法证明这两步的应是17世纪的数学家帕斯卡,最早是他将数学归纳法的证明用两步确定下来.而“数学归纳法”名称是英国数学家提出的, 并由英国教科书作者普遍使用并推广.数学归纳法的严格建立,是对无穷概念有较深刻的认识和数的理论充分发展后才得以完成.十七世纪后,数学归纳法有了明晰的框架,后来发展出了最小数原理、第一和第二数学归纳法、递减归纳法、螺旋归纳法、倒推纳法、跳跃归纳法、双重甚至多重归纳法等多种形式的数学归纳法.至1889年意大利数学家皮亚诺发表《算术原理新方法》,给出自然数的公理体系,使数学归纳法有了一个合理、准确的理论基础.

归纳法的逻辑是指从有限的特殊事例推出一般性结论的推理方法,从肯定全体对象中的有限的个别事物到肯定全体对象.但数学归纳法并不具备这些特性.演绎法是由一般到具体结论的推理方法,演绎推进的前提必然蕴涵结论。从数学归纳法的推理过程来考察,还是从它的理论根据来考察,数学归纳法本质上

都是一种演绎法。现代美国数学家波利亚有这样评论“数学归纳法”:“归纳法是通过对特例进行观察和综合后以发现一般规律的过程.它仅在数学中用以证明某类定理.从名称上看,二者有联系, 但二者在逻辑方面的联系很少。而两者之间还有某种实际联系;我们常把两种方法一起使用.”

2.2原理

所有数学都始于计数,计数就是把要计数的对象集合与几个起始自然数

1,2,3,4,5...一一对应的过程.我们用N表示自然数这个无限集合,自然数N的一个基本性质是良序性,下面将对自然数的良序性进行形式化的论述,并且把它作为一个关于N的公理.对于任何系统,公理是无需证明即为真的命题.为了对一个系统(这里指自然数)进行推理,首先需要对该系统做一些假设.尽管这些基本的假设常常不容易一眼就看出,但它应该是“合理的”和“显而易见为真的”.

良序原理:自然数集N的每个非空子集都有一个最小元素.

显而易见,自然数N的任何子集都可以通过列出实际元素的方式给定,即使对于不易直接定义的集合,该定理依然有效.例如,当x和y可取任意整数时,考虑1228

所表示的所有自然数集合.从定义看该集合的范围并不明显,但是

x y

根据良序原理,由于该集合非空(注意这很重要),集合中必有一个通过该方式表示的最小自然数.(当然,求具体的最小自然数的值是另外一回事.注意良序原理保证有一个最小数存在,但绝对没说如何去计算它.)

从数学归纳法的发现、发展到应用;从数学归纳法理论基础到实际教学;从数学归纳法的逻辑基础到学生学习数学归纳法时遇到的心理问题。要清楚相关知识又何止这些呢?实际上,只有清楚了解每一个知识点的来龙去脉和每一个知识点的应用范围,以及每一个知识点的所以然,方能更好去解决问题.

3 数学归纳法的步骤

数学归纳法的步骤,若把需证明的命题记作p(n),那么数学归纳法的步骤为:

(1) 证明当n=1时,p(n=1)成立.

(2)假设n=k(*k N ∈且k ≥0)时,命题成立,即p(k)成立.证明当n=k+1时命题也成立.

(3)根据(1)、(2) 当k ≥0且 *k N ∈ 时 ,即p(n)成立.

运用数学归纳法证题时, 以上这三个步骤是必不可少的, 步骤(1)时是正确的奠基步骤,称之为归纳基础, 步骤(2)反应了递推关系,即命题的正确性具有传递性作用.步骤(3)是将步骤(1)与步骤(2)组合完成数学归纳法中递推的全部过程,所以三个步骤必不可少.

4 易错分析

刚刚接触数学归纳法时容易出现对步骤把握不清的现象,下面针对几种常见错误进行分析.

4.1 弄不清n k =到1n k =+时的式子变化

例1:用数学归纳法证明: (1)(2)(n+n)=213(21)n n n n ++??- ,从“k ”到“1k +”左端需增乘的代数式为:

A .2(21)k + B.2(1)k + C.211k k ++ D.231

k k ++ 错误解法:n k =时,式子左端(1)(2)()(1)(2)(3)2k k k k k k k k +++=+++ ,

1n k =+时,式子左端为(1)(2)(11)k k k k +++++ 故选B .

分析:1n k =+时,左端第一个因式也有所变化,不能简单地看后面的因式. 正确解法:当n k =时,左端为(1)(2)2k k k ++ 为从1k +到2k 连续整数的乘积.

4.2 运用数学归纳法时忽略了n k =时的假设条件.

例2:用数学归纳法证明:*n N ∈时, 1111335(21)(21)21n n n n +++=??-?++ 错解:

(1)当n=1时,左边=11133

=?,右边=13,等式成立. (2)假设(1n k k =≥,*k N ∈)时,等式成立.即

1111335(21)(21)21

k k k k +++=??-?++

则当1n k =+时,

11111335(21)(21)(21)(23)

k k k k ++++??-?++?+ =11111111(1233521212123

k k k k -+-++-+--+++ ) =11(1)223k -+=12(1)1

k k +++. 所以1n k =+时,等式成立

综上所述 当*n N ∈时,1111335(21)(21)21

n n n n +++=??-?++ 成立 分析:在证明1n k =+等式成立时,没有用到归纳假设

正解:

(1)当1n =时,左边=113?=13

=右边,等式成立. (2)假设(1n k k =≥,*k N ∈)时,等式成立,

121(21)(23)k k k k ++++=(23)1(21)(23)k k k k ++++=2231(21)(23)k k k k ++++=123k k ++=12(1)1

k k +++. 所以1n k =+时,等式也成立.

综上所述,对一切*n N ∈,1111335(21)(21)21

n n n n +++=??-?++ 都成立. 数学归纳法要运用“归纳假设”,没有“归纳假设”的证明不是数学归纳法. 5 运用数学归纳法的典型例题

例3:用数学归纳法证明:

tan tan 2tan 2tan3tan(1)tan()n n αααααα+++- =*tan()(tan

n n n N α-∈,2)n ≥ 分析:本题第一步的验证要取2n =,在第二步的证明中应在归纳假设的基础上正确地使用正切的和角公式.

证明:(1)当2n =时,

右边=tan 22tan αα-=2221tan α

--=222tan 1tan αα-=tan tan 2αα =左边 则等式成立.

(2)假设当n k =时,等式成立,即

tan tan 2tan 2tan 3αααα++ tan(1)tan()k k αα+- =tan()tan k k αα

-. =tan()tan k αα+[]tan(1)tan()(1)tan (1)k k k k k αααα+--++-=tan(1)(1)tan k k αα

+-+. 点评:本题在第(2)步的证明过程中使用了正切和差角的变形形式,即1tan(1)tan()k k αα++ =[]

tan(1)tan()tan (1)k k k k αααα+-+-.因此在用数学归纳法证明三角命题时,应针对1n k =+时命题的特征,合理地选择和使用三角公式.证明三角恒等式时,常动用有关三角知识、三角公式及三角的变换法.

例4:求证: 11112446682(22)

n n ++++=???+ *()4(1)n n N n ∈+ 证明:(1)当n=1时,等式左边= 11248

=? ,右边= 114(11)8=?+,等式成立. (2) 假设*()n k k N =∈时等式成立,即

11112446682(22)k k ++++=???+ *()4(1)

n n N n ∈+ 由(1)和(2)可知*()n N ∈等式均成立.

6 中学数学中数学归纳法的用途

在讨论涉及正数无限性的问题时数学归纳法是一种及其重要的方法,在中学数学中它的作用和地位可以用三个方面来体现:(1)中学数学中的许多重要结论,如等比数列的的通项公式前n 项和公式、等差数列与,二项公式定理等等都可以用数学归纳法加以证明. 而完全归纳法得到的一些与自然数有关的数学命题,也常应用数学归纳法来证明它们的正确性.(2)运用数学归纳法可以证明许多数学问题.既可以开阔眼界,又可以受到推理论证的训练.对于一些用常规的分析终合法不好证明的题,用数学归纳法往往会得到一些意想不到的好结果.(3) 在进一步学习数学时数学归纳法会经常用到,因此掌握这种方法可以为今后的高等数学的学习打下一个良好的基础.

7 数学归纳法在几何方面的应用

7.1 数学归纳法在几何中的意义

归纳法是由特殊得出一般结论的归纳推理方法,一般性结论的正确性是依靠个别结论的正确性.所以数学归纳法的实质是证明命题对于一切自然数都是真命题.它在本质是与数的概念联系在一起的,所以数学归纳法可以应用到数学的各个分支,在几何中也不例外.

数学归纳法是用于证明与自然数n有关命题的正确性方法.它的操作步骤简单、明确,证明过程一般可分以下两个步骤:

1.对于命题有意义的最小值,直接验证命题是正确的.

2.证明如果命题对任一自然数成立,那么论断必然成立.

7.2数学归纳法在几何中的应用

7.2.1应用数学归纳法作计算

例5:平面上有圆心在同一直线上的半圆,其中任意两个都相交,且都在直线的同侧,问这些半圆被所有的交点最多分成多少段圆弧?

解:设半圆的交点最多将半圆分成若干段圆弧,如下图所示.

图1图2

图3

容易发现

222

======

(2)42,(3)93,(4)164.

f f f

由此可以猜测n个半圆互相分成圆弧段最多有2

=≥

()(2)

f n n n

证明:由题意知

(1)当n=2时,结论成立.

(2)假设当n=k 时,结论成立,(平面内满足条件的k 个半圆互相分成的圆弧最多有2()f k k =.)那么当n=k +1时,第k+1个半圆与原k 个半圆均相交,可获得最多圆弧段,任意三个半圆不能交于一点,所以第k+1个半圆把原k 个半圆中每个半圆的某一段圆弧都一分为二,这样就多出了k 条圆弧;而原k 个半圆又把第k+1个半圆分成了k+1段圆弧,这样又多出了 k+1条圆弧.

故 22(1)1(1)f k k k k k +=+++=+.

这就是说,当n=k+1时结论也成立.

根据(1) 和(2) 可知,满足条件的 n 个半圆被所有交点最多分成 2n 段圆弧. 8 结 论

数学归纳法主要针对一些与自然N 的相关命题,所以在证明和自然数N 有关的恒等式子中有着不可替代的作用,用数学归纳法证明数学问题时,要注意它的两个步骤必不可少,第一步命题递推的基础,第二步是命题递推的依据,也是证明的关键和难点,同时,数学归纳法的证题步骤和格式是数学归纳法的特征,如n=k 时的假设是第二步证明n=k+1的“已知”,证明时一定要用到它,否则就不是数学归纳法,在证明n=k+1时命题成立,要用到一些技巧,如:一凑假设,二凑结论,不等式的放缩、等价转化、拆项、加减项等,但这些解题技巧需在实践中不断积累和总结,证明三角恒等式时常用到有关三角公式、三角知识以及三角的转换等.通过这些变换可更简单便捷的让命题得证.总的来说记住三句话:“递推基础不可少,归纳假设要用到,写结论时莫忘掉”,我们这样才可以较好的运用数学归纳法.数学归纳法是一种重要的数学证题方法,更是中学数学的重难点知识之一,它在开阔眼界,训练推理能力等诸多方面有着很大的帮助.在中学数学中,数学归纳法对于许多重要的结论,如等比数列的的通项公式与前n 项和公式、二项公式定理以及差数列等,都可以用数学归纳法加以证明,这样既可以加深对教材的熟悉又可以加深知识的理解.当然不仅在中学数学中,在学习高等数学的过程中,数学归纳法也是一种不可缺少的方法。同时借助数学归纳法进行几何教学,便于学生

一步步理解命题的内涵,进而容易找到 n 与 n+1 的关系,这样可以准确地解决问题。数学归纳法在几何教学中的应用,不仅让学生从感知上了解认识几何,而且深刻地理解到一个命题从个体(特殊)到普遍(一般)规律的证明过程,同时培养了学生归纳﹑演绎推理﹑总结等能力.

参考文献

[1]华罗庚.数学归纳法[M].北京:北京科学出版社,2002.

[2]张莉,贺贤孝.数学归纳法的历史[J].辽宁:辽宁师范大学学报(自然科学版),1999,(02),102~106.

[3]冯进.数学归纳法的发展历程[J].常熟理工学院学报,2008,(08),19~

26.

[4]李宗俊.数学归纳法的本质[J].宜宾师范高等专科学校学报,2001,(02),46~47.

[5]黄万徽.数学归纳法原理及其应用[J].高等函授学报(自然科学版),1999, (04),12~14.

[6]唐子周.关于数学归纳法的一点探索[J].中国科技信息,2008,(03),238~239.

[7]黄崇智.第一及第二数学归纳原理的推广[J].内江师范学院学报,2008, (10),11~12.

[8]乌仁.浅谈数学归纳法的两个步骤及其应用[M].赤峰学院学报.2007,(6).

[9]蒋文蔚,杨延龄.数学归纳法[M].北京:北京师范大学出版社,1985.

[10]华罗庚.数学归纳法[M] 北京:科学出版社,2002.12~15.

[11]王力,张宇.数学归纳法的教学[J].初等数学研究.2007,23(9).120~123.

[12]G·波利亚著.涂泓、冯承天译.怎样解题[M].上海:上海科技教育出版

社,2007.15~18.

[13]人民教育出版社中学数学室,全日制普通高级中学教科书 .数学[L],人民教育出版社,2006.

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

浅谈数学归纳法

浅谈数学归纳法 国良 井冈山大学数理学院邮编:343009 指导老师:艳华 [摘要]用数学归纳法证明数学问题时,要注意它的两个步骤缺一不可,第一步是命题递推的基础,第二步是命题递推的依据,也是证明的关键和难点,两个步骤各司其职,互相配合.数学归纳法经历无数数学的潜心研究与科学家们的利用,是数学归纳法得以发展和它为数学问题与科学问题的发现做出了极大的贡献。学好归纳法是科学问题研究的最基础的知识. [关键词]理论依据;数学归纳法;表现形式 1 数学归纳法的萌芽和发展过程 数学归纳法思想萌芽可以说长生于古希腊时代。欧几里德在证明素数有无穷多多个时,使用了反证法,通过反设“假设有有限多个”,使问题变成“有限”的命题,其中证明里隐含着:若有n个素数,就必然存在第n+1个素数,因而自然推出素数有无限多个,这是一种是图用有限处理无限的做法,是人们通过过有限和无限的最初尝试。 欧几里德之后直到16世纪,在意大利数学家莫洛克斯的《算术》一书中明确提出一个“递归推理”原则,并用它证明了1+2+3+…+(2n-1)=2n,对任何自然数n都成立。不过他并没有对这原则做出清晰的表述。 对数学归纳法首次作出明确而清晰阐述的是法国数学家和物理学家帕斯卡,他发现了一种被后来成为“帕斯卡三角形”的数表。他在研究证明有关这个“算术三角形”的一些命题时,最先准确而清晰的指出了证明过程且只需的两个步骤,称之为第一条引理和第二条引理:

第一条引理 该命题对于第一底(即(n=1)成立,这是显然的。 第二条引理 如果该命题对任意底(对任意n )成立,它必对其下一底(对n+1)也成立。 由此可得,该命题对所有n 值成立。 因此,在数学史上,认为帕斯卡是数学归纳法的创建人,因其所提出的两个引理从本质上讲就是数学归纳法的两个步骤,在他的著作《论算术三角形》中对此作了详尽的论述。 帕斯卡的思想论述十一例子来述归纳法的,而在他的时代还未建立表示一般自然数的符号。直至十七世纪,瑞士数学家J 。伯努利提出表示任意自然熟的符号之后,在他的《猜度术》一书中,才给出并使用了现代形式的数学归纳法。由此,数学归纳法开始得到世人的承认并得到数学界日益广泛的应用。十九世纪,意大利数学家皮亚若建立自然数的公理体系时,提出归纳公理,为数学归纳法奠定了理论基础。即:对于正整数N +的子集M ,如果满足:①1∈M;②若a ∈M ,则a+1∈M ;则M=N +. 2 数学归纳法的表现形式 2.1 第一数学归纳法 原理1:设()P n 是一个与正整数有关的命题,如果 (1)当00()n n n N +=∈时,()P n 成立; (2)假设0(,)n k k n k N +=≥∈时命题成立,由此推得n=k+1时,()P n 也成立; 那么,对一切正整数n 0n ≥,()P n 成立。 证明:反证法.假设该命题不是对于一切正整数都成立.令S 表示使该命题不成立的正整数作成的集合,那么S ≠?,于是由最小数原理,S 中有最小数a ,

数学归纳法及其应用举例1

数学归纳法及其应用举例 【本章学习目标】 人们在研究数量的变化时,常常会遇到有确定变化趋势的无限变化过程,这种无限变化过程就是极限的概念与思想,极限是人们研究许多问题的工具。以刘微的“割圆术”为例,圆内接正n 边形的边数无限增加时,正n 边形的周长P n 无限趋近于圆周长2πR 。这里的是个有限多项的数列,人们可以从这个有限多项的数列来探索无穷数列的变化趋势。不论n 取多么大的整数,n P 都是相应的圆周长的近似值,但是我们可以从这些近似值的精确度的无限提高中(限n 无限增大)找出圆周长的精确值2πR 。随着n 的增加,n P 在变化,这可以认为是量变(即只要n 是有限数,n P 都是圆内接正多边形的周长);但是我们可以从这些量变中来发现圆周长。一旦得出2πR ,就是质的变化(即不再是正多边形的周长)。这种从有限中认识无限,从近似中认识精确,从量变中认识质变的思想就是极限的思想。 本章重点内容是: (1)数学归纳法及其应用。 (2)研究性课题:杨辉三角。 (3)数列的极限。 (4)函数的极限。 (5)极限的四则运算。 (6)函数的连续性。 本章难点内容是: (1)数学归纳法的原理及其应用。 (2)极限的概念。 【基础知识导引】 1.了解数学推理中的常用方法——数学归纳法。 2.理解数学归纳法的科学性及用数学归纳法来证明与正整数有关命题的步骤。 3.掌握数学归纳法的一些简单应用。 【教材内容全解】 1.归纳法

前面我们在学习等差数列时,通过等差数列的前几项满足的关系式归纳出等差数列的通项公式。再如根据三角形、四边形、五边形、六边形等的内角和归纳出凸n 边形内角和公式。像这样由一系列有限的特殊事例得出一般结论的推理方法,叫做归纳法。 对于归纳法我们可以从以下两个方面来理解。 (1)归纳法可以帮助我们从具体事列中发现事物的一般规律。 (2)根据考察的对象是全部还是部分,归纳法又分完全归纳法与不完全归纳法。显然等差数列通项公式,凸n 边形内角和公式都是通过不完全归纳法得出的,这些结论是正确的。但并不是所有由不完全归纳法得出的结论都是正确的。这是因为不完全归纳只考察了部分情况,结论不具有普遍性。例如课本62P 数列通项公式22)55(+-=n n a n 就是一个典型。 2.数学归纳法 在生活与生产实践中,像等差数列通项公式这样与正整数有关的命题很多。由于正整数有无限多个,因而不可能对所有正整数一一加以验证。如果只对部分正整数加以验证就得出结论,所得结论又不一定正确,要是找到把所得结论递推下去的根据,就可以把结论推广到所有正整数。这就是数学归纳法的基本思想:即先验证使结论 有意义的最小正整数0n ,如果当0n n =时,命题成立,再假设当 ),(*0N k n k k n ∈≥=时,命题成立(这时命是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于0n 的正整数命题都成立。 由此可知,用数学归纳法证明一个与正整数有关的命题时,要分两个步骤,且两个步骤缺一不可。 第一步递推的基础,缺少第一步,递推就缺乏正确的基础,一方面,第一步再简单,也不能省略。另一方面,第一步只要考察使结论成立的最小正整数就足够了,一般没有必要再多考察几个正整数。 第二步是递推的根据。仅有这一步而没有第一步,就失去了递推的基础。例如,假设n=k 时,等式 成立,就是。那么, 。这就是说,如果n=k 时等式成立, 那么n=k+1时等式也成立。但仅根据这一步不能得出等式对于任何n ∈N*都成立。因为当n=1时,上式左边=2,右边31112=++=,左边≠右边。这说明了缺少第一步这个基础,第二步的递推也就没有意义了。只有把第一步的结论与第二步的结论结合在一起,才能得出普遍性结论。因此,完成一、二两点后,还要做一个小结。 在证明传递性时,应注意: (1)证n=k+1成立时,必须用n=k 成立的假设,否则就不是数学归纳法。应当指出,n=k 成立是假设的,这一步是证明传递性,正确性由第一步可以保证,有了递推这一步,联系第一步的结论(命题对0n n =成立),就可以知道命题对10+n 也成立,进而再由第二步可知1)1(0++=n n ,即20+=n n 也成立。这样递推下去,就可以知道命题对所有不小于0n 的正整数都成立。 (2)证n=k+1时,可先列出n=k+1成立的数学式子,作为证明的目标。可以作为条件加以运用的有n=k 成立的假设,已知的定义、公式、定理等,不能直接将n=k+1代入命题。 3.这一节课本中共安排了五个例题,例1~例3是用数学归纳法证明等式。其步骤是先证明当0n n =(这里10=n )时等式成立。再假设当n=k 时等式成立,利用这一条件及已知的定义、公式、定理证明当n=k+1时等式也成立。注意n=k+1时的等式是待证明的,不能不利用假设。例如:求证:。

浅谈数学归纳法在高考中的应用

1、数学归纳法的理论基础 数学归纳法,人类天才的思维、巧妙的方法、精致的工具,解决无限的问题。它体现的是利用有限解决无限问题的思想,这一思想凝结了数学家们无限的想象力和创造力,这无疑形成了数学证明中一道绚丽多彩的风景线。它的巧妙让人回味无穷,这一思想的发现为后来数学的发展开辟了道路,如用有限维空间代替无限维空间(多项式逼近连续函数)用有限过程代替无限过程(积分和无穷级数用有限项和答题,导数用差分代替)。 1.1数学归纳法的发展历史 自古以来,人们就会想到问题的推广,由特殊到一般、由有限到无限,可人类对无限的把握不顺利。在对无穷思考的过程中,古希腊出现了许多悖论,如芝诺悖论,在数列中为了确保结论的正确,则必须考虑无限。还有生活中一些现象,如烽火的传递,鞭炮的燃放等,触动了人类的思想。 安提丰用圆周内接正多边形无穷地逼近圆的方法解决化圆为方;刘徽、祖冲之用圆内接正多边形去无穷地逼迫圆,无穷的问题层出不穷,后来古希腊欧几里得对命题“素数的个数是无穷的”的证明,通过了有限去实现无限,体现了数学归纳法递推思想。但要形成数学归纳法中明确的递推,清晰的步骤确是一件不容易的事,作为自觉运用进行数学证明却是近代的事。 伊本海塞姆(10世纪末)、凯拉吉(11世纪上叶)、伊本穆思依姆(12世纪末)、伊本班纳(13世纪末)等都使用了归纳推理,这表明数学归纳法使用较普遍,尤其是凯拉吉利用数学归纳法证明 22 333 (1)124n n n +++??????+= 这是数学家对数学归纳法的最早证明。 接着,法国数学家莱维.本.热尔松(13世纪末)用"逐步的无限递进",即归纳推理证明有关整数命题和排列组合命题。他比伊斯兰数学家更清楚地体现数学归纳法证明的基础,递进归纳两个步骤。 到16世纪中叶,意大利数学家毛罗利科对与全体和全体自然数有关的命题的证明作了深入的考察在1575年,毛罗利科证明了 21n n a a n ++= 其中1231,2k a k =+++?????? =?????? 他利用了逐步推理铸就了“递归推理”的思路,成为了较早找到数学归纳中“递 归推理”的数学家,为无限的把握提供了思维。 17世纪法国数学家帕斯卡为数学归纳法的发明作了巨大贡献,他首先明确而清晰地阐述数学归纳法的运用程序,并完整地使用数学归纳法,证明了他所发

高中数学《数学归纳法及其应用举例》教学设计附反思

课题:数学归纳法及其应用举例 【教学目标】 知识与技能: 1. 了解由有限多个特殊事例得出的一般结论不一定正确,使学生深入认识归纳法, 理解数学归纳法的原理与实质; 2. 掌握数学归纳法证题的两个步骤;初步会用“数学归纳法”证明简单的与自然数有关的命题(如恒等式等). 3. 培养学生观察、分析、论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历数学归纳法原理的构建过程, 体会类比的数学思想.过程与方法: 1.努力创设和谐融洽的课堂情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率.让学生体验知识的构建过程, 体会源于生活的数学思想; 2. 通过对数学归纳法的学习、应用,逐步体验观察、归纳、猜想、论证的过程,培养学生由特殊到一般的思维方式和严格规范的论证意识,并初步掌握论证方法; 3. 让学生经历发现问题、提出问题、分析问题、解决问题的过程,培养学生创新能力. 情感、态度、价值观: 1. 通过对数学归纳法原理的探究,培养学生严谨的、实事求是的科学态度和不怕困难,勇于探索的精神; 2. 让学生通过对数学归纳法原理和本质的理解,感受数学内在美的震撼力,从而使学生喜欢数学,激发学生的学习热情,使学生初步形成做数学的意识和科学精神; 3. 学生通过置疑与探究,培养学生独立的人格与敢于创新的精神; 4. 持续增进师生互信,生生互助,共创教学相长的教与学的氛围和习惯. 【教学重点】 归纳法意义的认识和数学归纳法产生过程的分析,初步理解数学归纳法的原理并能简单应用. 【教学难点】 数学归纳法中递推思想的理解,初步明确用数学归纳法证明命题的两个步骤. 【教学方法】师生互动讨论、共同探究的方法 【教学手段】多媒体辅助课堂教学 【教学过程】 一、创设情境,启动思维 情境一、财主儿子学写字的笑话、“小明弟兄三个,大哥叫大毛……”的脑筋急转弯等; 教师总结:财主的儿子很傻很天真,但他懂一样思想方法,是什么?以上都是由特殊情况归纳出一般情况的方法---归纳法,这就是今天的课题. 人们通常

数学归纳法的应用习题

第2课时数学归纳法的应用双基达标(限时20分钟) 1.利用数学归纳法证明1 n+ 1 n+1 + 1 n+2 +…+ 1 2n<1(n∈N *,且n≥2)时,第二步 由k到k+1时不等式左端的变化是 (). A.增加了 1 2k+1 这一项 B.增加了 1 2k+1 和 1 2k+2 两项 C.增加了 1 2k+1 和 1 2k+2 两项,同时减少了 1 k这一项 D.以上都不对 解析不等式左端共有n+1项,且分母是首项为n,公差为1,末项为2n 的等差数列,当n=k时,左端为1 k+ 1 k+1 + 1 k+2 +…+ 1 2k;当n=k+1时, 左端为 1 k+1 + 1 k+2 + 1 k+3 +…+ 1 2k+ 1 2k+1 + 1 2k+2 ,对比两式,可得结论. 答案 C 2.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”的第二步是 ().A.假使n=2k+1时正确,再推n=2k+3正确 B.假使n=2k-1时正确,再推n=2k+1正确 C.假使n=k时正确,再推n=k+1正确 D.假使n≤k(k≥1),再推n=k+2时正确(以上k∈N*) 解析因为n为正奇数,据数学归纳法证题步骤,第二步应先假设第k个正奇数也成立,本题即假设n=2k-1正确,再推第(k+1)个正奇数即n=2k+1正确. 答案 B 3.已知平面内有n条直线(n∈N*),设这n条直线最多将平面分割成f(n)个部分,则f(n+1)等于

().A.f(n)+n-1 B.f(n)+n C.f(n)+n+1 D.f(n)+n+2 解析要使这n条直线将平面所分割成的部分最多,则这n条直线中任何两条不平行,任何三条不共点.因为第n+1条直线被原n条直线分成n+1条线段或射线,这n+1条线段或射线将它们所经过的平面区域都一分为二,故f(n+1)比f(n)多了n+1部分. 答案 C 4.已知S n=1 1·3+ 1 3·5+ 1 5·7+…+ 1 (2n-1)(2n+1) ,则S1=________,S2=________, S3=________,S4=________,猜想S n=________. 解析分别将1,2,3,4代入观察猜想S n=n 2n+1 . 答案1 3 2 5 3 7 4 9 n 2n+1 5.用数学归纳法证明“当n为正偶数时x n-y n能被x+y整除”第一步应验证n =________时,命题成立;第二步归纳假设成立应写成________________.解析因为n为正偶数,故第一个值n=2,第二步假设n取第k个正偶数成立,即n=2k,故应假设成x2k-y2k能被x+y整除. 答案2x2k-y2k能被x+y整除 6.用数学归纳法证明: 1+1 22+ 1 32+…+ 1 n2<2- 1 n(n≥2). 证明:(1)当n=2时,1+1 22= 5 4<2- 1 2= 3 2,命题成立. (2)假设当n=k时命题成立,即1+1 22+ 1 32+…+ 1 k2<2- 1 k,当n=k+1时, 1+1 22+ 1 32+…+ 1 k2+ 1 (k+1)2 <2- 1 k+ 1 (k+1)2 <2- 1 k+ 1 k(k+1) =2- 1 k+ 1 k- 1 k+1=2- 1 k+1 ,命题成立. 由(1)、(2)知原不等式在n≥2时均成立. 综合提高(限时25分钟)

浅谈数学归纳法及其在中学数学中的应用2

目录 1、数学归纳法---------------------------------------------------------- 3 1.1 归纳法定义-------------------------------------------------------- 3 1.2 数学归纳法体现的数学思想----------------------------------------- 4 1.2.1 从特殊到一般------------------------------------------------ 4 1.2.2 递推思想---------------------------------------------------- 4 2、数学归纳法在中学数学中的应用技巧------------------------------------- 5 2.1 强调------------------------------------------------------------- 5 2.1.1 两条缺一不可------------------------------------------------ 5 2.2 技巧------------------------------------------------------------- 5 2.2.1 认真用好归纳假设-------------------------------------------- 5 2.2.2 学会从头看起------------------------------------------------ 6 2.2.3 在起点上下功夫---------------------------------------------- 7 2.2.4 正确选取起点和过渡------------------------------------------ 8 2.2.5 选取适当的归纳假设形式-------------------------------------- 9 3、数学归纳法在中学数学中的应用 ---------------------------------------- 9 3.1 证明有关自然数的等式--------------------------------------------- 9 3.2 证明有关自然数的不等式------------------------------------------ 11 3.3 证明不等式------------------------------------------------------ 11 3.4 在函数迭代中的应用---------------------------------------------- 12 3.5 在几何中的应用-------------------------------------------------- 14 3.6 在排列、组合中的应用-------------------------------------------- 16 3.7 在数列中的应用-------------------------------------------------- 16 3.8 有关整除的问题-------------------------------------------------- 17

数学归纳法的应用

数学归纳法的应用 姓名 甘国优 指导教师 赵慧炜 中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛.本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力. 关键词:数学归纳法;步骤;证明方法. Abstract: Mathematical induction is a common evidence method in mathematics, it is have very broad application. In this paper, author research into the step of the Mathematical induction , it includes summariz ,evidence and guess embody the idea of the evidence of mathematical induction. Also at here ,we summariz the method of the mathematical induction application in solve algebra identities , geometric ,order and portfolio ,and so on .also analyze the common errors on application and into duct skill of the proof ,proof of skills introduced. It is help to increased the level of the Mathematical induction’s application . Key words :Mathematical induction; Steps ; Proof. 引言 演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法.我们在学习运用数学归纳法应具备两个条件:①当1n =时,这个命题为正确的(奠基),②当n k =时,这个命题也为正确的.推出当+1n k =时,这个命题也为正确的(递推).通过“递推”链接,实现从特殊到一般的转化,抽象的进行数学归纳.首先

数学归纳法在离散数学中的应用

数学归纳法在离散数学中的应用 在由一系列有限的特殊事例得出一般性结论的推理方法称为归纳法。而 数学归纳法则是用于证明与自然数n 有关的结论的归纳法:如果我们能够证明当n=1时结论是成立的,而且我们能用相同的方法由n=1命题成立证得n=2命题也成立;由n=2命题成立证得n=3成立;由n=3命题成立证得n=4成立…而且这个过程显然可以无穷进行下去。则我们就断言对于所有自然数n 命题都是成立的。数学归纳法的一般形式为,关键是归纳: 初始步):先证n =1时,结论成立; 归纳步):再证若假设对自然数n =k 结论成立(或者对所有小于等于n 的 自然数k 结论都成立),则对下一个自然数n =k+1结论也成立; 结论): 根据初始步和归纳步的证明得出结论对所有自然数都成立。 当结论与多个自然数有关时这样一类题目的时候,要注意的一点就是对所要进行归纳的自然数的选择。 例1、对群的任意元素 a,b ,及任何正整数m ,n, a m *a n = a n m + 问题解析:这是自然数有关的结论。但这里涉及到两个自然数,但由元素 的幂的定义以及m 和n 的作用的对称性,故只要任意选择其中一个即可。 证明:用数学归纳法对n 进行归纳证明。 对任何正整数m ,当n=0时,有 a m *a n = a m *a 0= a m *e= a 0+m 。 故结论成立。 假设当 n=k 时, a m *a k = a k m +。则当n=k+1时,由*满足结合律、 元素的幂的定义及归纳假设a m *a 1+k = a m *(a k *a)= (a m *a k )*a= a k m +*a= a )1(++k m ,即结论对n=k+1也成立。 故对任何正整数m,n, e a m *a n = a n m + n m m n m n n m n m a a a a a a a a +-+--------==*=*=*1 ) (1 1 1 ) () () () ( 例2、设d 1,d 2,…,d n 为n 个正整数,n ≥2,并且∑=n i i d 1 =2n-2。证明:存在 n 个顶点的树T 使它的顶点度数分别是d 1,d 2,…,d n 。

数学论文 浅谈数学归纳法的应用

浅谈数学归纳法的应用 数学归纳法是证明与自然数有关的命题的一种方法,应用广泛.在最近几年的高考试卷中体现的特别明显,以下通过几道高考试题来谈一谈数学归纳法的应用。 一、用数学归纳法证明整除问题 用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。 例1、是否存在正整数m ,使得f (n )=(2n +7)·3n +9对任意自然数n 都能被m 整除?若存在,求出最大的m 值,并证明你的结论;若不存在,请说明理由. 证明:解:由f (n )=(2n +7)·3n +9,得f (1)=36, f (2)=3×36, f (3)=10×36, f (4)=34×36,由此猜想m =36. 下面用数学归纳法证明: (1)当n =1时,显然成立. (2)假设n =k 时, f (k )能被36整除,即f (k )=(2k +7)·3k +9能被36整除;当n =k +1时,[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k --1-1), 由于3k -1-1是2的倍数,故18(3k - 1-1)能被36整除.这就是说,当n =k +1时,f (n )也能被36整除. 由(1)(2)可知对一切正整数n 都有f (n )=(2n +7)·3n +9能被36整除,m 的最大值为36. 二、用数学归纳法证明恒等式问题 对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性. 例2、是否存在常数c b a ,,,使得等式)(12 )1()1(32212222c bn an n n n n +++=+?++?+?对一切自然数n 成立?并证明你的结论. 解:假设存在c b a ,,,使得题设的等式成立,则当时3,2,1=n 也成立,代入得 ???? ?????++=++=++=c b a c b a c b a 3970)24(2122)(614 解得10,11 ,3===c b a ,于是对3,2,1=n ,下面等式成立: )10113(12)1()1(32212222+++= +?++?+?n n n n n n 令222)1(3221+?++?+?=n n S n 假设k n =时上式成立,即)10113(12 )1(2+++= k k k k S k 那么21)2)(1(+++=+k k S S k k 22)2)(1()10113(12 )1(++++++=k k k k k k

数学归纳法几种常见方式及其应用中存在的问题论文

数学归纳法几种常见方式及其应用中存在的问题 摘要 在处理数学问题时,经常涉及与任意自然数有关的一些命题,这些命题实质上是由无限个n取具体整数时得到的无限个命题组成的,我们往往不能逐一验证,这时,数学归纳法就是我们最常应用的一个有效的推理方法,为什么我们能够相信数学归纳法的证明呢?因为数学归纳法实质上是一种演绎推理法,华罗庚老先生是这样解释数学归纳法原理的:“我们采用形式上的讲法,也就是:有一批编了号码的数学命题,我们能够证明第1号命题是正确的;如果我们能够证明在第K 号命题正确的时候,第K+1号命题也是正确的,那么,这一批命题就全部正确.”其实,数学归纳法的正确性在我们学到的自然数的公理系统已经得到说明,他是与皮亚诺公理等价的一个本原性命题. 关键字数学归纳法常见方式及问题无限有限 数学归纳法(Mathematical Induction,通常简称为MI)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。是用来研究与正整数有关的数学问题,在高中数学中常用来证明等式(不等式)成立和数列通项公式成立。 数学归纳法一般分为以下几种常见的方式: (一)第一数学归纳法: 一般地,证明一个与自然数n有关的命题P(n),有如下步骤 (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (二)第二数学归纳法: 对于某个与自然数有关的命题P(n), (1)验证n=n0时P(n)成立; (2)假设n0≤n<=k时P(n)成立,并在此基础上,推出P(k+1)成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (三)倒推归纳法(反向归纳法): (1)验证对于无穷多个自然数n命题P(n)成立, (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 (四)螺旋式归纳法

数学归纳法的七种变式及其应用

数学归纳法的七种变式及其应用

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4是证明一个命题对于所有的自然数都是成立的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为:

浅谈数学归纳法

浅谈数学归纳法 陈国良 井冈山大学数理学院江西吉安邮编:343009 指导老师:曹艳华 [摘要]用数学归纳法证明数学问题时,要注意它的两个步骤缺一不可,第一步是命题递推的基础,第二步是命题递推的依据,也是证明的关键和难点,两个步骤各司其职,互相配合.数学归纳法经历无数数学的潜心研究与科学家们的利用,是数学归纳法得以发展和它为数学问题与科学问题的发现做出了极大的贡献。学好归纳法是科学问题研究的最基础的知识. [关键词]理论依据;数学归纳法;表现形式 1 数学归纳法的萌芽和发展过程 数学归纳法思想萌芽可以说长生于古希腊时代。欧几里德在证明素数有无穷多多个时,使用了反证法,通过反设“假设有有限多个”,使问题变成“有限”的命题,其中证明里隐含着:若有n个素数,就必然存在第n+1个素数,因而自然推出素数有无限多个,这是一种是图用有限处理无限的做法,是人们通过过有限和无限的最初尝试。 欧几里德之后直到16世纪,在意大利数学家莫洛克斯的《算术》一书中明确提出一个“递归推理”原则,并用它证明了1+2+3+…+(2n-1)=2n,对任何自然数n都成立。不过他并没有对这原则做出清晰的表述。 对数学归纳法首次作出明确而清晰阐述的是法国数学家和物理学家帕斯卡,他发现了一种被后来成为“帕斯卡三角形”的数表。他在研究证明有关这个“算术三角形”的一些命题时,最先准确而清晰的指出了证明过程且只需的两个步骤,称之为第一条引理和第二条引理: 第一条引理该命题对于第一底(即(n=1)成立,这是显然的。 第二条引理如果该命题对任意底(对任意n)成立,它必对其下一底(对n+1)也成立。 由此可得,该命题对所有n值成立。 因此,在数学史上,认为帕斯卡是数学归纳法的创建人,因其所提出的两个引理从本质上讲就是数学归纳法的两个步骤,在他的著作《论算术三角形》中对此作了详尽的论述。 帕斯卡的思想论述十一例子来陈述归纳法的,而在他的时代还未建立表示一般自然数的符号。直至十七世纪,瑞士数学家J。伯努利提出表示任意自然熟的符号之后,在他的《猜度术》一书中,才给出并使用了现代形式的数学归纳法。由此,

数学归纳法的应用

数学归纳法的应用 姓名甘国优指导教师赵慧炜 中文摘要:数学归纳法是数学中一种非常普遍的证题的方法,其应用极为广泛。本次主要简述了数学归纳法的简略步骤:观察(探索)﹑归纳﹑猜想﹑证明于一体的数学思想,体现出数学归纳法的证题思路.并归纳总结了数学归纳法解决代数恒等式﹑几何等方面的一些简单应用问题的方法,对应用中常见的误区加以剖析,以及介绍一些证题方法技巧,有助于提高对数学归纳法的应用能力。 关键词:数学归纳法;步骤;证明方法. Abstract:Mathematical induction is a common evidencemet hod in mathematics, it is have very broad application。 In this paper,author research into the step ofthe Mathematica l induction , it includes summariz,evidence andguess embod y the idea ofthe evidence ofmathematicalinduction. Also at here ,we summariz themethodof the mathemat ical inductionapplication insolvealgebra identities , g eometric ,order and portfolio ,and so on .also analyze the c ommonerrors on application and into duct skill of the proof ,proof ofskills introduced. It is help to incr eased the level of the Mathematical induction’s application.Key words:Mathematical induction; Steps ; Proof. 引言 演绎和归纳是人在思维过程中两个完全相反的过程.同时又是数学思维中两种基本的方法.数学归纳法是一种重要的数学证明方法,他有着其他方法所不能代替的作用,也是证明与自然数有关的数学命题的一种完全归纳法。我们在学习

数学归纳法的应用

数学归纳法的应用 数学归纳法的应用:具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等. 上述过程主要体现在数学归纳法的过程及注意事项,主要是证明恒等式的一些例子,下面我们看看数学归纳法应用的其他类型. (1)证明恒等式(略) (2)证明不等式. 例题:记()11111,23n S n n N n =+ ++???+>∈,求证:()212,2 n n S n n N >+≥∈. 证明:(1)当2n =时,2211125211234122 S =+++=>+,∴当2n =时,命题成立. (2)设n k =时,命题成立,即2111112322 k k k S =+++???+>+,则当1n k =+时,121111111123221222k k k k k S ++=+++???++++???+++ 11121111112212222222222k k k k k k k k k k k +>++++???+>++=++=+++++ 故当1n k =+时,命题也成立. 由(1),(2)可知,对n N ∈,2n ≥,212 n n S >+. 注意:利用数学归纳法证不等式,经常要用到“放缩”的技巧. (3)证明数或式的整除性 例题:求证:()()2111n n a a n N -+++∈能被21a a ++整除 证明:(1)当1n =时,()21111211a a a a ?-+++=++,命题显然成立. (2)设n k =时,()2111k k a a ?-+++能被21a a ++整除.则当1n k =+时, ()()() 2122121111k k k k a a a a a a +-++++=?+++()()()()212212111111k k k k a a a a a a a ---+??=+++++-+? ? ()()()212112111k k k a a a a a a --+??=++++++?? 由归纳假设,以上两项均能被21a a ++整除,故1n k =+时,命题成立. 由(1),(2)可知,对n N ∈,命题成立

数学归纳法及其应用 论文

自学考试本科毕业论文论文题目:数学归纳法及其运用 学校名称:桂林师范高等专科学校 专业名称:数学教育 准考证号: 030114300393 姓名:何东萍 指导教师:李政

目录 内容摘要 一、数学归纳法的由来 (一)数学归纳法的概念 (二)数学归纳法的命名 (三)归纳法的证明 二、数学归纳法的步骤 三、数学归纳法的几种形式 (一)第一数学归纳法 (二)第二数学归纳法 (三)倒推归纳法 (四)跳跃归纳法 (五)螺旋式归纳法 四、数学归纳法的应用 (一)数学归纳法在生物方面的应用(二)数学归纳法在初等数学方面的应用(三)数学归纳法在几何方面的应用 五、数学归纳法的变体 (一)从0以外的数字开始 (二)针对偶数与奇数 (三)递归归纳法 六、数学归纳法常见误区及注意 (一)易错例题 (二)数学归纳法需注意 文献参考

数学归纳法及其应用 班级:数学教育2班姓名:何东萍指导老师:李政 【内容摘要】本文讲述了数学归纳法的历史由来和理论原理,通过数学归纳法的基本形式的学习和理解,用相应实例进行解析说明数学归纳法在各方面的具体应用。最后总结了数学归纳法的常见误区和应用技巧,并对未来发展的场景作出了预测。在中学数学的过程中,有一种很常见并且很基本的数学方法——数学归纳法。对于数学归纳法,人们常常有这样的疑问:数学归纳法的原理是什么?数学归纳法的证明过程为什么要用这样的规定格式?数学归纳法的应用前景会如何? 【关键词】数学归纳法;归纳法的分类;归纳法的应用; 一、数学归纳法的由来 在最早的使用数学归纳法的证明出现于Francesco Maurolico的Arithmeticorum libri duo(1575年)。Maurolico利用递推关系证明出前n个奇数的总和是n^2,数学归纳法之谜便由此解开。 (一)数学归纳法的概念 数学归纳法有这么一个典型的例子:如果你有一排很长的直立着的多米诺骨牌那么第一张骨牌将倒下,其中某一个骨牌倒了,与其相邻的下一个骨牌也会倒,所以我们可以由此推断出所有的的骨牌都将要倒。也就能确定出这么一种递推关系,只要能够满足这两个条件就会导致所有骨牌全都倒下,用数学的方式可以简述为: (1)第一块骨牌倒下; (2)任意两块相邻骨牌,只要前一块倒下,后一块必定倒下。这样,无论有多少骨牌,只要保证(1)(2)成立,就会全都倒下。 关于数学归纳法,新教材是这样描述的:“从特殊的事例推出一般原理的推

数学归纳法的七种变式及其应用..

数学归纳法的七种变式及其应用 摘要:数学归纳法是解决与自然有关命题的一种行之有效的方法,又是数学证明 的又一种常用形式.数学归纳法不仅能够证明自然数命题,在实数中也广泛应用,还能对一些数学定理进行证明.在中学时学习了第一数学归纳法和第二数学归纳法,因而对一些命题进行了简单证明.在原有的基础上,给出了数学归纳法的另外五种变式,其中涉及到反向归纳法、二重归纳法、螺旋式归纳法、跳跃归纳法和关于实数的连续归纳法,并简单的举例说明了每种变式在数学各分支的应用.这就突破了数学归纳法仅在自然数中的应用,为今后的数学命题证明提供了一种行之有效的证明方法——数学归纳法. 关键词:数学归纳法;七种变式;应用 1引言 归纳法是由特殊事例得出一般结论的归纳推理方法,一般性结论的正确性依赖于各个个别论断的正确性。数学归纳法的本质[]4 是证明一个命题对于所有的自然数都是成立 的.由于它在本质上是与数的概念联系在一起,所以数学归纳法可以运用到数学的各个分支,例如:证明等式、不等式,三角函数,数的整除,在几何中的应用等. 数学归纳法的基本思想是用于证明与自然数有关的命题的正确性的证明方法,如第一数学归纳法,操作步骤简单明了.在第一数学归纳法的基础上,又衍生出了第二数学归纳法,反向归纳法,二重归纳法等证明方法.从而可以解决更多的数学命题. 2 数学归纳法的变式及应用 2.1 第一数学归纳法 设()p n 是一个含有正整数n 的命题,如果满足: 1) ()1p 成立(即当1n =时命题成立); 2)只要假设()p k 成立(归纳假设),由此就可证得()1p k +也成立(k 是自然数),就能保证对于任意的自然数n ,命题()p n 都成立. 通常所讨论的命题不都全是与全体自然数有关,而是从某个自然数a 开始的,因此,将第一类数学归纳法修改为: 设()p n 是一个含有正整数n 的命题(n a ≥,*a N ∈), 如果 1)当n =a 时,()p a 成立;

相关主题