搜档网
当前位置:搜档网 › 超全整车密封设计

超全整车密封设计

超全整车密封设计
超全整车密封设计

目录

第一章概论..................................................................................2 1-1 该指南的主要目的.......................................................................2 1-2 该指南的相关内容......................................................................2 第二章密封系统的设计要求....................................................................2 2-1 密封系统法规性要求.....................................................................2 2-2 密封系统其它要求.......................................................................3 第三章密封系统结构解析.....................................................................3 3-1 密封系统安装位置......................................................................4 3-2 密封条结构的解析......................................................................6 3-3 典型密封截面的解析...................................................................10 3-4 密封条材料...........................................................................12第四章密封系统失效模式、设计校核............................................................12 4-1 密封系统失效模式.....................................................................12 4-2 密封系统设计校核.....................................................................12 第五章密封系统设计趋势及工作方向..........................................................15 5-1 密封系统相关趋势.....................................................................15 5-2 现存主要问题和今后工作方向...........................................................16

第一章概论

1.1 该指南的主要目的

该指南主要解决两方面的问题:

(1)、密封系统的设计需要满足哪些方面的要求,包括法规要求、设计目标要求等;

(2)、密封系统的设计应该遵循哪些规律性的东西,尤其是设计细节和经验值。

1.2 该指南的主要内容

该指南从以下几个方面展开:

(1)、针对密封系统设计在宏观方面的要求,侧重于法规要求和设计目标要求,辅之以BENCHMARKING研究;

(2)、针对密封系统在微观方面的要求,侧重于密封条本身和典型密封截面的解析及要求;

(3)、其余内容涉及密封系统校核、潜在失效模式和未来的设计趋势;

第二章密封系统的设计要求

2.1密封系统法规性要求

具体性要求

GB/T 12426 车辆用密封条的污染性试验方法

GB/T 12425 车辆用密封条的人工气候曝露试验方法

GB/T 12424 车辆用植绒密封条的磨损试验方法

GB/T12478-1990 客车防尘密封性试验方法

GB12479-1990 客车防尘密封性限值

GB/T12480-1990 客车防雨密封性试验方法

QC/T639-2000 客车门窗用橡胶密封条

QC/T640-2000 客车门窗用植绒密封条

QC/T641-2004 汽车用塑料密封条

Q/CAC·04·129-2000 A11型车用塑料密封条

Q/CAC·04·130-2000 A11型车用橡胶密封条

Q/CAC·04·131—2000 A11型车用植绒密封条

QCn29008.6-1991 车身密封性评定方法汽车产品质量检验

一般性要求(德国大众):

TL-VW607 供货技术条件车门用发泡橡胶密封条材料要求

TL-VW626 供货技术条件海绵橡胶密封条材料要求

TL-VW642 供货技术条件复合体密封条材料要求

TL-VW655 供货技术条件车窗玻璃导轨用无支撑带的植绒密封条材料要求

TL-VW658 供货技术条件边缘保护用弹性密封条材料要求

TL-VW676 供货技术条件用于窗密封的软PVC 材料要求

TL-VW52002 供货技术条件橡胶密封条材料要求

TL-VW52006 供货技术条件软PVC泡沫密封条材料要求

TL-VW552015 供货技术条件 EPDM风窗密封条材料要求

TL-VW52042 供货技术条件窗导轨密封条和窗框密封条材料要求

PV3314 供货技术条件带软管密封边的密封条压缩拉脱负荷试验技术条件

2.2 密封系统其它要求.

一般性要求

1) 防止进水和漏风,以及尽量减少灰尘的进入 2)尽量减少风噪

3)符合开关门的力的要求;同时,要求密封条上的出气孔合理分布 4)良好的外观 具体考虑事项:

1) 在门上段区域,由于门闭合后,密封条的反作用力会导致门上段向外偏移,因此设计时,门外表面应该比侧围外表面低大约1~3mm ;见(图2-1)

2)为减少水的进入,在侧门的四个接角部位,密封条应该增厚0.3mm ; 3)在淋雨试验中,15分钟内不能有水侵入(100~175mm/hour ) ; 4)对于侧门密封压缩力,前、后门均以大约25 kgf 为宜;

(图2-2)

2-2 钣金形状变化示意图

第三章 密封系统结构解析

3.1密封系统的安装位置

3.1.1 整车的密封

总体上,车身密封是为了保证车身外的尘、沙、雨、雪不进入车内,同时,使车内的噪声降到一个很低的水平;基于上述要求,可以把车身的密封按位置分为三类:

(1)、车身本体的密封:由于车身骨架焊接总成上,有诸多工具孔或维修孔以及钣金接触缝隙,所以,这些孔需要用各种材料进行密封,比如密封胶、堵盖等等;(具体不再介绍)

(2)、静止玻璃的密封:对于前风档、后风挡、三角窗玻璃等非活动部件,密封形式通常采用密封条或密封胶;尤其前后风挡,为加强密封效果,安装方式多采用内部涂胶粘结,然后从装饰角度考虑再加装一些装饰条;

(3)、活动部件的密封:对于经常活动的部件,如前后车门、发动机盖、行李箱盖等的密封,一般采用密封条;其要求不仅要隔绝沙尘雨雪以及噪音进入车内,还要缓冲关门时的冲击,而且,防止车门在行车过程中,振动过大。 整车需要密封的大致位置,参见下图:(图3-1) ;更为详细的密封位置参见:(图3-2)

图3-1 整车密封位置简略示意图

图3-2 整车密封位置详细示意图

3.1.2 侧门密封条的分段

由于侧门密封条是环形一周,而且各段的密封截面是不同的,因此,如何合理分段,如何进行接角,需要根据具体情况进行分析;下面是相关车型的情况,见(图3-3)

图3-3 侧门密封条分段示意图

3.1.3 侧门密封条的数量

根据车的市场定位,来决定采用几道密封;一般而言,豪华车,对于车内噪音、防水防尘性的要求较高,则采用多道密封;对于经济型轿车,则采用一道密封即可。其优缺点的对比见下表。(表3-1)

示例:P11的侧门,在B柱位置是三道密封。(图3-4)

S12的侧门,在B柱位置则是一道密封。(图3-5)

表3-1 密封条数量及优缺点对比表

图3-4 P11在B柱位置的截面图

图3-5 S12在B柱位置的截面图

3.2 密封条结构的解析

3.2.1 密封条安装位置示意图

(1)、侧门门洞处的密封条:

大体有三种形式:双泡密封条(图3-6)、单泡密封条(图3-7)、无泡密封条(图3-8)

图3-6 双泡密封图3-7 单泡密封图3-8 无泡密封

A

B

C

(2)、前后门之间的密封条:

大体有两种位置形式:在后门上安装(图3-9)、在B柱上安装(图3-10)

图3-9 后门安装图3-10 B柱安装

(3)、门上段处的密封条:

大体有两种密封形式:一体式(图3-11)、(图3-12),分开式(图3-13)

图3-11 一体式1 图3-12 一体式2 图3-13 分开式

(4)、窗框部位(BELTLINE)的密封条:

密封原理是类似的,具体形式稍有区别:见双唇式(图3-14)和连唇式(图3-15)

图3-14 双唇式图3-15 连唇式

(5)、发动机盖处的密封条:

密封截面变化不大,具体安装形式稍有区别:见(图3-16)、(图3-17)

图3-16 单纯夹紧式安装图3-17 卡扣式安装

(6)、行李箱盖处的密封条:

密封截面变化不大,具体形式稍有区别:见(图3-18)、(图3-19)

图3-18 行李箱盖密封条1 图3-19 行李箱盖密封条2

3.2.2 密封条种类和样式

(1)、轿车车门密封条:(实例见:图3-20)

门框密封条:主要由密实胶基体和海绵胶泡管组成;密实胶内含有金属骨架,以加强定型与固定作用;海绵胶泡管有受压变形、卸压反弹的功能,保证关门时的密封作用;

此外,唇边部分有装饰作用,如由彩色胶构成或贴有织物,色彩更加美观;

门洞密封条:结构为全海绵胶泡管,或密实胶基底与海绵胶组合;同门框密封条配合使用,以增加车门与车体的密封作用

图3-20 轿车车门密封条

(2)、轿车车窗密封条:(实例见:图3-21)

车窗玻璃泥槽:由不同硬度密实胶组成,可嵌入骨架保证尺寸匹配性能;不同方向唇边的植绒不仅降低玻璃与胶条间的滑动摩擦,而且有助于减小噪音;

车窗内外侧条:由纯胶,或同塑料件复合构成,除以植绒降低同玻璃间的摩擦之外,还有装饰作用;

前后风挡密封条:由纯胶型条围接而成,在风窗玻璃同车体间保证固定密封作用

(3)、轿车前后盖密封条:(实例见:图3-22)

发动机盖密封条:由纯海绵胶泡管,或同密实胶复合构成,用于罩壳同车身前部的密合密封行李箱盖密封条:由含骨架的密实胶基体和海绵胶泡管组成,保证后盖关闭的密封作用

图3-21 轿车车窗密封条

图3-22 轿车前后盖密封条

(4)、结构复杂的密封条:(实例见:图3-23)

接角接头型:挤出型条通过注射模压工艺两两相接或单端加接,以满足密封条在转角部位或需要定位部分的安装匹配要求

可变截面型:密封条可在挤出过程中通过计算机控制,改变截面各部分的大小和形状,满足使用时车身不同部位的装配要求

图3-23 结构复杂的密封条

3.3 典型密封截面的解析

3.3.1 侧门的密封截面解析

(1)、门框密封截面:

总体上,在设计过程中,既要考虑反作用力,又要考虑其密封性能;反作用力设定得越大,在行驶过程中车门振动吸收性和水密性越好,但相应的是车门闭合力越大;因此,截面确定需二者兼顾。

(2)、档水条密封截面:

一般采用双面密封;车外密封条与车外侧嵌条是一体成型的;安装方式一般用卡子固定或压入门板的翻边处;注意的是:固定部分应有相当的硬度,使之与门板卡紧,而与玻璃接触的密封部分应有一定的弹性,并通过植绒减小玻璃上下的运动阻力。

(2)、玻璃导轨密封截面:

密封条应易于紧固于玻璃导轨内;另外,密封条应能够与玻璃紧密贴合,有一定的压紧作用,弹性要好,适应性强,同时又能使玻璃易于滑动,滑动量宜小,且能起到良好的密封效果。

密封条在设计时,应将横截面展开,以便于表面植绒或喷涂工艺的需要;安装后,玻璃泥槽形成框形,因此,应注意安装状态和展开状态的相互协调,注意转角的处理;目前,转角处理主要采用两种方法:接角或切缝

3.3.2发动机盖的密封截面解析

(1)、前风挡玻璃密封截面:

(2)、发动机盖密封截面:

发动机盖处的密封,目的是阻挡雨水、尘沙,减少它们进入发动机仓的机会,保持发动机仓处于整洁的环境状态(缺少具体截面经验值)

3.3.3行李箱盖的密封截面解析

3.4 密封条材料

对于密封条材料,总体要求是耐候性高、耐摩擦性好、耐热老化性好、吸水率低、低温时可挠性好及不受车辆油漆的侵蚀等;另外,为了提高耐摩擦性,降低与车身的摩擦声及提高在寒冷地带密封条的防冻性能,一般在密封条表面进行聚氨酯涂层。

主料:主要原材料为三元乙丙橡胶;新型EPDM可控制其分子中长链支化,使其硫化性能更好,提高挤出速度和产品的产量;其他新型的热塑性弹性体如EPO和TPV等材料既有弹性体的优良工程性能,又有塑料的优良特性,使之可以控制操作,又可回收重复利用,这些材料正在逐步取代EPDM制品。

辅料:主要是炭黑、骨架材料、补强剂、增塑剂和硫化剂。

第四章密封系统失效模式及设计校核

4.1 密封系统失效模式

对于密封系统而言,其主要失效模式的原因有以下:

(1)、关门的闭合力过大:

门总成与侧围总成的实际密封间隙未满足设计要求

密封条本身的透气孔位置设置不合理,且数量相对较少

门总成在设计时,其门的质心、锁与外把手的位置设置得不合理

密封条本身的性能未达到设计要求,导致单位长度上的反作用力较大

(2)、漏风漏雨:

门总成与侧围总成的密封间隙过大,密封条未良好接触钣金

密封条本身的性能未达到设计要求,导致车速过高时,密封条相对移动而导致密封不良(3)、车内噪声偏大:

门总成与侧围总成的密封间隙设置不合理,密封条未良好密封

密封条的数量偏少

4.2 密封系统设计校核

4.2.1 设计校核项目

(1)、制造可行性:这项工作主要涉及制造工艺问题,建议供应商与设计工程师就每个部位的密封部件,进行深入分析,看是否存在制造上的问题,或制造上需要花费很高的费用;比如P11车的外档水条就存在制造上的困难(图4-1)。

(2)、密封可行性:在前期,这项工作主要借助经验,来判断典型截面是否能够良好密封(具体内容见第三章的“密封截面分析”);等拉伸出密封钣金面后,可以切取截面,借助CAE分析,来进行判断(具体内容见下节的“CAE分析内容”)。

(3)、外观可行性:主要关注两方面:一是这种密封形式是否与整车外观协调,是否会产生间隙过大的错觉,是否需要做装饰边,是否需要取消接角等等;二是车辆运行长时间后,这种密封形式是否容易导致密封件变形。

(4)、装配可行性:主要涉及密封件的安装方式,是采用卡扣固定还是采用粘胶粘贴;是固定在车门上,还是固定在车身上;以及哪种装配方式更方便,更容易调整,容错性更大,装配质量更易于控制等等。

图4-1 P11车型外档水条截面图

4.2.2 CAE分析内容

必要性:由于汽车密封条的材料复杂,结构的特殊性,接触载荷、边界的非线性等因素,应用计算机辅助设计手段,可以提高预测能力,降低开发调试成本。

总体思路:开始阶段,利用钣金的典型截面来大致确定密封条的截面和几何形状、结构特点;从Benchmarking技术基准档案选取材料及其参数;通过CAE分析软件,如IDEAS、SEALVIEW等,模拟分析密封条的结构与受力变形行为,对变形过程进行理论分析。

分析内容:理论分析的内容主要针对三个方面:

(1)关门后,密封条的动态变形过程及应力分布;(图4-2)、

(2)关门后,密封条的反作用力介于多大范围;(图4-3)、

(3)关门后,密封条的密封面积;(图4-4)、

相应措施:如设计不合理,结果不理想,可重新变更密封条截面或钣金截面(图4-5)。

图4-2 密封条应力分布及动态变形过程

图4-3 密封条在不同位置反作用力及变形

图4-4 密封条反作用力及密封面积

图4-5 典型密封截面修改示例

第五章密封系统设计趋势及工作方向

5.1 密封系统相关趋势

(1)、模块化设计:北美一些汽车密封条制造厂商已经突破了传统生产密封条的模式,而是与汽车零配件厂合作,向一些整车厂提供一种同时装有导槽与侧条等密封条的组合框架,或车门整件,这种方式顺应了当代汽车零部件工业的模块供货方向发展的潮流。

(2)、彩色密封条:目前美国等工业发达国家的密封条生产企业已开发出彩色密封条,以满足不同用户的需求

(3)、环保密封条:为减少密封条在生产过程中的污染及粉尘飞扬而采用母胶型颗粒状的硫化剂及促进剂等作添加剂;禁止有毒性或在生产过程中产生致癌物质的原材料用作生产原料;很少采用盐浴硫化和玻璃微珠沸腾床硫化的生产工艺,而采用清洁的微波连续硫化生产工艺。

(4)。回收再生密封条:采用易加工,性能优于橡胶,综合成本较低,废料可回收利用的热塑性弹性体、浇注型弹性体和混炼型弹性体等材料,来替代不可再生利用的三元乙丙橡胶。目前美国有关公司生产的热塑性弹性体已用于福特、大众、丰田和奔驰公司生产的汽车

(5)、可变截面密封条:在密封条制造过程中,挤出时应用可变口型技术,即利用计算机控制挤出口型的变化,根据需要在转角部位和连接车体或夹持部位,使截面发生“渐变”或“突变”。有的使海绵泡管位置、壁厚、大小发生变化,一次挤出在长度方向的截面可变的型条,这样使密封

条能更好地与主体匹配、密封,使外观更完美。而且在加工过程中,减少了劳动强度,改变了以

往不同截面密封条在后加工中需要贴合和接角等复杂工序。

(6)、复合挤出技术:在密封条挤出过程中,现在从双复合、三复合共挤出工艺,即硬质胶(软质胶)、海绵胶、金属骨架共挤出发展到四复合挤出,或更多复合的共挤出,使不同胶种、不同材料、不同颜色的胶料共挤出,而且实现了在线静电植绒,可达到单面或双面植绒,同时可在线进行喷徐聚氨酯、硅油或其它涂层。

(7)、滚压式工装:在安装密封条过程中,以往采用木榔头捶击式安装,劳动强度大,密封条外观容易受损,现在逐渐改用滚压式工装(R0ll Formillg),它是一种带有转子的气动工具,可液压密封条的夹持部分,使它在不同安装部位都能达到均匀一致的装配效果,减轻了装配工劳动强度。

5.2 现存主要问题和今后工作方向

(1)、现存主要问题:出于制造成本上的考虑,现在倾向于借用现有车型的密封相关部件,包括门上段、玻璃导轨、密封条等的截面;但问题是:

一、原有车型的密封系统设计不尽合理,包括密封间隙的设定、压缩量的大小等;

二、经常出现门上断等部件采用一种车型,而密封条采用另一种车型的情况,最终导致配

合不良;

三、密封系统确定之后,缺少后续的CAE辅助分析,包括密封条关门后的形状变化、以及

反作用力大小等。

(2)、今后工作方向:针对以上存在的问题,主要工作方向应定位于以下:

一、通过各种途径,包括同供应商探讨、测量其它品牌的样车、做各种规格密封条压缩特

性试验等,建立一个实用的密封性能参考数据库;

二、必须掌握CAE分析手段,以便能够模拟和计算出密封条的动态变形过程和关门后闭合

力大小;

三、对于一些深层次的密封机理问题,需仔细思考,深入分析;比如,当侧门存在两道密

封条时,门洞密封条和门框密封条该如何配合,门闭合力该如何分配,各处尺寸值该

如何控制。

( THE END )

汽车设计-汽车密封条设计校核规范模板

XX公司企业规范 编号xxxx-xxxx 汽车设计- 汽车密封条设计校核规范 XXXX发布

汽车密封条设计校核规范 1范围 该设计规范适用于轿车的密封系统开发。主要介绍一般密封条分类及各部分的密封件对整车性能的要求,分析密封系统对整车性能的影响及密封条失效模式的典型特征,通过该设计规范的介绍,为汽车密封系统的设计开发提供指导。 2术语和定义 2.1 主要目的 2.1.1 密封系统的设计需要满足哪些方面的要求,包括法规要求、设计目标要求等; 2.1.2 密封系统的设计应该遵循哪些规律性的东西,尤其是设计细节和经验值。 2.2 主要内容 2.2.1 密封系统法规要求和设计目标要求; 2.2.2 密封条截面的解析; 2.2.3 密封系统校核、潜在失效模式校核规范。 3密封条设计要求 3.1 法规要求 QC/T 476 客车防雨密封性限值及试验方法 QC/T 639 汽车用橡胶密封条 QC/T 641 汽车用塑料密封条 QC/T 643 车辆用密封条的污染性试验方法 3.2 性能要求 性能主要需满足以下要求: 整车防尘防雨性能要求; 整车NVH性能要求,包括风噪、路噪、静态漏气量等; 车门关闭力要求:一般要求关闭速度V为0.8~1.2m/s; 整车外观要求。 4密封条结构设计 4.1 密封系统的布置 车身密封主要作用是为了保证车外的尘、沙、雨、雪不进入车内,同时,使车内的噪声降到一个较低的水平,一般情况车身密封条系统布置见下图:

图1 轿车车门密封条 4.2密封条种类和样式 4.2.1轿车车门密封条: 门框密封条:主要由密实胶基体和海绵胶泡管组成;密实胶内含有金属骨架,以加强定型与固定作用;海绵胶泡管有受压变形、卸压反弹的功能,保证关门时的密封作用;此外,唇边部分有装饰作用,如由彩色胶构成或贴有织物,色彩更加美观; 门洞密封条:结构为全海绵胶泡管,或密实胶基底与海绵胶组合;同门框密封条配合使用,以增加车门与车体的密封作用 图2 轿车车门密封条 4.2.2轿车车窗密封条: 车窗玻璃泥槽:由不同硬度密实胶组成,可嵌入骨架保证尺寸匹配性能;不同方向唇边的植绒不仅降低玻璃与胶条间的滑动摩擦,而且有助于减小噪音; 车窗内外侧条:由纯胶,或同塑料件复合构成,除以植绒降低同玻璃间摩擦之外,还有装饰作用; 前后风挡密封条:由纯胶型条围接而成,在风窗玻璃同车体间保证固定密封作用 图3 轿车车窗密封条

整车设计流程

整车设计流程 1、概念设计 1.1 设计内容市场定位分析、初期总布置设计、整车动力性、经济性分析和计算、造型设计指导书,参 考样车分析、供应商平台调查、成本分析、编制产品描述书。 1.1.1初期总布置根据市场及用户需求,选定各分总成,初步确定整车基本参数,在此基础上完成人体 布置和各类运动分析,视野分析,手触及空间分析和仪表可视性分析等。该过程借助三维设计软件模拟完成,分析出现的问题反馈到模型中进行调整,使所设计的汽车满足现代汽车高水平的驾驶操作性、乘坐舒适性和居住性等要求。 1.1.2整车动力性、经济性分析和计算进行整车初步动力性和经济性计算,分析整车性能满足产品定量 目标的程度并进行必要的调整。 1.1.3确定造型设计方向确定初步外部尺寸、整车技术参数、造型风格和内部配置。 1.1.4 参考样车分析对参考样车进行分析研究,确定其优势和不足,结合市场情况提出所开发产品的目 标定位。 1.1.5 供应商平台调查对潜在的供应商进行货源可行性评估,评价他们在满足质量、供货能力及开发水 平的前提下提供总成和部件的能力。识别价格及质量具有相对竞争力的供应商,以满足产品定位的要求将所有涉及该过程的开发伙伴协调在一起,整合资源满足用户最大需求。在供应商和制造者之间建立信息沟通,提升整个汽车生产链运作的效率,并增进更高层面上的技术创新。 1.1.6成本分析确定各系统和整车的目标成本。 1.1.7编制产品描述书描述书作为产品开发的依据文件,将所要开发的产品项目的背景、目标、车型规 划、总成选择、装备、进度等进行详细描述。 1.2 团队一支有着丰富汽车理论知识和设计经验的优秀团队,熟知中国汽车配套资源及现有车型。以 敏锐的眼光洞察中国的汽车市场,能很好的把握中国汽车发展的潮流。 1.3 市场定位从消费者调查、市场调研、竞争对手分析及,企业制造能力分析来确定产品的市场定位。 2、汽车造型 2.1 分析造型设计任务书 2.2 收集和整理相关资料并进行样车准备 2.3 工程与造型的契合 2.4 确定设计理念,提出设计方案 2.5 阶段评审 2.6 初步草图设计 2.7 方向性评审 2.8 细化效果图草图设计 2.9 设计评审 2.10 效果图设计 2.11效果图评审 2.12 效果图修改及提交 2.13 根据客户的意见修改效果图 2.14 效果图批准 2.15 进入零部件造型的细节设计阶段 团队要求:具有锐意创新的精神,透过设计的表面来理解设计本身所代表的设计师对生活形态和消费心理的了解,赋予设计更多的实际意义。高雅的艺术品味、丰富的设计经验、全面的汽车相关专业知识以及衍生的材料学、流体力学、热能学、人体工程学、社会学、环保学等众多方面知识。对消费者及成本的了解以及极富魅力的创意思维使他们不断推陈出新,创造出更符合国际趋势和品牌定位的作品。 设计部门承担整车造型、总体布置及整车集成,内容涵盖了从美学表面的质感、动感、内外饰的创意、计算机辅助曲面设计到产品外型的最终数据发布。 高级技工的丰富经验成为专家系统,我们不再是中国汽车行业中的“设计迁就于生产”,而是通过

汽车性能指标及参数

厂商提供的汽车说明书,反映了汽车的基本性能和技术含量,读懂汽车说明书对选购汽车具有指导意义。一般的汽车说明书含有下列内容: (1)发动机的基本参数汽车发动机的基本参数主要包括发动机缸数、气缸的排列形式、气门数、排气量、最高输出功率和最大转矩。 ①缸数——汽车发动机常用缸数有3,4、5,6、8缸。排量1升以下的发动机常用3缸,2.5升以下一般为4缸发动机,3升左右的发动机一般为6缸,4升左右为8缸,5.5升以上用12缸发动机。一般来说,在同等缸径下,缸数越多,排量越大,功率越高;在同等排量下,缸数越多,缸径越小,转速可以提高,从而获得较大的提升功率。 ②气缸的排列形式——一般5缸以下的发动机的气缸多采用直列方式排列,少数6缸发动机也有直列方式排列的。直列发动机的气缸体成一字排开,缸体、缸盖和曲轴结构简单,制造成本低,低速转矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛;缺点是功率较低。直列6缸的动平衡较好,振动相对较小。大多6到12缸发动机采用V形排列,v形即气缸分两列错开角度布置,形体紧凑,v形发动机长度和高度尺寸小\布置起来非常方便。V8发动机结构非常复杂,制造成本很高,所以使用的较少,而V12发动机则过大过重,只有极个别的高级轿车采用。 ③气门数——国产发动机大多采用每缸2气门,即一个进气门,一个排气门;国外轿车发动机普遍采用每缸4气门结构,即2个进气门,2个排气门,提高了进、排气的效率;国外有的公司开始采用每缸5气门结构,即3个进气门,2个排气门,主要作用是加大进气量,使燃烧更加彻底。气门数量并不是越多越好,5气门确实可以提高进气效率,但其结构极其复杂,加工困难,采用较少,国内生产的新捷达王就采用五气门发动机。 ④排气量——气缸工作容积是指活塞从上止点到下止点所扫过的气体容积,又称为单缸排量,它取决于缸径和活塞行程。发动机排量是各缸工作容积的总和,一般用于升( L)来表示。发动机排量是最重要的结构参数之一,它比缸径和缸数更能代表发动机的大小,发动机的许多指标都同排气量密切相关。 ⑤最高输出功率——最高输出功率一般用马力(hp )或千瓦(kW)来表示。发动机的输出功率同转速关系很大,随着转速的增加,发动机的功率也相应提高;但是到了一定的转速以后,功率反而呈下降趋势。一般在汽车使用说明中最高输出功率用每分钟转速来表示(r/min),如lOOhp/5000r/min,即代表在每分钟5000转时发动机最高输出功率为100马力。 ⑥最大转矩——它指发动机从曲轴端输出的力矩,转矩的表示方法是N·m/r/min,最大转矩一般出现在发动机的中、低转速范围,随着转速的提高,转矩反而会下降。当然,在选择时要权衡一下怎样合理使用、不浪费现有功能。比如,北京冬夏都有必要开空调,在选择发动机功率时就要考虑到不能太小;只是在城市环路上下班交通用车,就没有必要挑过大马力的发动机。因此要尽量做到经济、合理选配发动机。

密封系统设计指南

密封系统设计指南 目录 第一章概论..................................................................................2 1-1 该指南的主要目的.......................................................................2 1-2 该指南的相关内容......................................................................2 第二章密封系统的设计要求....................................................................2 2-1 密封系统法规性要求.....................................................................2 2-2 密封系统其它要求.......................................................................3 第三章密封系统结构解析.....................................................................3 3-1 密封系统安装位置......................................................................4 3-2 密封条结构的解析......................................................................6 3-3 典型密封截面的解析...................................................................10 3-4 密封条材料...........................................................................12第四章密封系统失效模式、设计校核............................................................12 4-1 密封系统失效模式.....................................................................12 4-2 密封系统设计校核.....................................................................12 第五章密封系统设计趋势及工作方向..........................................................15 5-1 密封系统相关趋势.....................................................................15 5-2 现存主要问题和今后工作方向...........................................................16

汽车设计时整车主要尺寸的确定

1.外廓尺寸 GBl589—89汽车外廓尺寸限界规定汽车外廓尺寸长:货车、越野车、整体式客车不应超过12m,单铰接式客车不超过18m,半挂汽车列车不超过16.5m,全挂汽车列车不超过20m;不包括后视镜,汽车宽不超过2.5m;空载、顶窗关闭状态下,汽车高不超过4m;后视镜等单侧外伸量不得超出最大宽度处250mm;顶窗、换气装置开启时不得超出车高300mm。 不在公路上行驶的汽车,其外廓尺寸不受上述规定限制。 轿车总长是轴距L、前悬和后悬的和。它与轴距L有下述关系:=L/C。式中,C为比例系数,其值在0.52~0.66之间。发动机前置前轮驱动汽车的C值为0.62~0. 66,发动机后置后轮驱动汽车的C值约为0.52~0.56。 轿车宽度尺寸一方面由乘员必需的室内宽度和车门厚度来决定,另一方面应保证能布置下发动机、车架、悬架、转向系和车轮等。轿车总宽与车辆总长之间有下述近似关系:=(/3)+ (195±60)mm。后座乘三人的轿车,不应小于1410mm。 影响轿车总高的因素有轴间底部离地高,地板及下部零件高,室内高和车顶造型高度等。 轴间底部离地高入m应大于最小离地间隙。由座位高、乘员上身长和头部及头上部空间构成的室内高一般在l120~1380mm之间。车顶造型高度大约在20~40mm范围内变化。 2.轴距L 轴距L对整备质量、汽车总长、最小转弯直径、传动轴长度、纵向通过半径有影响。当轴距短时,上述各指标减小。此外,轴距还对轴荷分配有影响。轴距过短会使车厢(箱)长度不足或后悬过长;上坡或制动时轴荷转移过大,汽车制动性和操纵稳定性变坏;车身纵向角振动增大,对平顺性不利;万向节传动轴的夹角增大。 原则上轿车的级别越高,装载量或载客量多的货车或客车轴距取得长。对机动性要求高的汽车轴距宜取短些。为满足市场需要,工厂在标准轴距货车基础上,生产出短轴距和长铀距的变型车。不同铀距变型车的轴距变化推荐在0.4~0.6m的范围内来确定为宜。

乘用车线束布置设计规范

乘用车线束布置设计规范

线束总体设计 1.1.1本篇主要介绍有关汽车线束布置的内容,对新车型线束的布置起指导作用,它概括了新开发车型的线束的固定,走向,分布及其相关附件的选用;同时,也对相关的车型的线束进行了总结,可以用作后续开发车型的参考。 包括以下几个部分: 1、线束的总体布置; 2、前舱线束的布置; 3、发动机线束的布置; 4、仪表线束的布置; 5、室内地板线束布置; 6,四门线束布置; 7、空调线束布置; 8、安全气囊线束布置 9、顶棚线束布置 10、后保线束布置 适用于公司整车线束的开发,需要不断的补充和完善,所涉及的线束布置方法需要不断的更新,以满足不同车型的开发要求。 1.1.2 线束布置的总体设计 一、概述 线束是电器的神经系统,对整车电器电子功能的实现起着至关重要的作用。在线束布置的总体设计中要充分考虑各相关的边界条件,对车身、动力总成、仪表台、底盘、内饰件必须充分、系统的了解,充分考虑各相关件对线束布置可能产生的影响,并对相关件的设计提出相应合理的要求。同时,我们要充分考虑整车的温度分布和震动,避免线束通过高温区,避免线束剧烈震动。 二、整车电器件的布置分布 启动机、、(包括其上的所有传感器和执行器)动力总成前舱的电器件或者相关件有:在整车中,发电机、蓄电池、压缩机、冷却风扇、灯具、ABS 控制器、轮速传感器、雨刮洗涤系统、环境温度传感器、喇叭、防盗喇叭、风扇控制器、电器盒及其他开关和传感器等。同时,前舱中的温度较高,且运动件较多,在设计线束的时候要充分考虑这些情况。在仪表台的部位通常有:HV AC、音响系统、安全气囊、仪表电器盒、BCM、ECU、TCU、制动开关,电子油门踏板、离合器开关、点烟器、备用电源及各种开关件(如组合开关、报警开关等);地板部分主要的电器件有:电动座椅及加热,电子油泵、安全带开关、后轮速传感器、转角传感器等;顶棚的电器件有:顶灯、电动天窗等;门上的主要电器件有:扬声器、电动窗、门锁、及相关的开关件等;后行李箱部分的电器件主要有:后BCM、停车辅助装置、后尾灯、后雨刮、高位制动灯、行李箱灯等。对于不同的车型,由于配置的不同,以上的电器件或有增减,但是对于同类型的车而言,基本的分布位置不会有太大的区别。对电器件大概位置的了解是十分必要的,对线束的布置也是至关重要。 三、整车线束的基本分类 在整车的线束中,我们可以将线束分成这样的几个部分:前舱线束总成、发动机线束总成、变速箱线束总成、仪表线束总成、地板线束总成、门线束总成(四门不同)、顶棚线束总成、后行李箱线束总成、电瓶正负极线束总成、安全气囊线束总成。但是,线束的划分和整车的结构和装配

汽车整车参数设计完整

城市微型轿车设计说明书 首先我要说明的是我确定的汽车形式:这款轿车,它是微型家用轿车,它的布置形式是发动机前置前轮驱动,车身形式为舱背式。 1 发动机选择 (1)发动机布置方式:前置 (2)发动机类型和排量:汽油机;排量为1.0L (3)发动机的最大功率P e max 和相应转速n p 的选择和计算 过给定范围,先确定转速 min /5000r n p = 再据公式: )76140 3600 ( 1 3 max max max V c V f m P a D a r a T e A g + = η 计算P e max 其中已知:h km V a /120max = h km V a /80= 35.0=c D 132.0)50(01.01[165.0=-?+?=V f a r i 接下来先确定m a )(940410465640650 kg n n m m a =?+?+=?+?+=α ii 确定整车轮廓,以求A 定轴距L=2100mm 轮距B=1250mm 总长 mm C L L a 338262 .02100≈== 总宽mm L B a a 138260195)3 (=±+= 总高 mm H a 1500= 以上数据主要根据书中提供的公式进行计算后得到,通过查询相关微型 轿车的尺寸资料后,再进一步做调整,最终得到以下数据: mm L a 3300= mm B a 1520= mm H a 1500= 28.25.152.1=?=A 由上述得到的所有数据再带入到已知的计算公式中计算 P e max =65.1kw

(4)计算最大转矩T e max 根据公式:m N n P T p e e ?=?? =? =2.1495000 1 .652.195499549max max α 发动机的主要参数已经得到,汽车的外型尺寸也已经大体知道,对于发动机的位置和尺寸能够在图上大概体现。详情请见所交的总体布置图。 发动机参数如下: 2 汽车尺寸参数 (1)外廓尺寸 经过调整取整 总长mm L a 3500= 总宽 mm B a 1600= 总高 mm H a 1500= (2)轴距L 和轮距B L=2100mm B=1250mm

汽车线束设计

汽车线束设计 及线束用原材料 汽车线束是汽车电路的网络主体,没有线束也就不存在汽车电路。随着人们对汽车的安全性、舒适性、经济性和排放性要求的提高,汽车线束变得越来越复杂,但车身给予线束的空间却越来越小。因此,如何提高汽车线束的综合性能设计便成为关注的焦点,而且汽车线束制造厂家不再单纯地搞线束后期设计和制造,和汽车主机厂家联合进行前期开发成为必然的趋势。根据几年来从事线束设计和制造的经验,谈谈线束的一般设计流程和设计原则。一、整车电路设计电源分配设计 汽车的供电系统设计是否合理,直接关系到汽车电器件的正常工作与否和全车的安全性,因此世界各国的出发点基本都是以安全为主。整车电气系统基本上3个部分组成。 1、蓄电池直接供电系统。 这部分的电源所接负载一般都是汽车的安全件或重要件,主要目的是在为这些件提供电能时尽量少的加以控制,确保这些件即使汽车发动不起来也能短暂正常工作,以方便到站点维修等。如:发动机ECU及发动机传感器的工作电源、燃油泵的工作电源、ABS控制器的电源、诊断接口电源等。 2、点火开关控制的供电系统。这部分电器件基本上

是在发动机工作运转的情况下才使用,取自发电 机的电源,避免了为蓄电池充电时争电源的可能性。如:仪表电源、制动灯电源、安全气囊电源等。 3、发动机起动时卸掉负载的电源。这部分电器件一般所带的负载较大,且在汽车起动时不必工作。一般有点烟器电源、空调电源、收放机电源、刮水器电源等。线路保护设计 线路保护就是要对导线加以保护,兼顾对回路电器件的保护。保护装置主要有熔断器、断路顺和易熔线。 1.熔断器的选取原则 发动机ECU、ABS等对整车性能及安全影响大,另外,易受其他用电设备千扰的电器件必须单设熔断器。发动机传感器、各类报警信号灯和外部照明灯、喇叭等电器件对整车性能及安全影响也较大,但该类电负荷对相互间的干扰并不敏感。因此,这类电负荷可以根据情况相互组合,共同使用一个熔断器。对于为增加舒适性而设置的普通电器件类的电负荷可以根据情况相互组合,共同使用一个熔断器。熔断器分快熔式和慢熔式。快熔式熔断器的主要部件是细锡线,其中片式熔断器结构简单、可靠性和耐振好、易检测,所以被广泛采用;慢熔式熔断器实际上是锡合金片,这种结构的熔断器一般串接到感性负载的电路中,如电机电路。电阻型的负载与电感型的负载尽量避开使用同一个熔断器。一般根据

汽车总体设计整车性能

1.4 汽车总体设计整车性能 仿真与系统匹配 1.4.1动力性能仿真计算 (1) 计算目的 汽车的动力性是汽车重要基本性能指标之一。动力性的好坏,直接影到汽车在城市和城际公路上的使用情况。因此在新车开发阶段要进行动力性计算,预测今后生产车型是否满足使用要求。使汽车具有良好的动力学性能. (2) 已知参数如表所示

a 设计载荷确定: 该车型设计载荷根据德国标准DIN 70020规定:在空车重量(整备质量)的基础上加上座位载荷。5座位轿车前面加2人、后排加1人,也称为半载作为设计载荷, 重量假定为68kg加上随身物品7kg,重心对于不可调整座位在R点(设计H点)前50mm,可调整作为R点前100mm处。我国标准常常规定满载作为设计工况. 对于该计算车型如采用德国标准, 则具体计算为:1070kg+3*(68kg+7kg)=1295kg b 迎风面积: 根据迎风面积计算公式:A=0.78BH确定,其中:A迎风面积,B车宽,H 车高。对于该车型而言具体计算为:A=0.78*1710mm*1427mm=1.90m2 c 传动效率: 根据该轿车的具体传动系统形式,传动系统的传动效率大体可以由变速器传动效率,单级主减速器传动效率,万向节传动效率组成。 具体计算为:95%(变速器)乘96%(单级主减速器)乘98%(万向节)=89.4%,

同时考虑到,一般情况下采用有级变速器的轿车的传动系统效率在90%到92%之间,对上述计算结果进行圆整,对传动系统效率取为90% d 滚动阻力系数: 滚动阻力系数采用推荐拟和公式进行计算: )19440/1(2 0a u f f +=, 其中: f 取为0.014(良好水泥或者沥青路面), a u 为车速km/h 。 (3) 发动机外特性曲线 i. AJR 发动机 ii AFE 发动机 图1.4.1 发动机外特性曲线 (4) 基本理论概述 汽车动力性能计算主要依据汽车驱动力和行驶阻力之间的平衡关系: j i w f t F F F F F +++= (1.4.1) 表1.4.2 各种受力名称 发 动 发动机

密封条设计流程

一,密封条的概述(介绍流程前先给大家介绍一下密封条,都是很基础的知识,但是能提高大家对密封条的认知度): 密封条一般用合成橡胶制成,又称为防护性成型镶条。主要应用在车门门框、侧面车窗、前后挡风玻璃、发动机罩和行李舱门上,起到密封的作用,另外也起到减振保护的作用。 密封条的制作材料主要是聚氯乙稀(PVC)、三元乙丙橡胶(EPDM)、合成橡胶改性聚丙烯(PP-EPDM)等,通过挤压成型或者注射成型等方法制成。密封条按材料可分为塑料密封条和橡胶密封条。塑料密封条主要有车门玻璃内外密封条、三角窗玻璃密封条、前风窗玻璃密封条、后风窗玻璃密封条,除此之外轿车上其它密封条一般都为橡胶密封条。 通常来说橡胶密封条相对塑料密封条的最大优点是耐热、耐老化、耐臭氧、耐腐蚀性能好,但改性后的塑料密封条也有优良的耐热、耐老化、耐臭氧、耐腐蚀等性能,这类改性塑料的缺点是成本偏高。 密封条是汽车车身设计的重要组成部分,密封条设计的过程,包括各个部位典型断面的确认、车身间隙及密封条压缩量的确认、密封条与车身连接方式的确认、密封条与车身连接机构的布置、主断面的确认、密封条数据设计、密封条与周边数据的审核及数据冻结。密封条质量的好坏对整车质量有着严重的影响,密封条的设计是车身结构及附件设计中相当关键的一环,可以为后续的详细结构设计打好基础。 封条是车身附件里与周边相关零部件配合最多的产品之一。因此在密封条设计过 程中,应充分考虑到与周边零部件的协调匹配,以满足密封条的密封性及装饰性的工艺要求。 二,密封条设计的流程及各个步骤需要注意的要点: 根据我自己的开发经验,我将设计流程分为8个环节: 1、密封条各部位典型断面形状的确定 要点:参考样车(对标车) 2、车身间隙及密封条压缩量的确认 要点:这个通常由汽车厂家制定(如果厂家有总布置能力的话)

密封条设计规范

密封条设计规范

密封条设计规范 1范围 本标准规定了汽车密封条技术规范. 本标准适用于产品开发. 2规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 GB/T 3672 橡胶制品的公差 GB 7529 模压和压出橡胶制品外观质量的一般规定 GB/T 12422 客车门窗用植绒密封条 GB/T 12423 客车门窗用塑料密封条 QC/T 639-2004 汽车用橡胶密封条 QC/T 641-2005 汽车用塑料密封条 HG/T 3088 车辆门窗橡胶密封条 3术语 PVC:聚氯乙烯 EPDM:三元乙丙橡胶 4目标性能 4.1填充间隙; 4.2吸收、降低振动; 4.3隔绝噪声,防止水、尘埃等向车内渗透,保持乘坐舒适性; 4.4向活动零部件提供移动通道; 4.5弥补钣金制造及装配中的误差;

第2页 共5页 4.6 降低风雨噪声; 4.7 起外观装饰作用。 5 设计方法 5.1 密封条分类 密封条按照安装位置分四类:门密封条、门框密封条、发动机舱密封条、车窗内外夹条、顶盖密封条。 5.2 材料选择 车窗内外夹条(车门玻璃内外夹条/三角窗玻璃/前风窗玻璃/后风窗玻璃密封条)的材料一般为:PVC ; 车身其它部位密封条材料一般都为EPDM 。 5.3 密封条开发流程图 5.4 常规密封条设计优选断面 5.4.1尾门密封条优选断面,见图1:

(汽车行业)汽车车身结构与设计

第一章车身概论 随着国民经济的发展,汽车已成为极为重要的交通运输工具和现代社会的象征,汽车工业在带动其它各行业的发展中,已日益显示出其作为支柱产业的作用。 车身,作为汽车上的三大总成之一,已越来越引起人们的注意,并越来越处于主导地位。(发动机、底盘、车身) 据统计:客车、轿车、专用 车——车身质量占整车整备质量 的40~60%; 货车——车身质量占整车整备质量的16~30%; 各类车身的制造成本,则高于上述比例。 车身的定义:运送人、货物或各种生产、生活资料的具有特定形状的结构。 车身的特点: 10、是使生产工艺、壳体力学、人体工程学、工业设计、材料学、运输学、心理学、经济学、销售学等众多各不相同的学科紧密地联系在一起的工业产品,是技术与艺术相结合的产物; 20、车身的发展取决于科学技术水平和物质技术条件; 舒适性 30、与人们的生活、生产密切相关货物完整性

保护乘员安全 40、汽车的更新换代,关键在车身; 50、车身是汽车工业中一个最年轻而又发展迅速的分支; 60、整车生产能力的发展取决于车身的生产能力,汽车的更新换代在很大程度上决定于车身; 70、对销售和用户心理有着极其重要的影响; 80、技术密集型和劳动密集型相结合的产品: 技术密集型——大量采用最尖端技术,机械化、自动化程度很高——自动加工、装配线、机械手、机器人等; 劳动密集型——相当一部分仍需手工完成——车身钣金件的手工打磨、补焊、涂胶、内饰及附件装配等。 可以说,汽车工业发展到现在(支柱产业),其重中之重为车身。车身代表了一个国家的汽车工业水平,要求高、投资大、技术难度大。车身技术的开发历来为发达国家所重视。 我国车身技术的发展可以说是近二十年的事,水平十分落后,尚不完全具备设计开发能力,任务十分艰巨。但近年来,通过技术引进,合资合作,特别是几大轿车基地的建设,已使我国的车身技术有了很大的发展。 §1-1车身的演变 轿子→轿式马车→汽车车身。 早在5000年前的古代,世界上就有轿子出现,成为奴隶主或有一定地位的人的乘坐工具;

--汽车线束电路原理

--汽车线束电路原理

————————————————————————————————作者:————————————————————————————————日期:

汽车线束电路 原理 汽车线束设计综述 汽车上的电源和各种电气零件通过线束来实现电路物理连接,线束分布遍布全车。如果把发动机比作汽车心脏的话,那么线束就是汽车的神经网络系统它负责整车各个电器零件之间的信息传递工作。随着人们对舒适性、经济性、安全性要求的不断提高,汽车上的电子产品种类也在不断增加,汽车线束越来越复杂线束的故障率也相应增加。这就要求提高线束的可靠性和耐久性等性能,在这里笔者就汽车线束设计、工艺、生产及检验方面的知识同各位同仁探讨一 下。 1、电气原理图的设计、计算 汽车线束是全车汽车电气原理的物理表现形式,因此应先有电气原理图再有线束图进而根据线束图生产线束,在设计电气原理图前应具备以下条件: 1.1掌握《电气设计任务书》的技术要求和全车电气配置情况; 1.2根据电气负载功率消耗确定熔断器容量大小、计算导线线径并根据负载工作原理和功能要求进行载荷分配,确定电路的保护方式及确定总保险的容量。 《电气设计任务书》的技术要求和全车电气配置情况是由各个汽车制造厂自己制定的,不再多说。下面重点介绍一下1.2的相关内容: 1.2.1如何确定熔断器容量大小 熔断器按保护形式分,可分为:过电流保护与过热保护。用于过电流保护的熔断器就是平常所说的保险丝。采用熔断器保护电路时,用电设备的最大持续电流应小于熔断器额定电流的80%。根据每一路的最大工作电流来选定熔断器的额定电流,其关系式为:熔断器的额定电流=每一路的最大工作电流÷0.8。例如:众泰2008右前照灯远光灯功率60w,稳态最大工作电流5A,按此关系式得出熔断器的额定容量为6.25A,考虑到安全系数熔断器容量确定为10A。对于一些感性原件比如点火线圈、怠速步进电机其瞬时自感电动势产生的峰值电流远远超过正常工作时的最大电流,熔断器可以在短时间内通过很大的峰值电流,因此对于带有感性原件的电路一般不考虑自感电动势产生的电流。 1.2.2导线线径的确定 在确定导线截面积时要考虑电压降和导线的发热 (1)用电设备的电流强度为: I=P/UN(P—负载功率; UN—额定电压) (2)导线截面积计算公式为: A=IρL/UVL(I--电流,安培;P---功率,瓦;A—导线截面积,平方

汽车整车开发流程

汽车整车开发流程

目录 一、方案策划阶段................................................ 错误!未定义书签。 二、概念设计阶段................................................ 错误!未定义书签。 1.总体布置草图................................................ 错误!未定义书签。 2.造型设计.................................................... 错误!未定义书签。 三、工程设计阶段................................................ 错误!未定义书签。 1.总布置设计.................................................. 错误!未定义书签。 2.车身造型数据生成............................................ 错误!未定义书签。 3.发动机工程设计.............................................. 错误!未定义书签。 4.白车身工程设计.............................................. 错误!未定义书签。 5.底盘工程设计................................................ 错误!未定义书签。 6.内外饰工程设计.............................................. 错误!未定义书签。 7.电器工程设计................................................ 错误!未定义书签。 四、样车试验阶段................................................ 错误!未定义书签。 五、投产启动阶段................................................ 错误!未定义书签。 六、国内自主品牌................................................ 错误!未定义书签。

第1篇整车部分技术参数

第一章整车部分技术参数 第一节概述 1995年12月,长丰汽车制造有限责任公司引进日本三菱自动车工业株式会社的PA-JERO汽车生产专利技术和部分关键部件,对公司原产品猎豹牌轻型越野车生产线时行技术改造,生产出高性能、高质量的新一代猎豹系列轻型越野汽车。技术质量达到日本三菱汽车公司PAJERO车型号的原设计水平,并行到期三菱形汽车公司的质量认可。该车型号一直是国际上4*4驱动轻型越野车型号的骄子,代表着国际上同类车型号20世纪90年代的水平。 为提出来高产品的竞争力,发展多层次的系列产品,长丰汽车站制造有阴责任公司在原来生产的CJY6421D的基础上,适应国家环保政策的要求,最新开发投产的主产品有CFA2030A、CFA2030B、CJY6470E、CFA6470G等系列轻型越野汽车站。上述产品的排放已达到期欧洲标准,具有较高的性能价格比。 猎豹牌CJY6421D轻型越野汽车是湖南长丰汽车制造有限公司汽车先进技术,历经3年时间开发制造的。该车自1995年生产以来,质量不断完善,达到了国际20世纪90年代先进水平,已形成年产3万辆生产能力。 CJY6470E型号系列轻型客车(越野车)是在CJY6421D轻型客车/越野车4G64S4化油器发动机的基础上换装4G64S4MPI闭环控制多点电喷发动机和三元催化剂转化器而成的变型产品,其排放满足国家汽车排放要标准GB1476-1999的要求,并达到国家将实施的欧洲号排放标准(96/69/EC)的要求,是CJY6421D车的换代产品。与CJY6421D一样,CJY6470E 型系列轻型客车(越野车)具有良好的使用性能和乘座舒适性,适应于我国各种复杂的地理环境和气象条件,可广泛用于军队指挥员的用车,公、检、法、司等腰三角形国家机关的公用车石油、地质堪探部门的工用车,也可作为各企事业单位的商务用车和公务用车,还可用作为个人、家庭的休闲用车。CFA6470G具有更好的经济性,深受广大用户欢迎。 CFA2030A、CFA2030B系列越野车,是在引进并利用三菱具有20世纪90代末水平的PAJERO V63000GLS越野车技术的基础上,根据中国的道路进行优化改进而成。该车采用6G72S4MPI闭环控制多点电喷发机,并安装有三元催化转换器,因而不仅动力强劲,同时其排放满足欧洲号标准的要求。该车融合了智能型易操作的全自动超阶级级四轮驱动技术,装备有电子式ABS防抱死系统、安全气囊和电动天窗、CD机装置,使该车具有很高的安全性和舒适性,是目前我国生产的档次最高轻型越野汽车之一。即将开的产品有家用型的CFA2020-mini(迷你型)和CFA2020-io轻型越野汽车,与现有产品一起形成了较为齐全的猎豹汽车型谱,可最大限度地满足各种不同用户的需求。 第二节技术规格 一、整车技术参数 1.猎豹环保系列CJY6470E(4×4)和CFA6470G(4×2)主要技术参数(见表1-1) 表1—1 猎豹CJY6470E(4×4)和CFA6470G(4×2)主要技术参数

汽车线束要点

汽车线束要点

————————————————————————————————作者: ————————————————————————————————日期: ?

汽车线束 汽车线束是汽车电路的网络主体,没有线束也就不存在汽车电路。在目前,不管是高级豪华汽车还是经济型普通汽车,线束编成的形式基本上是一样的,都是由电线、联插件和包裹胶带组成。汽车电线又称低压电线,它与普通家用电线是不一样的。普通家用电线是铜质单蕊电线,有一定硬度。而汽车电线都是铜质多蕊软线,有些软线细如毛发,几条乃至几十条软铜线包裹在塑料绝缘管(聚氯乙烯)内,柔软而不容易折断。汽车线束内的电线常用规格有标称截面积0.5、0.75、1.0、1.5、2.0、2.5、4.0、6.0 等平方毫米的电线,它们各自都有允许负载电流值,配用于不同功率用电设备的导线。以整车线束为例: 1、0.5 规格线适用于仪表灯、指示灯、门灯、顶灯等; 2、0.75规格线适用于牌照灯,前后小灯、制动灯等; 3、1.0 规格线适用于转向灯、雾灯等; 4、1.5规格线适用于前大灯、喇叭等; 5、主电源线如发电机电枢线、搭铁线等要求 2.5 至4平方毫米电线。 这只是指一般汽车而言,关键要看负载的最大电流值,例如蓄电池的搭铁线、正极电源线则是专门的汽车电线单独使用,它们的线径都比较大,起码有十几平方毫米以上,这些“巨无霸”电线就不会编入主线束内。在排列线束前要事先绘制线束图,线束图与电路原理图是不一样的。电路原理图是表述各个电气部分之间关系的图像,它不反映电气件彼此之间怎样连接,不受各个电气元件的尺寸形状和它们之间距离的影响。而线束图则必须要顾及各个电气元件的尺寸形状和它们之间的距离,也要反映出电气件彼此之间是如何连接的。线束厂的技术员根据线束图做成线束排线板后,工人就按照排线板的规定来截线排线了。整车主线束一般分成发动机(点火、电喷、发电、起动)、仪表、照明、空调、辅助电器等部分,有主线束及分支线束。一条整车主线束有多条分支线束,就好象树杆与树支一样。整车主线束往往以仪表板为核心部分,前后延伸。由于长度关系或装配方便等原因,一些汽车的线束分成车头线束(包括仪表、发动机、前灯光总成、空调、蓄电池)、车尾线束(尾灯总成、牌照灯、行李箱灯)、篷顶线束(车门、顶灯、音响喇叭)等。线束上各端头都会打上标志数字和字母,以标明导线的连接对象,操作者看到标志能正确连接到对应的电线和电气装置上,这在修理或更换线束时特别有用。同时,电线的颜色分为单色线和双色线,颜色的用途也有规定,一般是车厂自订的标准。我国行业标准只是规定主色,例如规定单黑色专用于搭铁线,红单色用于电源线,不可混淆。线束用机织线或塑料粘带包裹,出于安全、加工和维修方便,机织线包裹已经淘汰,现在是用粘性塑料胶带包裹。线束与线束之间、线束与电气件之间的连接,采用联插件或线耳。联插件用塑料制成,分有插头和插座。线束与线束之间用联插件相接,线束与电气件之间的连接用联插件或线耳。随着汽车功能的增加,电子控制技术的普遍应用,电气件越来越多,电线也会越来越多,线束也就变得越粗越重。因此先进的汽车就引入了CAN 总线配置,采用多路传输系统。与传统线束比较,多路传输装置大大减少了导线及联插件数目,使布线更为简易。 一、汽车线束研发中的线束图纸画法研究 汽车线束图是汽车线束设计的具体体现,无论对汽车生产厂家还是对汽车的使用维修单位,它都是一种实用性很强的技术资料。一辆汽车也许只有一张电路图,一张接线图,而线束图则可能有数张。近几年来汽车新产品开发速度很快,尤其是客车,为了改变轻少重的状况,新型客车开发速度更快。以常州客车厂为例,1988年以来,每年推出一个系列新型客车,因此,汽车电线束设计的工作量很大,线束图的绘制占了相当大的比例。此外,为中小型汽车厂配套线柬的电线束专业生产厂家不断出现,这些厂家迫切要求规范化的线束图,以便于加工制造,对汽车使用、维修单位来说,规范化的线束图无疑也会为他们提供方便。目前,许多汽车电气设计人员在绘制线束图时,采用:

汽车总体设计整车性能仿真与系统匹配

1.4 汽车总体设计整车性能仿真与系统匹配 1.4.1动力性能仿真计算 (1) 计算目的 汽车的动力性是汽车重要基本性能指标之一。动力性的好坏,直接影到汽 车在城市和城际公路上的使用情况。因此在新车开发阶段要进行动力性计算,预测今后生产车型是否满足使用要求。使汽车具有良好的动力学性能. (2) 已知参数如表所示 表1.4.1 动力学某车型的计算参数和数据的确定或优化 参数名称某车型 变速器传动比 一挡 3.455 二挡 1.944 三挡 1.286 四挡0.969 五挡0.8 主减速器传动比 4.111 满载质量1460kg 空载质量1040kg 设计载荷质量1250kg 各个挡传动效率90% 迎风阻力系数0.35 迎风面积 1.9m2 滚动阻力系数公式拟和 发动机形式AFE电喷发动机 滚动半径0.288m(195/60R1485H) a 设计载荷确定: 该车型设计载荷根据德国标准DIN 70020规定:在空车重量(整备质量)的基础上加上座位载荷。5座位轿车前面加2人、后排加1人,也称为半载作为设计载荷, 重量假定为68kg加上随身物品7kg,重心对于不可调整座位在R点

(设计H 点)前50mm ,可调整作为R 点前100mm 处。我国标准常常规定满载作为设计工况. 对于该计算车型如采用德国标准, 则具体计算为:1070kg+3*(68kg+7kg )=1295kg b 迎风面积: 根据迎风面积计算公式:A=0.78BH 确定,其中:A 迎风面积,B 车宽,H 车 高。对于该车型而言具体计算为:A=0.78*1710mm*1427mm=1.90m 2 c 传动效率: 根据该轿车的具体传动系统形式,传动系统的传动效率大体可以由变速器传动效率,单级主减速器传动效率,万向节传动效率组成。具体计算为:95%(变速器)乘96%(单级主减速器)乘98%(万向节)=89.4%,同时考虑到,一般情况下采用有级变速器的轿车的传动系统效率在90%到92%之间,对上述计算结果进行圆整,对传动系统效率取为90% d 滚动阻力系数: 滚动阻力系数采用推荐拟和公式进行计算: )19440/1(2 0a u f f ,其中: f 取为0.014(良好水泥或者沥青路面),a u 为车速km/h 。 (3) 发动机外特性曲线 i.AJR 发动机 ii AFE 发动机 图1.4.1 发动机外特性曲线 (4) 基本理论概述 汽车动力性能计算主要依据汽车驱动力和行驶阻力之间的平衡关系 : j i w f t F F F F F (1.4.1) 发动 发动机

相关主题