搜档网
当前位置:搜档网 › qualification, verification or validation

qualification, verification or validation

qualification, verification or validation
qualification, verification or validation

Validation, Qualification, or Verification?

In the regulatory process, two terms, “validation”and “qualification,”sometimes are used to describe the same things. To further confuse the issue, a third term,“verification,” also has been thrown into the mix. Three recent documents help to define and delineate these three terms to stem the potential for confusion.

Michael Swartz and

Ira Krull

Validation Viewpoint Editors

hen it was first convened 14

years ago, the International

Conference on Harmonization

(ICH) ushered in a new era of increased

global communication in the regulated

pharmaceutical industry that continues to

this day (1). But these days it seems that

not a month goes by that there is not at

least one conference or symposium focusing

on one aspect or another of the regulatory

landscape. Indeed, a virtual cottage indus-

try has developed specializing in method

development and validation. However, like

most situations in life, there is good news

and bad. The good news: more information

containing more details is available now

than ever before. The U.S. Food and Drug

Administration (FDA) continues to issue

new guidances and updates, the United

States Pharmacopeia(USP) continues to

update its general chapters to further reflect

implementation of the ICH guidelines, and

industry groups continue to meet with reg-

ulatory representatives to help clarify issues.

The bad news: all of this new information

can lead to confusion and sometimes can

be overwhelming. In this month’s install-

ment of “Validation Viewpoint,” we take a

look at three recently published documents

in the validation literature from groups

working to clear up some of the potential

for confusion.

Some basic definitions — validation,

qualification,and verification:In the most

general sense, validation refers to a process

that consists of at least four distinct compo-

nents or steps: software, instruments, meth-

ods or procedures, and system suitability

(2). The system, the software, and the

method must all be validated, and system

suitability is used to keep the process in

check. But while the overall process is

called validation, some of the steps also are

referred to by that same term, as well as

others, such as qualification and

verification.

In March 2003, the American Associa-

tion of Pharmaceutical Chemists (AAPS),

the International Pharmaceutical Federa-

tion (FIP), and the International Society

for Pharmaceutical Engineering (ISPE)

cosponsored a workshop titled “A Scientific

Approach to Analytical Instrument Valida-

tion.” Among other objectives, the various

parties (the event drew a cross-section of

attendees, users, quality assurance special-

ists, regulatory scientists, consultants, and

vendors) agreed that processes are “vali-

dated” and instruments are “qualified,”

finally reserving the term validation for

processes that include analytical methods

and procedures and software development

(3). Use of the term qualification in this

sense, however, should not be confused

with the same term used to refer to the

qualification of impurities in the ICH

guideline on impurities in drug substances

(4). Qualification in this sense refers to the

process of acquiring and evaluating data for

the biological safety of impurities.

Verification is a more recent term that

refers to the suitability of a compendial

procedure under actual conditions of use.

The International Organization for Stan-

dardization (ISO) puts it this way: “Valida-

tion is confirmation, through the provision

of objective evidence that the requirements

for a specific intended use or application

have been fulfilled” (5). “Verification is

confirmation, through the provision of

objective evidence that specified require-

ments have been fulfilled” (6). Put simply,

if you are using a compendial method, you

verify; a noncompendial or alternative ana-W

Viewpoint Validation

lytical procedure, you validate. If this seems confusing, do not worry, more explanation is on the way!

Method (Procedure) Validation Earlier this year, the USP proposed revi-sions to the method validation guidelines published in Chapter 1225 (7). For the most part, the revisions were made to con-tinue to harmonize with ICH terminology, for example, using the word “procedures”instead of “methods.” The term “pharma-ceutical products” is replaced by the term “pharmaceutical articles” to indicate that the guidelines apply to both drug sub-stances and drug products. A major wel-come change is the use of the term “inter-mediate precision” and the deletion of the section and use of the term “ruggedness,”which most people usually confused with robustness anyway. Use of the term rugged-ness has been falling out of favor ever since implementation of the original ICH guide-line on terminology (8). However, confu-sion still exists as to exactly what constitutes robustness versus intermediate precision. The robustness of an analytical procedure is a measure of its capacity to remain unaf-fected by small but deliberate variations in procedural parameters listed in the proce-dure documentation and provides an indi-cation of its suitability during normal usage. Robustness usually is investigated during the development of a procedure and is useful to establish system suitability parameters. Intermediate precision refers to random events or within-laboratory varia-tions due to such things as different ana-lysts or instruments and results on different days. A rule of thumb: if it is written into the method (for example, 30 °C, 1.0

mL/min, 254 nm), it is a robustness issue. If it is not specified in the method (for example, you would never specify: Steve runs the method on T uesdays on instru-ment six), it is an intermediate precision issue. The proposed new list of data ele-ments required for validation is shown in Table I.

Verification of Compendial Procedures

Also earlier this year, the USP published a proposed new chapter, Chapter 1226, enti-tled: “Verification of Compendial Proce-dures” (9). The USP says the purpose of this new general information chapter is to provide guidelines for verifying the suitabil-ity of a compendial procedure under condi-tions of actual use. It always has been

Circle 31Figure 1: Verification of compendial procedure quantitation limits. Separation was performed on an Alliance 2695 Separations Module (Waters, Milford, Massachusetts). Column: 100 mm ?4.6 mm, 3.5-?m XTerra RPC18; mobile phase A: 10 mM ammonium carbonate, pH 9.0; mobile phase B: methanol; gradient: 15–90% B (linear) over 5 min; flow rate: 1.0 mL/min; temperature: 34 °C; injec-tion volume: 20 ?L; detection: UV absorbance at 280 nm. Peaks: 1 ?NTAP (highlighted in red), 2 ?ACBS, 3 ?HCT, 4 ?

TMT.

assumed that USP methods are validated, but not knowing what might have passed for validation when the method was sub-mitted often leads analysts down a path of partial or revalidation, and chapter 1225 does not provide any guidance on how to verify procedures in the absence of a full validation protocol. This new chapter sum-marizes what is necessary to confirm that the compendial procedure works for a par-ticular drug substance, excipients, or dosage form by verifying a subset of validation characteristics rather than completing a full validation. It is considered an extension of chapter 1225, and both chapters use similar terminology. The intent is to provide guid-ance on how to verify that a compendial procedure that is being used for the first time will yield acceptable results utilizing the laboratories’ personnel, equipment, and reagents. Verification consists of assessing selected “Analytical Performance Character-istics,” described in chapter 1225 to gener-ate appropriate relevant data as opposed to repeating the entire validation process. The Verification Process

The verification process is made up of six components: laboratory personnel, an approved procedure or protocol, data com-parison, acceptance criteria evaluation, the final summary documentation, and correc-tive action, if necessary.

Laboratory personnel must have the appropriate experience, knowledge, and training to be able to carry out the proce-dure (10). They must be able to accomplish the given functions in the lab, such as oper-ating instrumentation and signing off that analyses were performed as required. It is important to note that it is not enough just to be able to push buttons to make instru-mentation function and follow the standard operating procedures (SOPs). GMP

Circle 38

OCTOBER 2005LCGC NORTH AMERICA VOLUME 23 NUMBER 10

1107

https://www.sodocs.net/doc/3016434194.html, requirements put pressure on lab manage-ment and personnel to understand the background or basics of any analytical tech-nique that is used in the lab (11,12). But in spite of these requirements, the FDA still frequently cites firms for a lack of trained personnel. An approved verification document or SOP is needed that describes the procedure to be verified, establishes the number and identity of lots or batches of articles that will be used in the verification, details the analytical performance characteristics to be evaluated, and specifies the range of accept-able results. This verification document should also detail and justify any deviations from the recommendations in chapter 1226. The document should also establish the acceptance criteria that will be used to determine that the compendial procedure performs suitably.Once samples are analyzed, the data must be scrutinized and compared to the predetermined acceptance criteria in the approved verification document. The final summary documentation should include a summary of the data, the assessment of the results compared to the acceptance criteria,and a decision as to whether or not the data is acceptable, which is a final indication that the laboratory personnel are capable of successfully performing the compendial procedure in the particular laboratory.Acceptable results are final proof that the USP procedure will perform as intended. If the acceptance criteria are not satisfied,it is necessary to identify the source of the problem, take corrective action, amend the verification document if necessary, and repeat the analysis. The initial unacceptable results, the probable cause, and any correc-tive actions implemented should also be described in the final summary document. Of course, there is another possible out-come in which, after several attempts, the verification of the compendial procedure cannot be made. If the source of the prob-lem cannot be identified and rectified, then it can be concluded that the procedure might not be suitable for use with the arti-cle being tested. It might then be necessary to revise the current procedure or redevelop and validate an alternative procedure. In any case, the final verification document

should summarize the inability to verify the compendial procedure and describe the

action taken.

As mentioned previously, Table I lists the

analytical performance characteristics that

are determined for different categories of assays to ensure validation. But not all of

the characteristics listed in Table I need to be repeated for verification of a compendial method; depending upon the type of assay

to be verified, different performance char-acteristics are determined. For analytical

techniques applied to drug substances and excipients, the characteristics listed in Table II should be determined. The correspon-ding characteristics for analytical techniques

applied to dosage forms are summarized in Table III.

Note that for dosage forms, the number

of characteristics to be determined is greater due to the fact that the drug product is usually more complex than either the excip-ients or drug substance.Finally, it is recommended in the guide-line that if the procedure will be used by more than one analyst or transferred to another location, intermediate precision should be investigated. (Actually, the docu-ment still uses the term ruggedness, and improperly applies the term robustness,something that should be corrected before the guideline is finalized.)

Let us look at an example of a study using a quantitative stability-indicating assay (Category II) run to verify a compen-dial procedure. In this example, the analysts wished to verify a compendial procedure using a more modern, up-to-date HPLC column. Using Table III, for a quantitative,Category II HPLC assay, precision, speci-ficity, and the quantitation limit must be evaluated. Specificity was evaluated using photodiode-array peak-purity algorithms,which have been covered in a previous installment of “Validation Viewpoint” (13).

Table IV summarizes the precision results and Table V the results from the determina-tion quantitation limit. Figure 1 illustrates the actual separation at the quantitation

limit used to verify the calculated limit.

Peak number one (N-TAP , highlighted in red) is at the calculated (Table V) quantita-tion limit. Precision data at the quantita-tion limit also was evaluated (data not

shown).

Analytical Instrument Qualification

As mentioned earlier, processes are “vali-

1108

LCGC NORTH AMERICA VOLUME 23 NUMBER 10 OCTOBER https://www.sodocs.net/doc/3016434194.html,

covered in previous “Validation Viewpoint”columns and elsewhere and really do not need to be repeated here (2,14). The AAPS publication also does an excellent job of capturing the definition and documenta-tion of each of these phases as well, as an excellent discussion on software validation to which the reader is referred for more information (3). However, there are a cou-ple of other significant areas that the AAPS group focused on that are worth noting;documentation and the categorization of

dated” and instruments are “qualified.”Analytical instrument qualification (AIQ)provides documented evidence that the instrument performs suitably for its intended purpose and that it is properly maintained and calibrated. Qualification normally is grouped into four distinct phases, design qualification (DQ), installa-tion qualification (IQ), operational qualifi-cation (OQ), and performance qualifica-tion (PQ). A definition and discussion of each of the qualification phases have been

Circle 41

instruments according to the level of quali-fication required.

Both static and dynamic documentation can result from an AIQ. Static documents are generated during the DQ, IQ, and OQ phases and should be kept in a separate qualification binder. Static documents can include such things as user manuals, site requirement documents, etc. Dynamic doc-uments are generated during the OQ and PQ phases, when actual instrument testing takes place. These documents provide a running record for the instrument use and maintenance and should be kept in a sys-tem log book with the instrument, available for viewing as necessary by anyone inter-ested (that is, the FDA). These documents also should be appropriately archived for future reference and protection.

Instruments were placed into three cate-gories (A, B, and C), again based upon their complexity and proposed level of qualification.

The conformance of Group A instru-ments to user requirements is determined by visual observation; no independent qual-ification process is required. Examples of Group A instruments include spatulas,ovens, magnetic stirrers, microscopes, and vortex mixers.

The conformance of Group B instru-ments to user requirements is determined according to the instruments’ SOP , and their failure usually is readily discernable.Examples of instruments that fall into this category are pH meters, balances, ther-mometers, refrigerator–freezers, and vac-uum ovens.

Group C instruments are defined as highly method-specific, complex instru-ments with conformance determined by their application. Full qualification as out-lined in the AAPS report is applied to instruments in this group. Examples include high performance liquid chro-matography (HPLC) and gas chromatogra-phy (GC) instruments, spectrometers, mass spectrometers, and electron microscopes.

Conclusion

Data quality is built on the foundation of procedure validation and verification, soft-ware validation, AIQ, and system suitabil-ity. Each of these components plays a criti-cal role in the process of validation. The three documents highlighted in this col-umn (3,7,9) will go a long way toward clearing up potential avenues of confusion in the industry and certainly should be

OCTOBER 2005LCGC NORTH AMERICA VOLUME 23 NUMBER 10

1109

https://www.sodocs.net/doc/3016434194.html, Michael E. Swartz

“Validation View-point” Co-Editor

Michael E. Swartz is a

Principal Scientist at Waters Corp., Milford,Massachusetts, and a

member of LCGC ’s

editorial advisory board.

Ira S. Krull

“Validation View-point” Co-Editor Ira S.Krull is an Associate Professor of chemistry at Northeastern Uni-versity, Boston, Massa-chusetts, and a mem-ber of LCGC ’s editorial

advisory board..

The columnists regret that time constraints prevent them from responding to individ-ual reader queries. However, readers are welcome to submit specific questions and problems, which the columnists may address in future columns. Direct corre-spondence about this column to “Valida-tion Viewpoint,” LCGC,Woodbridge Cor-porate Plaza, 485 Route 1 South, Building F, First Floor, Iselin, NJ 08830, e-mail lcgcedit@https://www.sodocs.net/doc/3016434194.html,.

Circle 42Circle 43

consulted for additional details beyond those that we can cover in this short col-umn. It should be noted, however, that none of these three documents has been finalized in any way, but are merely propos-als before their various organizations, and we shall certainly keep you informed of any developments in subsequent columns.Hopefully we’ll also be able to report that all of the confusion surrounding robustness and ruggedness is finally put to rest once and for all!

Acknowledgments

The authors would like to acknowledge Michael D. Jones of Waters Corporation,Milford, Massachusetts, Jerry Lanese of the Lanese Group, Leawood, Kansas, and Paul Newton of GlaxoSmithKline, RTP , North Carolina, for contributions to this manuscript.

References

(1)https://www.sodocs.net/doc/3016434194.html,.

(2)M.E. Swartz and I.S. Krull, Analytical Method

Development and Validation (Marcel Dekker,New York, 1997).

(3)AAPS PharmSciTech 2004, 5(1) Article 22

(https://www.sodocs.net/doc/3016434194.html,).

(4)ICH Q3A(R), “Impurities in New Drug Sub-stances,” Federal Register 68(68), 6924–6925.See also: https://www.sodocs.net/doc/3016434194.html,.

(5)ISO 9000:2000 clause 3.8.5.(6)ISO 9000:2000 clause 3.8.4.

(7)Pharmacopeial Foru m 31(2), 549 (Mar./Apr.

2005).

(8)ICH Q2A, Federal Register 60, p. 11260.

See also https://www.sodocs.net/doc/3016434194.html,.

(9) Pharmacopeial Foru m 31(2), 555 (Mar./Apr.

2005).

(10)M.E. Swartz, I.S. Krull, and J. McCabe, LCGC

22(9), 906 (2004).

(11)Current Good Manufacturing Practice for the

Manufacture, Processing, Packing, or Holding of a Drug Product, 21 Code of Federal Register (CFR) Part 211; Subpart A: General Provisions 211.1-Scope.

(12)Current Good Manufacturing Practice for the

Manufacture, Processing, Packing, or Holding of a drug Product , 21 Code of Federal Register (CFR) Part 211; Subpart B: Organization and Personnel 211.25-Personnel Qualifications. (13)M.E. Swartz and I.S. Krull, LCGC 23(6), 47

(2005).

(14)M.E. Swartz and I.S. Krull, LCGC 16(10), 922

(1998).

ORCAD 元件库

1' AMPLIFIER.OLB共182个零件,存放模拟放大器IC,如CA3280,TL027C,EL4093等。 2' ARITHMETIC.OLB共182个零件,存放逻辑运算IC,如TC4032B,74LS85等。 3' A TOD.OLB共618个零件,存放A/D转换IC,如ADC0804,TC7109等。 4' BUS DRIVERTRANSCEIVER.OLB共632个零件,存放汇流排驱动IC,如74LS244,74LS373等数字IC。 5' CAPSYM.OLB共35个零件,存放电源,地,输入输出口,标题栏等。 6' CONNECTOR.OLB共816个零件,存放连接器,如4 HEADER,CON A T62,RCA JACK等。 7' COUNTER.OLB共182个零件,存放计数器IC,如74LS90,CD4040B。 8' DISCRETE.OLB共872个零件,存放分立式元件,如电阻,电容,电感,开关,变压器等常用零件。9' DRAM.OLB共623个零件,存放动态存储器,如TMS44C256,MN41100-10等。 10' ELECTRO MECHANICAL.OLB共6个零件,存放马达,断路器等电机类元件。 11' FIFO.OLB共177个零件,存放先进先出资料暂存器,如40105,SN74LS232。 12' FILTRE.OLB共80个零件,存放滤波器类元件,如MAX270,LTC1065等。 13' FPGA.OLB存放可编程逻辑器件,如XC6216/LCC。 14' GATE.OLB共691个零件,存放逻辑门(含CMOS和TLL)。 15' LA TCH.OLB共305个零件,存放锁存器,如4013,74LS73,74LS76等。 16' LINE DRIVER RECEIVER.OLB共380个零件,存放线控驱动与接收器。如SN75125,DS275等。17' MECHANICAL.OLB共110个零件,存放机构图件,如M HOLE 2,PGASOC-15-F等。 18' MICROCONTROLLER.OLB共523个零件,存放单晶片微处理器,如68HC11,A T89C51等。 19' MICRO PROCESSOR.OLB共288个零件,存放微处理器,如80386,Z80180等。 20' MISC.OLB共1567个零件,存放杂项图件,如电表(METER MA),微处理器周边(Z80-DMA)等未分类的零件。 21' MISC2.OLB共772个零件,存放杂项图件,如TP3071,ZSD100等未分类零件。 22' MISCLINEAR.OLB共365个零件,存放线性杂项图件(未分类),如14573,4127,VFC32等。 23' MISCMEMORY.OLB共278个零件,存放记忆体杂项图件(未分类),如28F020,X76F041等。 24' MISCPOWER.OLB共222个零件,存放高功率杂项图件(未分类),如REF-01,PWR505,TPS67341等。 25' MUXDECODER.OLB共449个零件,存放解码器,如4511,4555,74AC157等。 26' OPAMP.OLB共610个零件,存放运放,如101,1458,UA741等。 27' PASSIVEFILTER.OLB共14个零件,存放被动式滤波器,如DIGNSFILTER,RS1517T,LINE FILTER 等。 28' PLD.OLB共355个零件,存放可编程逻辑器件,如22V10,10H8等。 29' PROM.OLB共811个零件,存放只读记忆体运算放大器,如18SA46,XL93C46等。 30' REGULA TOR.OLB共549个零件,存放稳压IC,如78xxx,79xxx等。 31' SHIFTREGISTER.OLB共610个零件,存放移位寄存器,如4006,SNLS91等

orCAD快捷键和常用元件库

orCAD 快捷键和常用元件库,元件查找 PageDn : 下移一个窗口 Ctrl+ PageDn : 右移一个窗 口 CTRL+S SAVE 保存 CTRL+Z Undo 撤 消 CTRL+X Cut 剪切 CTRL+C COPY 复 制 CTRL+V Pastr 粘贴 CTRL+A Select ALL 全部选中 CTRL+E Properties … 被选属性参数编辑 CTRL+L Link Darabase Part … 调出 Part Editor 窗 口 CTRL+F Find 查找对话框 I: 放大 O: 缩小 On/Off P: 快速放置元件 节点 On/Off F: 放置电源 总线 On/Off Y: 画多边形 TEXT PageUp : 上移一个窗口 C: 以光标所指为新的窗口显示中心 N: 放置网络标号 G: 放置地 E: 放置总线端口 Ctrl+ PageUp : 左移一个窗 W: 画线 J : 放置 B: 放置 T: 放置

上下翻转 F4 Repeat Delete 再次执行 CTRL+G Go to … 光标指向 设定位 置 Shift+D descend hierarchy 显示对应的下层子电路图 Shift+A Ascend Hierarchy 显示上一层 Shift+P Part … 调用元器件 Shift+Z Database part 调用 Internet 数据库中的器件 Shift+w Wire 绘制连线 Shift+b Bus 绘制 总线 Shift+J Junction 绘制接点 Shift+E Bus Entry 绘制总线引入线 Shift+N Net Alias … 为接点命名 Shift+F power … 绘 制电源 Shift+G Ground 绘制地线 Shift+X No Connect 浮置 引线标志 Shift+T Text … 添加文字 Shift+Y Polyline 折线 F9 Configure … 新 建宏 F8 Play 运行宏 F7 Record 生成宏 F1 HELP 帮 TL027C , EL4093 等。 2' ARITHMETIC.OLB 共 182 个零件,存放逻辑运算 IC ,如 TC4032B , 74LS85 等。 3' ATOD.OLB 共 618 个零件,存放 A/D 转换 IC ,女口 ADC0804 , TC7109 等。 4' BUS DRIVERTRANSCEIVER.OLB 共 632 个零件,存放汇流排驱动 IC ,女口 74LS244 , 元件翻转 R: 元件旋转 90 X 轴镜像即左右翻 转 Y 轴镜像 即 1 常用元件查找 1' AMPLIFIER.OLB 共 182 个零件,存放模拟放大器 IC ,如 CA3280 ,

新员工培训:环安、设备试题(工人)答案

新员工培训试题 (设备、环安) 部门: 岗位: 姓名: 一、单项选择题(共60分,3分/题) 1、哪个内容不属于设备四懂三会的范畴:() A 懂设备原理 B 懂设备结构 C会操作 D 懂工艺原理 2、哪一项是TPM活动的两大基石之一? A 自主保全 B专业保全 C 人才培养 D 彻底的7S活动 3、对于碎纸,以下哪种操作方式不合理? A 不将潮湿的纸放入碎纸机 B、一次不放入过多的纸 C 连续使用碎纸机15分钟以上 D、及时清理碎纸垃圾 4、对于塑封机,哪个操作不合理? A 为了保证塑封效果,塑封前可以先过一张白纸。 B 塑封时,用手去触摸塑封机的散热孔,以确认塑封机是否已经加热。 C停机时,先关加热开关,待散热后(温度低于80度)再关掉电源开关。 D、胶辊清洗时,可用软布醮酒精擦。。 5、砂磨机是用于什么产品生产的设备? A 颜料膏产品 B助剂类产品 C 复鞣剂产品 D丙烯酸乳液产品 6、压缩空气是什么设备产生的? A 压缩空气储罐 B 空压机 C制氮机 D 纯水装置 7、以下哪些设备属于公用设备的范畴? A 反应釜 B 砂磨机 C 隔膜泵 D 空压机 8、分散釜的作用是什么? A 储存物料 B 物料在其中进行化学反应 C 对产品内粉剂类的物质预分散,使其能较均匀的混合 D、搅拌物料 9、隔膜泵是依靠什么能量工作的? A 、压缩空气 B、电能 C 、水能 D、风能 10、一级保养是由谁负责的?

A 设备部维修人员 B 设备使用操作人员 C 设备厂商 D、人事行政部门 11、人的生命是第一宝贵的,因此在组织生产时,首先要把什么放在第一位来考虑( C ) A、采取防护措施,减少事故发生 B、采用先进的生产技术,避免事故的发生 C、维护从业人员的生命安全 D、提高工作效率、环能减排 12、安全生产工作制度和岗位安全操作规程是国家安全生产法律法规的延伸,在单位内部同样具有() A、很强的约束性 B、很强的标准性 C、很强的控制力 D、很强的规范性 13、当酸碱等腐蚀性物品污染了眼睛和皮肤,要立即进行冲淋洗眼,冲洗时间至少要() A、3-5分钟 B、5-10分钟 C、15分钟 D、15分钟以上 14、遇有()以上的强风或恶劣天气时,应停止露天高空作业( B ) A、4级 B、6级 C、5级 D、8级 15、危险化学品仓库保管人员必须()点仓库内各种危险化学品的数量是否与账面相符合( B ) A、每天 B、每周 C、每月 D、每年 16、当你身上的衣服着火燃烧后,以下灭火方法正确的是( C ) A、快速奔跑呼救 B、用手扑打火焰 C、就地打滚,压灭火焰 D、寻找水源 17、《危险化学品安全管理条例》规定的危险化学品包括()、压缩气体和液化气体、易燃液体、易燃固体、自然物品和遇湿易燃物品、氧化剂和有机过氧化物、毒害品和腐蚀品 A、雷管 B、炸药 C、爆炸物品 D、易碎物品 18、《安全生产法》规定的安全生产管理方针是( A ). A、安全第一、预防为主、综合治理 B、安全为了生产、生产必须安全 C、安全生产、人人有责 D、预防为主,消除隐患、事故苗子 19、对于易燃液体,不能采用()压送. A、氮气 B、压缩空气 C、二氧化碳 D、氧气 20、以下哪类设备需要强制年检( B ) A、离心泵 B、叉车 C、空压机 D、磨砂机 二、多项选择题(共20分,4分/题)

Cadence元件库介绍

Cadence ORCAD CAPTURE元件库介绍 - Cadence OrCAD Capture 具有快捷、通用的设计输入能力,使Cadence O rCAD Capture 线路图输入系统成为全球最广受欢迎的设计输入工具。它针对设计一个新的模拟电路、修改现有的一个PCB 的线路图、或者绘制一个HDL 模块的方框图,都提供了所需要的全部功能,并能迅速地验证您的设计。OrC AD Capture 作为设计输入工具,运行在PC 平台,用于FPGA 、PCB 和C adence? OrCAD? PSpice?设计应用中,它是业界第一个真正基于Windows 环境的线路图输入程序,易于使用的功能及特点已使其成为线路图输入的工业标准。 本文介绍在Cadence OrCAD Capture 设计的时候,在不同的元件库中,包含的元件资料,都是介绍Cadence OrCAD Capture 本身自带的元件库,所以大家在自己的软件中,都可以看到,方便的选择自己的元件了 AMPLIFIER.OLB 共182个零件,存放模拟放大器IC,如CA3280,TL027C,EL4093等。 ARITHMETIC.OLB 共182个零件,存放逻辑运算IC,如TC4032B,74LS85等。 ATOD.OLB 共618个零件,存放A/D转换IC,如ADC0804,TC7109等。 BUS DRIVERTRANSCEIVER.OLB 共632个零件,存放汇流排驱动IC,如74LS244,74LS373等数字IC。 CAPSYM.OLB 共35个零件,存放电源,地,输入输出口,标题栏等。 CONNECTOR.OLB 共816个零件,存放连接器,如4 HEADER,CON AT62,RCA JACK等。 COUNTER.OLB 共182个零件,存放计数器IC,如74LS90,CD4040B。 DISCRETE.OLB 共872个零件,存放分立式元件,如电阻,电容,电感,开关,变压器等常用零件。 DRAM.OLB 共623个零件,存放动态存储器,如TMS44C256,MN41100-10等。

Cadence元件库介绍

Cadence元件库介绍 AMPLIFIER.OLB共182个零件,存放模拟放大器IC,如CA3280,TL027C,EL4093等。ARITHMETIC.OLB共182个零件,存放逻辑运算IC,如TC4032B,74LS85等。 ATOD.OLB共618个零件,存放A/D转换IC,如ADC0804,TC7109等。 BUS DRIVERTRANSCEIVER.OLB共632个零件,存放汇流排驱动IC,如74LS244,74LS373等数字IC。CAPSYM.OLB共35个零件,存放电源,地,输入输出口,标题栏等。 CONNECTOR.OLB共816个零件,存放连接器,如4HEADER,CON AT62,RCA JACK等。COUNTER.OLB共182个零件,存放计数器IC,如74LS90,CD4040B。 DISCRETE.OLB共872个零件,存放分立式元件,如电阻,电容,电感,开关,变压器等常用零件。DRAM.OLB共623个零件,存放动态存储器,如TMS44C256,MN41100-10等。 ELECTRO MECHANICAL.OLB共6个零件,存放马达,断路器等电机类元件。 FIFO.OLB共177个零件,存放先进先出资料暂存器,如40105,SN74LS232。 FILTRE.OLB共80个零件,存放滤波器类元件,如MAX270,LTC1065等。 FPGA.OLB存放可编程逻辑器件,如XC6216/LCC。 GATE.OLB共691个零件,存放逻辑门(含CMOS和TLL)。 LATCH.OLB共305个零件,存放锁存器,如4013,74LS73,74LS76等。 LINE DRIVER RECEIVER.OLB共380个零件,存放线控驱动与接收器。如SN75125,DS275等。MECHANICAL.OLB共110个零件,存放机构图件,如M HOLE2,PGASOC-15-F等。MICROCONTROLLER.OLB共523个零件,存放单晶片微处理器,如68HC11,AT89C51等。MICRO PROCESSOR.OLB共288个零件,存放微处理器,如80386,Z80180等。 MISC.OLB共1567个零件,存放杂项图件,如电表(METER MA),微处理器周边(Z80-DMA)等未分类的零件。 MISC2.OLB共772个零件,存放杂项图件,如TP3071,ZSD100等未分类零件。 MISCLINEAR.OLB共365个零件,存放线性杂项图件(未分类),如14573,4127,VFC32等。MISCMEMORY.OLB共278个零件,存放记忆体杂项图件(未分类),如28F020,X76F041等。MISCPOWER.OLB共222个零件,存放高功率杂项图件(未分类),如REF-01,PWR505,TPS67341等。MUXDECODER.OLB共449个零件,存放解码器,如4511,4555,74AC157等。 OPAMP.OLB共610个零件,存放运放,如101,1458,UA741等。 PASSIVEFILTER.OLB共14个零件,存放被动式滤波器,如DIGNSFILTER,RS1517T,LINE FILTER等。PLD.OLB共355个零件,存放可编程逻辑器件,如22V10,10H8等。 PROM.OLB共811个零件,存放只读记忆体运算放大器,如18SA46,XL93C46等。REGULATOR.OLB共549个零件,存放稳压IC,如78xxx,79xxx等。 SHIFTREGISTER.OLB共610个零件,存放移位寄存器,如4006,SNLS91等。 SRAM.OLB共691个零件,存放静态存储器,如MCM6164,P4C116等。 TRANSISTOR.OLB共210个零件,存放晶体管(含FET,UJT,PUT等),如2N2222A,2N2905等。

建筑行业通用英文缩写及含义

建筑行业通用英文缩写及含义

————————————————————————————————作者: ————————————————————————————————日期:

常用的英语缩写(ABBREVIATIONS) 构件篇 英语缩写中文翻译COLUMN 柱子 POST 从梁上升起的柱子BASEPLATE 底板 CAP PLATE 顶板 COVER PLATE盖板 END PLATE 封板,短板 SEAL PLATE 封板 SHEAR PLATE 剪切板 CONNECTION PLATE 连接板 GIRDER 主梁 BEAM 梁/次梁 SECONDARY BEAM 次梁 JOIST GIRDER主桁架 JOIST次桁架 BRACE 支撑 LINTEL过梁 MISC 杂件 EMBED PALTE 预埋板件 ANCHOR BOLT 地脚螺栓 FRAME钢架 RAILING扶手 STAIR 楼梯 RC WALL 混凝土墙 BRACKET 马仔 PART/TYP PART零件 ASSY 组合件CANOPY 雨棚 CATWALK 猫道 LADDER 爬梯 PURLIN檩条 FISH PLATE 结合板 HOISTBEAM 起吊运输梁 BUILT-UP SECTION 组合截面 BEARINGPLATE 支撑板 CANTILEVERBEAM悬臂梁/挑梁 CRANE GIRDER 吊车梁 CROSS BEAM井字梁

GIRT 抗风梁 RINGBEAM圈梁 DIAPHRAGM 横隔板 STIFFENER/STIFF 加劲板/肋 GUSSET PLATE节点板 HANGER吊杆/吊环GRIP夹具/卡子TIE BAR 拉结钢筋 TIEBEAM系梁 TIETOD 系杆 TIEROD系杆FLANGE 翼缘/法兰WEBPLATE/WEB 腹板 图纸/版本篇 DESIGN DRAWING设计图SHOP DRAWING 施工图/详图FABRICATION DRAWING加工图 ARCHITECTURE建筑图 AS-BUILT DRAWING 竣工图 FOR APPROVAL 审批 FOR FAB加工UPDATE 更新 FOR FIELDUSED 现场使用 材料篇 SHS(SQUARE HOLLOW SECTION)方通/方管RHS(RECTANGLE HOLLOW SECTION) 矩形管 CHS(CIRCULAR HOLLOW SECTION)圆管/喉管GMS( GALVMILDSTEEL) 低碳钢 RSC(ROLLEDSTEEL CHANNEL) 槽钢 RSA(ROLLEDSTEELAMGLE) 角钢 HSB (HIGN STRENGTH BOLT)高强螺栓 TS(TUBE CHANNEL)方通/方管HSS(HOLLOW SQUARE SECTION) 方通/方管 EA(EQUAL ANGLE) 等边角钢 UA(UNEQUAL ANGLE)不等边角钢UC(UNIVERSAL COLUMNS)等边工字钢UB(UNIVERSAL BEAM)不等边工字钢PFC(PARALLEL FLANGE CHANNEL)方脚槽钢CSK BOLT 沉头螺栓 FLAT BAR扁钢 CHANNEL 槽钢

员工设备安全操作培训

设备安全规操作 粗格栅操作规程 运行前准备: 1、在未送电源之前检查现场电控制箱各元器件接线是否松动,接线板是否接线牢固,无锈蚀; 2、按规定对粗格栅进行润滑、保养、检查机组各部件,应无明显缺陷故障,链条应无裂断; 3、检查机械各部无卡堵; 4、检查机械各部润滑良好,有足够的油脂; 5、检查动力及润滑压油等各部分有无渗漏; 6、检查耙斗上下行走应平衡; 7、检查皮带输送机上有足够存放清捞物的空间; 运行: 粗格栅可实行手动/自动/联动三种操作模式,手动就是在现场开启设备运行。远控是可以通过中控室定时与超声波装置进行液位差控制,一般与皮带输送机实行联动操作。联动是在配电柜采用时间继电器控制。

1380V ); 2、手动开机: (1)手动仅限于调试、检修、处理较大异物和紧急故障时使用; (2)应将“手动/自动/联动”置于手动位置。启动格栅除污机,观测机组各部分运转情况,捞污、排渣等动作应准确到位,无异常声响、振动,链条应传动平稳; (3)在手动状态下正常运转至少30min ,方可切换为自动或联动状态。在自动状态中,操作者应观察至少10 min ,方可离开。操作者的常规巡视时间间隔应不大于2h; (4)除污机清捞的垃圾,由垃圾箱运至下一工作区域,现场应及时清理,保持现场清洁; (5)工作结束后将格栅除污机的停止。关掉电源,与设备断开即完成手动操作. 3、自动操作步骤: 在自动模式下,开/停耙斗按预先设定的程序连续运行,格栅一般有定时和手动两种控制方式,具体步骤如下: 格栅机手自动转 换开关 格栅机手动启动开关 格栅机手动停止开关 急停止开关 格栅机电源 格栅机停止指示 格栅机运行指示

Cadence ORCAD CAPTURE元件库介绍

Cadence ORCAD CAPTURE元件库介绍AMPLIFIER.OLB 共182个零件,存放模拟放大器IC,如CA3280,TL027C,EL4093等。ARITHMETIC.OLB 共182个零件,存放逻辑运算IC,如TC4032B,74LS85等。 ATOD.OLB 共618个零件,存放A/D转换IC,如ADC0804,TC7109等。 BUS DRIVERTRANSCEIVER.OLB 共632个零件,存放汇流排驱动IC,如74LS244,74LS373等数字IC。CAPSYM.OLB 共35个零件,存放电源,地,输入输出口,标题栏等。CONNECTOR.OLB 共816个零件,存放连接器,如4 HEADER,CON AT62,RCA JACK等。COUNTER.OLB 共182个零件,存放计数器IC,如74LS90,CD4040B。 DISCRETE.OLB 共872个零件,存放分立式元件,如电阻,电容,电感,开关,变压器等常用零件。 DRAM.OLB 共623个零件,存放动态存储器,如TMS44C256,MN41100-10等。ELECTRO MECHANICAL.OLB 共6个零件,存放马达,断路器等电机类元件。 FIFO.OLB 共177个零件,存放先进先出资料暂存器,如40105,SN74LS232。FILTRE.OLB 共80个零件,存放滤波器类元件,如MAX270,LTC1065等。 FPGA.OLB 存放可编程逻辑器件,如XC6216/LCC。 GATE.OLB 共691个零件,存放逻辑门(含CMOS和TLL)。 LATCH.OLB

共305个零件,存放锁存器,如4013,74LS73,74LS76等。 LINE DRIVER RECEIVER.OLB 共380个零件,存放线控驱动与接收器。如SN75125,DS275等。MECHANICAL.OLB 共110个零件,存放机构图件,如M HOLE 2,PGASOC-15-F等。MICROCONTROLLER.OLB 共523个零件,存放单晶片微处理器,如68HC11,AT89C51等。 MICRO PROCESSOR.OLB 共288个零件,存放微处理器,如80386,Z80180等。 MISC.OLB 共1567个零件,存放杂项图件,如电表(METER MA),微处理器周边(Z80-DMA)等未分类的零件。 MISC2.OLB 共772个零件,存放杂项图件,如TP3071,ZSD100等未分类零件。MISCLINEAR.OLB 共365个零件,存放线性杂项图件(未分类),如14573,4127,VFC32等。MISCMEMORY.OLB 共278个零件,存放记忆体杂项图件(未分类),如28F020,X76F041等。MISCPOWER.OLB 共222个零件,存放高功率杂项图件(未分类),如REF-01,PWR505,TPS67341等。 MUXDECODER.OLB 共449个零件,存放解码器,如4511,4555,74AC157等。 OPAMP.OLB 共610个零件,存放运放,如101,1458,UA741等。PASSIVEFILTER.OLB 共14个零件,存放被动式滤波器,如DIGNSFILTER,RS1517T,LINE FILTER 等。 PLD.OLB 共355个零件,存放可编程逻辑器件,如22V10,10H8等。 PROM.OLB

质量管理体系中英文缩写与其解释

质量管理体系中英文缩写与其解释 Engineering 工程 / Process 工序(制程) Man, Machine, Method, Material, 人,机器,方法,物料,环境- 可能导 4M&1E Environment 致或造成问题的根本原因 AI Automatic Insertion 自动插机 ASSY Assembly 制品装配 ATE Automatic Test Equipment 自动测试设备 BL Baseline 参照点 BM Benchmark 参照点

BOM Bill of Material 生产产品所用的物料清单 C&ED/C Cause and Effect Diagram 原因和效果图 AED CA Corrective Action 解决问题所采取的措施 电脑辅助设计.用于制图和设计3维物体 CAD Computer-aided Design 的软件 对文件的要求进行评审,批准,和更改 CCB Change Control Board 的小组 依照短期和长期改善的重要性来做持续 CI Continuous Improvement 改善 COB Chip on Board 邦定-线焊芯片到PCB板的装配方法. CT Cycle Time 完成任务所须的时间 DFM

Design for Manufacturability 产品的设计对装配的适合性 设计失效模式与后果分析--在设计阶段 Design Failure Mode and Effect DFMEA 预测问题的发生的可能性并且对之采取 Analysis 措施 六西格玛(6-Sigma)设计 -- 设计阶段预 DFSS Design for Six Sigma 测问题的发生的可能性并且对之采取措施并提高设计对装配的适合性 DFT Design for Test 产品的设计对测试的适合性 实验设计-- 用于证明某种情况是真实DOE Design of Experiment 的 根据一百万件所生产的产品来计算不良DPPM Defective Part Per Million 品的标准 Design Verification / Design

ORcad元件库建立

OrCAD图文教程:创建元件库 OrCAD图文教程:创建元件库 时间:2009-03-18 19:19来源:于博士信号完整性研究作者:于博士点击: 711次 通常在画原理图时,需要自己生成所用器件的元件图形。首先要建立自己的元件库,不断向其中添加,就可以有自己常用器件的元件库了,积累起来,以后用起来很方便。 创建元件库方法:激活工程管理器,file -> new ->library,元件库被自动加入到工程中 不过我很少这么做,个人感觉还是单独建一个库,单独管理,更清楚。好了,这只是个人习惯问题,还是看看则么建立元件吧。选中新建的库文件,右键->new part,弹出对话框。

在对话框中添加:元件名称,索引标示,封装名称,如果还没有它的封装库,可以暂时空着,以后可以改的。下面的multi-part package部分是选择元件分几部分建立。如果元件比较大,比如有些FPGA有一千多个管腿,不可能都画在一个图形里,你就必须分成多个部分画。要分成8个部分,只要在part per pkg 框中填8即可。下面的package type对分裂元件有说法,独立元件的话默认选项就好了。它的作用后面再讲。 我们建立元件CS5381,共24个管脚,管脚少的话就不用把元件分成多个部分了。按OK按钮,弹出器件图形窗口。 初始图形很小,先把图框拉大,图中虚线部分,然后放置图形实体的边界线,选右侧工具栏中的那个小方框即可画出,初步调整大小,能放下24个脚即可。接下来要添加管腿了。这时你可以一个一个的添加,好处是每次添加都能设定好管脚的属性。也可以一次添加24个,然后再去一个一个修改属性。这里一次添加完所有管脚。选place->pin array,弹出对话框。选项设置如图所示。

ORcad Capture CIS元件库管理及应用

当电子元器件数量多到一定程度的时候,所有器件都集中在一个library里杂乱无章,使用起来相当不方便,时间长了也很容易把相似的器件封装混淆,如何规范化整理,就成了一个让人头疼的问题。还有就是贴片时硬件工程师都要面对一个整理BOM的问题,小公司的员工都了解,每次出BOM清单都需要逐个器件整理,工作量大而且不断重复,着急了还容易出错,非常浪费时间和精力,(大公司一般会有一个强大的团队专门维护管理器件库,所以导BOM对他们来说只是轻轻点击鼠标的一个动作)。那么有没有一种方式既不花钱又能像大公司那样一键导出呢? 答案是 <有的> 不得不说cadence强悍到你无法想象,只要努力挖掘就能get新技能,下面就说说cadence自带orcad capture CIS元器件管理模块。通过上网搜寻和不断摸索大概理清了该功能的实现方式,有不对的地方请大家指正。 一,开启Access2016,创建一个数据库 [我个人使用的是WIN10系统,office2016,cadence16.6/17.2] 首先打开Access2016数据库,如果电脑里没有安装,可以重新安装office2016,一般电脑上都有office,只不过有的没开通Access, 双击 继续~

按照提示继续,知道安装完成。 然后在开始菜单找到图标,打开Access2016

选择新建一个数据库,设置数据库名和保存路径,然后创建~ 打开之后有一个默认的表1,在数据库里我们可以创建多个表,按照元器件分类可以电容建一个,电阻建一个,电感建一个,IC建一个,connector建一个等等。表格第一行添加一些标题,这些标题都是元器件的参数名,其中第一个ID不能改,在后面依次添加,可根据个人习惯有选择的添加,常用的元器件参数一般有下面几种。

所有船舶通用的英文缩写

第一部分 1 A/B Above Base Line 基准线以上 2 A/C Anticorrosive Paint 防腐涂料 3 A/F Antifouling Paint 防污漆 4 ABS American Bureau of Shipping 美国船级社 5 Abt Abt (About ) 大约,关于 6 ACCOM. Accommodation 船室,居住区 7 ACCM.L Accommodation Ladder 舷梯 8 ACCU Automatic control system certified for unattended eng. Room 无人机舱自动控制系统鉴定 9 AFRAMAX Average Freight Rate Assessment at the max. of Deadweight C.O.T 最大负载时平均运费率评估 10 A.P Bhd After Peak Bulkhead 船尖舱舱壁 11 ANSI American National Standards Institute 美国国家标准协会 12 AP After Perpendicular 艉垂线 13 API American Petroleum Institute 美国石油组织 14 APT After Peak Tank 尾尖舱 15 ARPA Automatic Rader Plotting Aids 自动雷达测图仪 16 ASTM American Society of Testing Materials 美国材料实验协会 17 B mld Moulded Breadth 型宽 18 B/C Bulk Carrier 散货船 19 B.L Base line 基线 20 Basic Design 基本设计 21 Ballast Control Room 压载控制室 22 BHP Brake Horse Power 制动马力 23 BOG Boil-off Gas 蒸发气体 24 BOM Bill of Material 材料清单 25 Bkt Bracket 支架,肘板 26 BHD Bulkhead 隔壁, 防水壁 27 C/H Cargo Hold 货舱 28 C.T Cable Trunk 电缆管道 29 CCI Class Comment Item 船级社说明项目

OrCAD自带库文件说明

本文介绍在Cadence OrCAD Capture设计的时候,在不同的元件库中,包含的元件资料,都是介绍Cadence OrCAD Capture本身自带的元件库,所以大家在自己的软件中,都可以看到,方便的选择自己的元件了 AMPLIFIER.OLB共182个零件,存放模拟放大器IC,如CA3280,TL027C,EL4093等。ARITHMETIC.OLB共182个零件,存放逻辑运算IC,如TC4032B,74LS85等。 ATOD.OLB共618个零件,存放A/D转换IC,如ADC0804,TC7109等。 BUS DRIVERTRANSCEIVER.OLB共632个零件,存放汇流排驱动IC,如74LS244,74LS373等数字IC。CAPSYM.OLB共35个零件,存放电源,地,输入输出口,标题栏等。 CONNECTOR.OLB共816个零件,存放连接器,如4HEADER,CON AT62,RCA JACK等。COUNTER.OLB共182个零件,存放计数器IC,如74LS90,CD4040B。 DISCRETE.OLB共872个零件,存放分立式元件,如电阻,电容,电感,开关,变压器等常用零件。DRAM.OLB共623个零件,存放动态存储器,如TMS44C256,MN41100-10等。 ELECTRO MECHANICAL.OLB共6个零件,存放马达,断路器等电机类元件。 FIFO.OLB共177个零件,存放先进先出资料暂存器,如40105,SN74LS232。 FILTRE.OLB共80个零件,存放滤波器类元件,如MAX270,LTC1065等。 FPGA.OLB存放可编程逻辑器件,如XC6216/LCC。 GATE.OLB共691个零件,存放逻辑门(含CMOS和TLL)。 LATCH.OLB共305个零件,存放锁存器,如4013,74LS73,74LS76等。 LINE DRIVER RECEIVER.OLB共380个零件,存放线控驱动与接收器。如SN75125,DS275等。MECHANICAL.OLB共110个零件,存放机构图件,如M HOLE2,PGASOC-15-F等。MICROCONTROLLER.OLB共523个零件,存放单晶片微处理器,如68HC11,AT89C51等。 MICRO PROCESSOR.OLB共288个零件,存放微处理器,如80386,Z80180等。 MISC.OLB共1567个零件,存放杂项图件,如电表(METER MA),微处理器周边(Z80-DMA)等未分类的零件。MISC2.OLB共772个零件,存放杂项图件,如TP3071,ZSD100等未分类零件。MISCLINEAR.OLB共365个零件,存放线性杂项图件(未分类),如14573,4127,VFC32等。MISCMEMORY.OLB共278个零件,存放记忆体杂项图件(未分类),如28F020,X76F041等。MISCPOWER.OLB共222个零件,存放高功率杂项图件(未分类),如REF-01,PWR505,TPS67341等。MUXDECODER.OLB共449个零件,存放解码器,如4511,4555,74AC157等。 OPAMP.OLB共610个零件,存放运放,如101,1458,UA741等。 PASSIVEFILTER.OLB共14个零件,存放被动式滤波器,如DIGNSFILTER,RS1517T,LINE FILTER等。PLD.OLB共355个零件,存放可编程逻辑器件,如22V10,10H8等。 PROM.OLB共811个零件,存放只读记忆体运算放大器,如18SA46,XL93C46等。REGULATOR.OLB共549个零件,存放稳压IC,如78xxx,79xxx等。 SHIFTREGISTER.OLB共610个零件,存放移位寄存器,如4006,SNLS91等。 SRAM.OLB共691个零件,存放静态存储器,如MCM6164,P4C116等。 TRANSISTOR.OLB共210个零件,存放晶体管(含FET,UJT,PUT等),如2N2222A,2N2905等

OrCAD的快捷键以及元件库统计

OrCAD快捷键 I: 放大O:缩小 C: 以光标所指为新的窗口显示中心 W: 画线On/Off P: 快速放置元件R: 元件旋转90° N: 放置网络标号J : 放置节点On/Off F: 放置电源H: 元件标号左右翻转 G: 放置地V: 元件标号上下翻转 B: 放置总线On/Off Y: 画多边形 E: 放置总线端口T: 放置TEXT PageUp : 上移一个窗口Ctrl+ PageUp : 左移一个窗口 PageDn : 下移一个窗口Ctrl+ PageDn : 右移一个窗口 Ctrl+F: 查找元件Ctrl+E: 编辑元件属性 Ctrl+C: 复制Ctrl+V: 粘贴Ctrl+Z: 撤消操作CTRL+S 保存CTRL+V: 粘贴 CTRL+P: 打印CTRL+Z:撤消删除CTRL+X: 剪切CTRL+C: 复制CTRL+A: 全部选中 CTRL+E: 被选属性参数编辑CTRL+L: 调出Part Editor窗口 CTRL+F: 查找对话框CTRL+G: 光标指向设定位置 H: X轴镜像V: Y轴镜像F4: 再次执行 CTRL+R : 旋转CTRL+G: 光标指向设定位置 Shift+D 显示对应的下层子电路图 Shift+A 显示上一层

Shift+P 调用元器件 Shift+Z 调用Internet数据库中的器件 Shift+w 绘制连线 Shift+b 绘制总线 Shift+J 绘制接点 Shift+E 绘制总线引入线 Shift+N 为接点命名 Shift+F 绘制电源 Shift+G 绘制地线 Shift+X 浮置引线标志 Shift+T 添加文字 Shift+Y 折线 F1 帮助F7 生成宏F8 运行宏F9 新建宏 元器件编号及数值标识 1.元器件编号命名前缀: 电阻:R 排阻:RN 电容:C 电解电容:EC 电感:L 磁珠:FB

ORCAD CAPTURE 元件库详解

ORCAD CAPTURE 元件库详解 1' AMPLIFIER.OLB 共182个零件,存放模拟放大器IC,如CA3280,TL027C,EL4093等。 2' ARITHMETIC.OLB 共182个零件,存放逻辑运算IC,如TC4032B,74LS85等。 3' ATOD.OLB 共618个零件,存放A/D转换IC,如ADC0804,TC7109等。 4' BUS DRIVERTRANSCEIVER.OLB 共632个零件,存放汇流排驱动IC,如74LS244,74LS373等数字IC。 5' CAPSYM.OLB 共35个零件,存放电源,地,输入输出口,标题栏等。 6' CONNECTOR.OLB 共816个零件,存放连接器,如4 HEADER,CON AT62,RCA JACK等。 7' COUNTER.OLB 共182个零件,存放计数器IC,如74LS90,CD4040B。 8' DISCRETE.OLB 共872个零件,存放分立式元件,如电阻,电容,电感,开关,变压器等常用零件。 9' DRAM.OLB 共623个零件,存放动态存储器,如TMS44C256,MN41100-10等。 10' ELECTRO MECHANICAL.OLB 共6个零件,存放马达,断路器等电机类元件。 11' FIFO.OLB 共177个零件,存放先进先出资料暂存器,如40105,SN74LS232。 12' FILTRE.OLB 共80个零件,存放滤波器类元件,如MAX270,LTC1065等。 13' FPGA.OLB 存放可编程逻辑器件,如XC6216/LCC。 14' GATE.OLB 共691个零件,存放逻辑门(含CMOS和TLL)。

通用英文缩写解释

AH:外观颜色匹配工程师 APQP:产品质量先期策划 DRE:设计发布工程师 DTS:尺寸技术准备 ETR:工程试装要求 EWO:工程更改 FE:功能评估 GCA:全球顾客评审 GD&T:主要尺寸相关的零件、总成和整车的形位公差图纸,几何尺寸及公差图纸。 GM Global AAR---GM全球外观认可报告 GP4:生产件批准状况通知 GP5:供应商质量监控流程(GM1746) GP8:持续改进程序(GM1747) GP9:按节拍生产品(GM1960) GP10:供应商检测设备的评价和鉴定(GM1796) GP12:早期生产遏制(GM1920)IMDS:国际材料数据系统 MC:匹配 -MC0/1交样前,检具不能按时完成时,经过MC工程师批准,允许用三坐标进行代替测量。但测量时使用的基准必须与GD&T/Control Drawing一致,并得到SGM检具工程师的设计认可(A表),且基准的精度和重复性必须得到验证,符合要求。 -MC2检具必须经SGM检具工程师设计认可(A表)和制造认可(B表)。交样数量原则上MC0,MC1,MC2各5套

PATAC:泛亚汽车技术中心PCR:问题交流报告PDT:产品开发小组 PLP:主定位基准Pre-texture Instruction-Global Form ---GM全球皮纹认可报告PTR:供应商提供的零件必须是合格的,可用于正常的可销售车生产的零件。(所有新零件在作为正常零件供给SGM之前,均必须已成功地通过PTR的实施) S1:第一轮可销售车制造 SMT:系统管理小组 SVE:系统认证工程师 SQE:供应商质量工程师 SGE:外观皮纹工程师 TA:Technology assent:技术赞成(定点前的技术,能力方面的交流) TE:试验工程师 TVE:(动力总成)总认证工程师 VPM:整车性能经理 IV:工程认可(需要提供零件尺寸报告、材料试验报告、总成性能报告等所有试验报告)MC1/2:尺寸匹配(提交尺寸报告,合格率80%/90%) PVV:产品验证,小批量制造(尺寸报告,零件必须通过GP12) NS:非销售车制造(零件必须通过GP12-100%检验) S:销售车制造(零件通过PPAP人认可,零件必须通过GP12-100%检验) SORP:量产开始(具体数量根据订单,一般IV80套,MC10套,PVV几套到几十套不等。) GD&T:全球尺寸和公差标准 DPV: Defects per vehicle 每辆车缺陷数

相关主题