搜档网
当前位置:搜档网 › 三坐标学习

三坐标学习

三坐标学习
三坐标学习

开机顺序

1. 先开(插座电源)控制柜和计算机,操纵盒上的急停开关旋开,供气开关打开

2. 进入测量软件-即电脑上的双击联机

3. 再按操纵盒上的伺服加电键(操作过程中若测量机有报警可按控制柜上的reset 复位) 注意:当操纵盒上的伺服加电键不能通电时,首先检查气压,若气压小于0.45Mpa ,则机器不能运行

关机顺序

操纵盒上的急停按钮→三坐标上的供气开关→控制柜上的开关→电源线也需要关闭手动 输入电脑

自动 慢动作

伺服加

电键

三坐标的基本操作

1.联机——双击桌面图标,出现如下窗口:

2.选择测头文件(如:短测头)→确定/回车

3.三坐标测量机回零点:开机后出现如下对话框,按操纵盒上的伺服加电键→按AUTO自动键→点击确定/回车→测量机自动回零点—位于测量空间的左前上角

(若出现下右侧对话框则说明未按伺服加电键)

4.新建程序:①文件→新建→填写零件名→确定/回车

②自动打开校验的页面(或插入→硬件定义→测头),进行测头的校验(若不进行校验直接按

确定即可):钢制标准球拿开上面的油封袋

测头可一个一个的进行校验,也可一起校验(一起校验,选择的时候按住Ctrl键),选择校验的测头→按测量按钮→出现校验测头对话框→再按测量→出现如下窗口:

(注意校验的测头选择0°的,如T1A0B0,即1针(处于垂直位置,测尖在垂直〈A〉和水平〈B〉方向上的旋转,即T1针在垂直方向为0,水平方向为0的方向上的旋转)在坐标轴下角度都为0,1针最先测,只要1针准确了,其他基本都准确了,安了几根针就测几根,垂直的是1针,右侧的是2针,逆时针转依次是3,4,5针)

选择否→出现如下对话框

按操作盒上的AUTO自动按钮→每个测尖自动校验5个点→校验完恢复成校验的对话框如下,全部校验完→按确定按钮(校验用的钢制标准球扣上油封袋-防锈)

5.

注:测量平面时选择合适的测头,更改活动测尖1(T1A0B0)时,出现如下对话框→是

若更改工作平面,编辑窗口中会出现设置当前工作平面

选择需要的测尖 设置工作平面

测量数据

1.手动测量:

操作盒→按手动键JOY→摆动操作手柄方向即可操纵测量机,转动时顺时针测头上移,逆时针下移,测量时接近测量件时速度要慢,按键SLOW(JOY每过几秒不用就需要重新进行选择)

注意:只有加载了测头,设置了活动测尖,一些自动特征,测定特征(双击可查看属于什么特征)等才激活,测量过程中随时更换活动测尖,用到哪个测尖就更换哪个

2.大多数件测量时要先找正平面

若出现测头文件未加载,则需要选择测头,用哪根针测量就选择哪根针→回车

自动特征测定特征

<1>测距离——图示A,B面上各找一点,测两面的距离

水平为X轴,竖直为Y轴

①测平面:按测量平面按钮(或直接测绘3个点),手动取要找平的平面上3个点→按操纵盒RTN To SCREEN按钮,输入电脑→得平面1(取B面为平面1)

②找正坐标系:插入→坐标系→新建(快捷键Ctrl+Alt+A)→选择平面1(··坐标找正,旋转到··,围绕··,根据需要选择,本测试选择平面1作为Y面,故需要找正Y面)→Y 负,旋转到X正,围绕Y负→找正→确定

③测2点:手动找2个点,每找1个就输入电脑(在A,B面各测一个点)

④生成距离公差:按按钮→下列对话框,选择最后2个(或鼠标依次点击点1,点2)距离类型:二维,填入上下公差,按Y轴,方向:平行于→创建→关闭

A

B

平面1找正后为Y负平面

(Y平面即垂直于Y轴的面)

⑤生成报告:刷新报告窗口(视图→报告窗口),即重新生成报

每次输入电脑,重新生成报告即可。

下图为三坐标测量的点:视图→图形显示窗口,Ctrl+Tab可进行窗口的切换滑动鼠标中间键可以缩放图,点击中间键不放可以旋转图,右键点击不放可以平移图的位置

图形显示窗口X+

<2>测同心度,位置度(圆/圆柱的直径,圆锥的锥度),垂直度(垂直度不需要建立坐标系)位置度可以测量出圆的直径

圆心度,垂直度都需要先创建基准(先测量一个圆柱,取其轴线,根据图纸取基准)

测量平面1→测量基准圆柱面→找正坐标系:平面1—Z 轴找正,柱体旋转找正—X/Y 正,旋转Z 正,X/Y 正→旋转,确定→同心度测试

测一圆1测槽的槽宽:Z 工作平面下,测量槽上下面各1点,测长度公差时,先取Y 正/负为工作平面,点击长度公差,按

Y 轴测量,创建

②— 圆锥的锥度

直接测量1个圆锥,输入电脑,点击位置公差→选择圆锥,坐标轴只选择锥角→创建,关闭

平面基准—圆柱面

测两个圆柱面的垂直度

垂直度公差→选择基准:球体1(圆柱体)轴A(还未定义基准的,先定义基准),输入特征公差,选择特征:平面1→创建,关闭

④—缸盖平行度

根据图纸要求,测量基准平面与测量平面→平行度:创建基准,输入公差值,特征:测

量的平面→创建,关闭

<3>夹角——测量下图锥面的夹角(不需要建坐标系,也不测定平面)

① 测定柱体(按照图纸要求确定基准面)→测量6

个点(上侧圆3个点,下侧圆3个点,

若上下圆一下测2点,测的圆柱面不准,易出现倾斜的柱体或椎体)

② 测锥面→测量锥面上3个点,输入电脑→出现对话框(特征工作平面修改为Y 正),按

确定→出现测量的圆面→编辑→替代推测→平面(圆就替代为平面)

③ 按夹角公差→出现角度对话框→选择柱体1,平面1,角类型:3维,输入上下公

差→创建→关闭→生成报告

3维

修改标称值(按照图纸要求)

<4>同心度

代谢组学的研究方法和研究流程

代谢组学的研究方法和研究流程分子微生物学112300003林兵 随着人类基因组计划等重大科学项目的实施,基因组学、转录组学及蛋白质组学在研究人类生命科学的过程中发挥了重要的作用,与此同时, 代谢组学(metabolomics)在20世纪90年代中期产生并迅速地发展起来,与基因组学、转录组学、蛋白质组学共同组成系统生物学。基因组学、转录组学、蛋白质组学和代谢组学等各种组学0在生命科学领域中发挥了重要的作用,它们分别从调控生命过程的不同层面进行研究, 使人们能够从分子水平研究生命现象, 探讨生命的本质, 逐步系统地认识生命发展的规律.这些组学手段加上生物信息学, 成为系统生物学的重要组成部分。 代谢组学的出现和发展是必要的, 同时也是必须的。对于基因组学和蛋白质组学在生命科学研究中的缺点和不足, 代谢组学正好可以进行弥补。代谢组学研究的是生命个体对外源性物质(药物或毒物)的刺激、环境变化或遗传修饰所做出的所有代谢应答, 并且检测这种应答的全貌及其动态变化。代谢组学方法为生命科学的发展提供了有力的现代化实验技术手段, 同时也为新药临床前安全性评价与实践提供了新的技术支持与保障. 1 代谢组学的概念及发展 代谢组学最初是由英国帝国理工大学Jeremy N icholson教授提出的,他认为代谢组学是将人体作为一个完整的系统,机体的生理病理过程作为一个动态的系统来研究, 并且将代谢组学定义为生物体对病理生理或基因修饰等刺激产生的代谢物质动态应答的定量测定。2000年,德国马普所的Fiehn等提出了代谢组学的概念,但是与N ichols on提出的代谢组学不同, 他是将代谢组学定位为一个静态的过程,也可以称为/代谢物组学, 即对限定条件下的特定生物样品中所有代谢产物的定性定量分析。同时Fiehn还将代谢组学按照研究目的的不同分为4类: 代谢物靶标分析,代谢轮廓(谱)分析, 代谢组学,代谢指纹分析。现在代谢组学在国内外的研究都在迅速地发展, 科学家们对代谢组学这一概念也进行了完善, 作出了科学的定义: 代谢组学是对一个生物系统的细胞在给定时间和条件下所有小分子代谢物质的定性定量分析,从而定量描述生物内源性代谢物质的整体及其对内因和外因变化应答规律的科学。 与基因组学、转录组学、蛋白质组学相同, 代谢组学的主要研究思想是全局观点。与传统的代谢研究相比, 代谢组学融合了物理学、生物学及分析化学等多学科知识, 利用现代化的先进的仪器联用分析技术对机体在特定的条件下整个代谢产物谱的变化进行检测,并通过特殊的多元统计分析方法研究整体的生物学功能状况。由于代谢组学的研究对象是人体或动物体的所有代谢产物, 而这些代谢产物的产生都是由机体的内源性物质发生反应生成的,因此,代谢产物的变化也就揭示了内源性物质或是基因水平的变化,这使研究对象从微观的基因变为宏观的代谢物,宏观代谢表型的研究使得科学研究的对象范围缩小而且更加直观,易于理解, 这点也是代谢组学研究的优势之一. 代谢组学的优势主要包括:对机体损伤小,所得到的信息量大,相对于基因组学和蛋白质组学检测更加容易。由于代谢组学发展的时间较短, 并且由于代谢组学的分析对象是无偏向性的样品中所有的小分子物质,因此对分析手段的要求比较高, 在数据处理和模式识别上也不成熟,存在一些不足之处。同时生物体代谢物组变化快, 稳定性较难控制,当机体的生理和药理效应超敏时,受试物即使没有相关毒性,也可能引起明显的代谢变化,导致假阳性结果。 代谢组学应用领域大致可以分为以下7个方面:

几何学基础简介

几何学基础简介 Lex Li 几何原本简介 古希腊大数学家欧几里德是与他的巨著——《几何原本》一起名垂千古的。这本书是世界上最著名、最完整而且流传最广的数学著作,也是欧几里德最有价值的一部著作。欧几里德把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。而这本书,也就成了欧式几何的奠基之作。 作为基础的五条公理和公设 五条公理 1.等于同量的量彼此相等; 2.等量加等量,其和相等; 3.等量减等量,其差相等; 4.彼此能重合的物体是全等的; 5.整体大于部分。 五条公设 1.过两点能作且只能作一直线; 2.线段(有限直线)可以无限地延长; 3.以任一点为圆心,任意长为半径,可作一圆; 4.凡是直角都相等; 5.同平面内一条直线和另外两条直线相交,若在直线同侧的两个内角之和小于180°,则这两条直线经无限延长后在这一侧一定相交。 《几何原本》的主要内容 欧几里得的《几何原本》共有十三卷。 目录 第一卷几何基础 第二卷几何与代数 第三卷圆与角 第四卷圆与正多边形 第五卷比例

第六卷相似 第七卷数论(一) 第八卷数论(二) 第九卷数论(三) 第十卷无理量 第十一卷立体几何 第十二卷立体的测量 第十三卷建正多面体 各卷简介 第一卷:几何基础。重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是毕达哥拉斯定理的正逆定理; 第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。 第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。 第四卷:讨论圆内接和外切多边形的做法和性质; 第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论,被认为是"最重要的数学杰作之一" 第六卷:讲相似多边形理论,并以此阐述了比例的性质。 第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十卷是篇幅最大的一卷,主要讨论无理量(与给定的量不可通约的量),其中第一命题是极限思想的雏形。 第十一卷、十二、十三卷:最后讲述立体几何的内容. 从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。 《几何原本》的意义和影响 在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。《几何原本》的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。 论证方法上的影响 关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。

浅谈解析几何的学习方法

浅谈解析几何的学习方法 ????高中数学中的解析几何内容学生之所以会觉得难是因为对几个常用公式、定理的含义并没有真正弄清楚,实际上如果能花时间把每个公式的推导过程研究一遍消化掉,那么学好它将不是什么疑难问题了。 ????我们知道,“数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.”——我国着名数学家华罗庚。 ????作为学习解析几何的开始,我们引入了我国着名的数学家华罗庚的一句话,他告诉了我们“数”和“形”各自的特点和不足,从而强调了数形结合的重要性,尤其是在解析几何的学习过程中,我们始终都要注意运用数形结合的思想和方法。 ????当然,学习这一部分内容,只是了解这种思想也是不够的为此,就为大家介绍一下学习解析几何的方法和需要注意的几点。 一、夯实基础 1、正确理解定义 ??? 有些同学可能现在就会去翻书,去查定义,会说,回答这些问题还不容易嘛,我背一下不就可以了吗。可是,我要告诉大家——定义不是用来背的。????可能大家还没有理解这句话的意思,定义不是要你去死记硬背,而是要你去自己理解,去自己总结。

????教材上引入椭圆定义的时候花费了很大的篇幅,可它的本质是什么?与双曲线的定义又有怎样的相同点、不同点?椭圆、双曲线和抛物线这三个重要的圆锥曲线的统一定义我们又该如何去理解?这些,只有靠你自己总结出来,才能真正成为你自己的东西,在做题的时候,你才能应用自如。看一遍书上的定义,合上课本,想一想,如果让你来描述,你会怎么说。当你能够给别人将这些定义解释清楚的时候,你就已经很好的理解了这些定义,做题时,你就不会因为忽略了定义中隐含的条件而一筹莫展了。 2、比一比,学会总结 ????这一章我们介绍了三种圆锥曲线,它们有很多的相似之处,当然也有很多的不同,它们之间也有着千丝万缕的联系。学习完之后,自己比较一下,它们的定义、性质都有什么异同,哪些量是它们共有的,哪些量是某个圆锥曲线所特有的。当你比较完之后,再回过头来看这一章,你会发现,原来这一章的内容竟然如此的简单和清晰。 ????记住,一定要自己去总结哦!!别人给你的东西永远都是别人的,不是你自己的,只有自己总结过,才能清晰的把握问题的重点。 二、“数”与“形”要紧密联系 ????我们掌握了圆锥曲线的基础之后,就好比为我们的大厦打下了一个坚实的基础,现在,我们就可以正式建造我们的摩天大楼了! 1、让“数”直观

计算几何基础知识整理

计算几何基础知识整理 一、序言 计算机的出现使得很多原本十分繁琐的工作得以大幅度简化,但是也有一些在人们直观看来很容易的问题却需要拿出一套并不简单的通用解决方案,比如几何问题。作为计算机科学的一个分支,计算几何主要研究解决几何问题的算法。在现代工程和数学领域,计算几何在图形学、机器人技术、超大规模集成电路设计和统计等诸多领域有着十分重要的应用。在本文中,我们将对计算几何常用的基本算法做一个全面的介绍,希望对您了解并应用计算几何的知识解决问题起到帮助。 二、本基础目录 本文整理的计算几何基本概念和常用算法包括如下内容: 1. 矢量的概念 2. 矢量加减法 3. 矢量叉积 4. 折线段的拐向判断 5. 判断点是否在线段上 6. 判断两线段是否相交 7. 判断线段和直线是否相交 8. 判断矩形是否包含点 9. 判断线段、折线、多边形是否在矩形中 10. 判断矩形是否在矩形中 11. 判断圆是否在矩形中 12. 判断点是否在多边形中 13. 判断线段是否在多边形内 14. 判断折线是否在多边形内 15. 判断多边形是否在多边形内 16. 判断矩形是否在多边形内 17. 判断圆是否在多边形内 18. 判断点是否在圆内 19. 判断线段、折线、矩形、多边形是否在圆内 20. 判断圆是否在圆内 21. 计算点到线段的最近点 22. 计算点到折线、矩形、多边形的最近点 23. 计算点到圆的最近距离及交点坐标 24. 计算两条共线的线段的交点 25. 计算线段或直线与线段的交点 26. 求线段或直线与折线、矩形、多边形的交点 27. 求线段或直线与圆的交点 28. 凸包的概念 29. 凸包的求法 三、算法介绍 1.矢量的概念: 如果一条线段的端点是有次序之分的,我们把这种线段成为有向线段(directed

2018年高考备考极坐标与参数方程专题

专题1 极坐标与参数方程 【基本方法】 1.两大坐标系:直角坐标系(普通方程、参数方程);极坐标系(极坐标方程); 2.基本转化公式: cos sin x y ρθ ρθ = ? ? = ? , 222 (0) tan x y x y x ρ θ ?=+ ? ≠ ? = ?? ; 3.参数方程: () () x f t y g t = ? ? = ? ,消去参数t得关于,x y的普通方程,引入参数t得参数方程; 4.直线的参数方程0 0cos sin x x t y y t αα =+ ? ? =+ ? (t为参数),注意参数t的几何意义;5.用转化法解决第(1)问,用图形法解决第(2)问. 【三年真题】 1.(2017全国I)在直角坐标系xOy中,曲线C的参数方程为 3cos, sin, x y θ θ = ? ? = ? (θ为参数),直线l的 参数方程为 4, 1, x a t t y t =+ ? ? =- ? (为参数). (1)若1 a=-,求C与l的交点坐标; (2)若C上的点到l a. 2.(2016全国I)在直角坐标系xOy中,曲线C1的参数方程为 cos 1sin x a t y a t = ? ? =+ ? (t为参数, a>).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ. (I)说明C1是哪种曲线,并将C1的方程化为极坐标方程; (II)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.

3.(2015全国I)在直角坐标系xOy 中,直线1C : x =-2,圆2C :()()22 121x y -+-=,以 坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (I)求1C ,2C 的极坐标方程; (II)若直线3C 的极坐标方程为()4 θρπ =∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的面积. 【自主研究】 4.(2016届佛山二模)已知曲线C 的极坐标方程为4sin()3 ρθπ =-,以极点为原点, 极轴为x 轴正半轴,建立直角坐标系xOy . (I)求曲线C 的直角坐标方程; (II)若点P 在曲线C 上,点Q 的直角坐标是(cos ,sin )?? (其中)?∈R ,求PQ 的最大值. 5.(2016届河南八市质检)在直角坐标系xOy 中,曲线C 的参数方程为333x y θ θ ???=??=cos sin (θ为参 数),以原点O 为起点,x 轴的正半轴为极轴,建立极坐标系,已知点P 的极坐标为(2,-3 π ), 直线l 的极坐标方程为ρcos(3 π +θ)=6. (Ⅰ)求点P 到直线l 的距离; (Ⅱ)设点Q 在曲线C 上,求点Q 到直线l 的距离的最大值. 6.(2016年全国卷II )在直角坐标系xOy 中,圆C 的方程为2 2 (6)25x y ++=. (Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t α α=??=? (t 为参数), l 与C 交于,A B 两点,||10AB =,求l 的 斜率.

代谢组学的数据分析技术

代谢组学的数据分析技术 摘要:代谢组学是效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式,是系统生物学的组成部分。其研究对象大都是相对分子质量1000以内的小分子物质。先进分析检测技术结合模式识别和专家系统等计算分析方法是代谢组学研究的基本方法。文章主要综述了将代谢组学中的图谱、数据信息转换为相应的参数所采用的分析方法。 关键词:代谢组学;数据分析方法 代谢组学是以代谢物分析的整体方法来研究功能蛋白如何产生能量和处理体内物质,评价细胞和体液内源性和外源性代谢物浓度及功能关系的新兴学科,是系统生物学的重要组成部分,其相应的研究能反映基因组、转录组和蛋白组受内外环境影响后相互协调作用的最终结果,更接近反映细胞或生物的表型,因此被越来越广泛地应用。而代谢组学的数据分析包括预处理和统计分析方法,多元统计分析方法主要分为两大类:非监督和监督方法,非监督方法包括主成分分析PCA;聚类分析CA等;监督方法包括显著性分析、偏最小二乘法等,本文就是主要综述代谢组学图谱信息转化为参数信息所采用的数据分析方法。 1预处理 数据的预处理过程包括以下:谱图的处理;生成原始的数据矩阵;数据的归一化以及标准化处理过程。针对实验性质、条件以及样品等因素采用不同的预处理方法。在实际应用过程中,预处理可以通过实验系统自带的软件如XCMS软件。进行,因此一般较容易获得所需的数据形式。 2数据分析方法 2.1 主成分分析PCA是多元统计中最常用的一种方法,它是在最大程度上提取原始信息的同时对数据进行降维处理的过程,其目的是将分散的信息集中到几个综合指标即主成分上,有助于简化分析和多维数据的可视化,进而通过主成分来描述机体代谢变化的情况。PCA 的具体过程是通过一种空间转换,形成新的样本集,按照贡献率的大小进行排序,贡献率最大的称为第一主成分,依次类推。经验指出,当累计贡献率大于85%时所提取的主成分就能代表原始数据的绝大多数信息,可停止提取主成分。在代谢组数据处理中,PCA是最早且广泛使用的多变量模式识别方法之一。,具有不损失样品基本信息、对原始数据进行降维处理的同时避免原始数据的共线性问题等优点,但在实际应用过程中,PCA存在着自身的缺点[1]:离群样本点的存在严重影响其生物标志物的寻找;非保守性的代谢组分扰乱正确的分类以及尺度的差异影响小浓度组分的表现等,其他的问题之前也有讨论[2]。针对PCA 的缺陷采用了不同的改进措施,与此同时,为了简化计算,侯咏佳等[3]。提出了一种主成分分析算法的FPGA实现方案,通过Givens算法和CORD IC算法的矢量旋转,用简单的移位和加法操作来实现协方差矩阵的特征分析,只需计算上三角元素,因此计算复杂度小、迭代收敛速度快。 2.2 聚类分析CA是用多元统计技术进行分类的一种方法。其主要原理是:利用同类样本应彼此相似,相类似的样本在多维空间里的彼此距离应较小,而不同类的样本在多维空间里的

中学考试数学常见几何模型简介

初中几何常见模型解析 ?模型一:手拉手模型-旋转型全等 (1)等边三角形 ?条件:均为等边三角形 ?结论:①;②;③平分。(2)等腰 ?条件:均为等腰直角三角形 ?结论:①;②; ?③平分。 (3)任意等腰三角形 ?条件:均为等腰三角形 ?结论:①;②; ?③平分。 ?模型二:手拉手模型-旋转型相似 (1)一般情况 ?条件:,将旋转至右图位置 ?结论: ?右图中①; ?②延长AC交BD于点E,必有

(2)特殊情况 ?条件:,,将旋转至右图位置 ?结论:右图中①;②延长AC交BD于点E,必有; ③; ④; ⑤连接AD、BC,必有; ⑥(对角线互相垂直的四边形) ?模型三:对角互补模型 (1)全等型-90° ?条件:①;②OC平分 ?结论:①CD=CE; ②;③ ?证明提示: ①作垂直,如图,证明; ②过点C作,如上图(右),证明 ; ?当的一边交AO的延长线于点D时: 以上三个结论:①CD=CE(不变);② ;③ 此结论证明方法与前一种情况一致,可自行尝试。

(2)全等型-120° ?条件:①; ?②平分; ?结论:①;②; ?③ ?证明提示:①可参考“全等型-90°”证法一; ②如图:在OB上取一点F,使OF=OC,证明为等边三角形。 ?当的一边交AO的延长线于点D时(如上图右): 原结论变成:①;②; ③; 可参考上述第②种方法进行证明。 (3)全等型-任意角 ?条件:①;②; ?结论:①平分;②; ?③. ?当的一边交AO的延长线于点D时(如右上图): 原结论变成:①;②; ③; 可参考上述第②种方法进行证明。请思考初始条件的变化对模型的影响。

大学解析几何学习资料

大学解析几何

收集于网络,如有侵权请联系管理员删除 空间解析几何 基本知识 一、向量 1、已知空间中任意两点),,(1111z y x M 和),,(2222z y x M ,则向量 12212121(,,)M M x x y y z z =---u u u u u u r 2、已知向量),,(321a a a a =→、),,(321b b b b =→,则 (1)向量→a 的模为232221||a a a a ++=→ (2)),,(332211b a b a b a b a ±±±=±→→ (3)),,(321a a a a λλλλ=→ 3、向量的内积→→?b a (1)><→→b a ,为向量→→b a ,的夹角,且π>≤≤<→→b a ,0 注意:利用向量的内积可求直线与直线的夹角、直线与平面的夹角、平面与平 面的夹角。 4、向量的外积→→?b a (遵循右手原则,且→→→⊥?a b a 、→→→⊥?b b a ) 321321 b b b a a a k j i b a → →→→→=?

收集于网络,如有侵权请联系管理员删除 5、(1)332211//b a b a b a b a b a ==? =?→→→→λ (2)00332211=++?=??⊥→→→→b a b a b a b a b a 二、平面 1、平面的点法式方程 已知平面过点),,(000z y x P ,且法向量为),,(C B A n =→ ,则平面方程为 0)()()(000=-+-+-z z C y y B x x A 注意:法向量为),,(C B A n =→ 垂直于平面 2、平面的一般方程0=+++D Cz By Ax ,其中法向量为),,(C B A n =→ 3、(1)平面过原点)0,0,0(? 0=++Cz By Ax (2)平面与x 轴平行(与yoz 面垂直)?法向量→n 垂直于x 轴 0=++?D Cz By (如果0=D ,则平面过x 轴) 平面与y 轴平行(与xoz 面垂直)?法向量→ n 垂直于y 轴0=++?D Cz Ax (如果0=D ,则平面过y 轴) 平面与z 轴平行(与xoy 面垂直)?法向量→ n 垂直于z 轴 0=++?D By Ax (如果0=D ,则平面过z 轴) (3)平面与xoy 面平行?法向量→ n 垂直于xoy 面0=+?D Cz

专题突破——极坐标与参数方程专题

极坐标与参数方程专题(1)——直线参数t几何意义的应用1.(2018?银川三模)在平面直角坐标系xoy中,以O为极点,x轴非负半轴为极轴建立极坐标系,已 知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为:(t为参数),两曲线相交 于M,N两点. (Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程; (Ⅱ)若P(﹣2,﹣4),求|PM|+|PN|的值. 解:(Ⅰ)根据x=ρcosθ、y=ρsinθ,求得曲线C的直角坐标方程为y2=4x, 用代入法消去参数求得直线l的普通方程x﹣y﹣2=0. (Ⅱ)直线l的参数方程为:(t为参数), 代入y2=4x,得到,设M,N对应的参数分别为t1,t2, 则t1+t2=12,t1?t2=48,∴|PM|+|PN|=|t1+t2|=. 2.(2018?乐山二模)已知圆C的极坐标方程为ρ=2cosθ,直线l的参数方程为(t为参数),点A的极坐标为(,),设直线l与圆C交于点P、Q两点. (1)写出圆C的直角坐标方程;(2)求|AP|?|AQ|的值. 解:(1)圆C的极坐标方程为ρ=2cosθ 即ρ2=2ρcosθ,即(x﹣1)2+y2=1,表示以C(1,0)为圆心、半径等于1的圆. (2)∵点A的直角坐标为(,),∴点A在直线(t为参数)上. 把直线的参数方程代入曲线C的方程可得t2+t﹣=0. 由韦达定理可得t1?t2=﹣<0,根据参数的几何意义可得|AP|?|AQ|=|t1?t2|=.

3.(2018?西宁模拟)在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知直线l的极坐标方程为ρcosθ+ρsinθ﹣=0,C的极坐标方程为ρ=4sin(θ﹣). (I)求直线l和C的普通方程; (II)直线l与C有两个公共点A、B,定点P(2,﹣),求||PA|﹣|PB||的值. 解:(I)直线l的极坐标方程为ρcosθ+ρsinθ﹣=0,所以:直线l的普通方程为:,因为圆C的极坐标方程为为ρ=4sin(θ﹣),所以圆C的普通方程:. (II)直线l:的参数方程为:(t为参数), 代入圆C2的普通方程:消去x、y整理得:t2﹣9t+17=0,t1+t2=9,t1t2=17, 则:||PA|﹣|PB||=,=. 4.(2018?内江三模)在直角坐标系xOy中,直线l过点P(1,﹣2),倾斜角为.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ,直线l与曲线C交于A,B 两点. (Ⅰ)求直线l的参数方程(设参数为t)和曲线C的普通方程;(Ⅱ)求的值. 解:(Ⅰ)∵直线l过点P(1,﹣2),倾斜角为. ∴直线l以t为参数的参数方程为,(t为参数)…(3分) ∵曲线C的极坐标方程为ρ=4cosθ.∴曲线C的普通方程为(x﹣2)2+y2=4.…(5分) (Ⅱ)将直线l的参数方程,(t为参数)代入曲线C的普通方程(x﹣2)2+y2=4,得,…(6分)设A,B两点对应的参数为t1,t2, ∵点P在曲线C的左下方,∴|PA|=t1,|PB|=t2,…(8分)

几何学的本质

《几何学的本质》--- 几何学是人们在长期的生活实践中逐渐发展起来的理论思维成果之一。在它的启蒙阶段,现实中的物体形状和理论上的几何形状,一般是被混为一体或不加区分的,直到柏拉图时代,人们才开始注意到几何形状对于理论和现实的不同。人们所画在物体表面上的线都是有一定宽度的,它并非是几何学理论所意味的那种没有宽度的线;画在沙面上的三角形诸角,实际上是一些小块的面积,因此也不是理想的尖角。几何学概念的意义与体现它的现实事物的不相吻合,使柏拉图相信在超越现实事物的表面,一定有着“理念”事物存在,它们以十全十美的完善方式,显示出理想的几何属性。因而可靠的几何学知识,不是由现实事物来直接提供的,它需要人们对“理念”事物的一种“洞见”行为才能获得。 柏拉图的观点,代表了对几何学本质的早期见解,它使人们清楚地认识到,理想化的几何形状并不存在于人们生活的现实空间中。由于人们普遍认为欧几里德几何学中的每一条公理或公设,都不能从更为基本的前提中推导出来,而且每一条公理或公设对于处理现实事物都是有效的,所以,康德紧紧抓住几何学公理的不证自明性,认为几何学知识一定是通过逻辑以外的其它方式才能获得,并且是先天的和综合的。人们对现实事物所具有的几何特征

的认识,实际上是把现实事物置于几何学先天公理的构架上使之呈现的结果。同柏拉图一样,康德也把确定性的几何形状,同现实空间中的事物形状区分开来,但是他没有用理想的事物来解释几何学的本质,而是认为几何学知识是先于人类认识的,它们不能从人们的认识中得到解释和说明。 随着实验科学的发展,以及面对一系列通过实验所取得的丰硕成果,人们对科学理论的鉴别,逐渐倾向于依赖客观实验的检验。人们开始放弃柏拉图和康德的神秘主义几何学观点,并力图使几何学知识在现实空间中,能够得到客观实验的证明。高斯曾经测量过以三座山峰的顶端为顶点的三角形诸角,以试图验证这个三角形的内角和是否等于1800。后来爱因斯坦对此解释说,三角形内角和不等于1800,只有在很大的空间范围上才会明显,所以,对于我们附近的现实空间,欧几里得几何学是近似有用的。但是,高斯未能说明他所测量的三角形,为什么等同于理论意义上的几何三角形,爱因斯坦也没有区分三角形对于理论和现实的不同,他们回避了几何学中绝对理想化的几何形状,不存在于现实空间这一根本性的前提。理想化的直线和平面,在现实中没有与它们相对应的客观对象,研究直线平面几何形关系,应当只能针对理论意义上的直线和平面所构成的几何形及其几何关系。只有将几何学的研究

解析几何学习知识重点情况总结复习资料

一、直线与方程基础: 1、直线的倾斜角α: [0,)απ∈ 2 、直线的斜率k : 21 21 tan y y k x x α-== -; 注意:倾斜角为90°的直线的斜率不存在。 3、直线方程的五种形式: ①点斜式:00()y y k x x -=-; ②斜截式:y kx b =+; ③一般式:0Ax By C ++=; ④截距式:1x y a b +=; ⑤两点式: 121 121 y y y y x x x x --=-- 注意:各种形式的直线方程所能表示和不能表示的直线。 4、两直线平行与垂直的充要条件: 1111:0l A x B y C ++=,2222:0l A x B y C ++=, 1l ∥2l 1221 1221 A B A B C B C B =???≠?; 1212120l l A A B B ⊥?+= . 5、相关公式: ①两点距离公式:11(,)M x y ,22(,)N x y ,

MN = ②中点坐标公式:11(,)M x y ,22(,)N x y , 则线段MN 的中点1122 ( ,)22 x y x y P ++; ③点到直线距离公式: 00(,)P x y ,:0l Ax By C ++=, 则点P 到直线l 的距离d = ; ④两平行直线间的距离公式:11:0l Ax By C ++=,22:0l Ax By C ++=, 则平行直线1l 与2l 之间的距离d = ⑤到角公式:(补充)直线1111:0l A x B y C ++=到直线2222:0l A x B y C ++=的角为 θ,(0,)(,)22 ππ θπ∈U ,则2112 tan 1k k k k θ-=+? .(两倾斜角差的正切) 二、直线与圆,圆与圆基础: 1、圆的标准方程:222()()x a y b r -+-=; 确定圆的两个要素:圆心(,)C a b ,半径r ; 2、圆的一般方程:220x y Dx Ey F ++++=,(22 40D E F +->); 3、点00(,)P x y 与圆222:()()C x a y b r -+-=的位置关系: 点00(,)P x y 在圆内? 22200()()x a y b r -+-<; 点00(,)P x y 在圆上? 22200()()x a y b r -+-=; 点00(,)P x y 在圆外? 222 00()()x a y b r -+->; 4、直线:0l Ax By C ++=与圆222:()()C x a y b r -+-=的位置关系: 从几何角度看: 令圆心(,)C a b 到直线:0l Ax By C ++=的距离为d , 相离?d r >;

极坐标与参数方程专题复习

极坐标与参数方程专题复习

————————————————————————————————作者:————————————————————————————————日期:

试卷第8页,总6页 极坐标与参数方程专题复习 学校:___________姓名:___________班级:___________考号:___________ 一、知识点总结 1.直线的参数方程 (1)标准式过点()000P ,x y ,倾斜角为α的直线l (如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) 定点()000P ,x y 加t 个单位向量就是动点 于是,t 的绝对值就是定点和动点间的距离, (2)一般式?? ?+=+=bt y y at x x 00(t 为参数) 转化为标准式 ??? ? ??? ++=++=t b a b y y t b a a x x 2202 20 2.圆锥曲线的参数方程。“1”的代换 (1)圆()() 22 2 x a y b r -+-=cos sin x a r y b r θ θ=+?? =+? (θ是参数) θ是动半径所在的直线与x 轴正向的夹角,θ∈[]0,2π (2)椭圆122 22 =+b y a x cos sin x a y b θ θ=??=? (θ为参数)

试卷第8页,总6页 椭圆 1 22 22=+b y a y cos sin x b y a θ θ=?? =? (θ为参数) 3.极坐标 (1)极坐标与直角坐标互换。222cos sin x y x y ρρθρθ?=+? =??=? (2)过原点倾斜角为α的直线的极坐标方程:θα= (3)圆心在原点,半径为r 的圆极坐标方程:r ρ= 二、例题示范 题型一、坐标的互化。(略) 题型二、参数方程的本质(表示点)。 1、点到点、点到直线距离的最值。参数方程看做点带入距离公式。 2、点的轨迹方程。参数方程看做点,同时使用跟踪点发。 例1.在直角坐标系xOy 中,直线l 的参数方程为33x t y t =+???=??(t 为参数),以 原点为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为 23sin ρθ=. (1)写出直线l 的普通方程及圆C 的直角坐标方程; (2)点P 是直线l 上的点,求点P 的坐标,使P 到圆心C 的距离最小.

极坐标与参数方程专题复习汇编

坐标系与参数方程 一、考试大纲解析: 1?坐标系 (1) 理解坐标系的作用; (2) 了解平面坐标系伸缩变换作用下图形的变化情况; (3) 能在坐标系中用极坐标表示点的位置,理解在极坐标和平面之间坐标系表示点的位 置的区别,能进行极坐标和直角坐标的互化; (4) 能在极坐标系中给出简单图形的方程,通过比较这些图形在极坐标和直角坐标系中 的方程,理解用方程表示平面图形时选择适当坐标系的意义; 2?参数方程 (1) 了解参数方程和参数方程的意义; (2) 能选择适当的参数写出直线、圆、圆锥曲线的参数方程; (3) 能用参数方程解决一些数学问题和实际的运用; 极坐标和参数方程是新课标考纲里的选考内容之一, 在每年的高考试卷中,极坐标和参 数方程都是放在选作题的一题中来考查。 由于极坐标是新添的内容,考纲要求比较简单,所 以在考试中一般不会有很难的题目。 三、知识点回顾 坐标系 的作用下,点P (x, y )对应到点P (X , y ),称「为平面直角坐标系中的坐标伸缩.变换,简 称伸缩变换? 2.极坐标系的概念: 在平面内取一个定点 0,叫做极点;自极点0引一条射线Ox 叫做极 轴;再选定一个长度单位、 一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这 样就建立了一个极坐标系。 3?点M 的极坐标:设M 是平面内一点,极点 0与点M 的距离|0M |叫做点M 的极径, 记为「;以极轴Ox 为始边,射线 0M 为终边的? xOM 叫做点M 的极角,记为二。有序 数对(OR 叫做点 M 的极坐标,记为M (几旳. 极坐标(几力与(亍门,2k 二)(k ?Z )表示同一个点。极点 0的坐标为(0门)(” R ). 4.若? ::: 0,则- ? 0,规定点(-匚力与点(:「)关于极点对称,即(-6力与(匚二 二) 表示同一点。 如果规定「7,0 V 2二,那么除极点外,平面内的点可用唯一的极坐标 (「门)表 示; 、题型分布: 1 .伸缩变换:设点P (x, y )是平面直角坐标系中的任意一点, 在变换申:丿 X 「X, ( ■ 0),

geometry(几何学)

Geometry Geometry is all about shapes and their properties. If you like playing with objects, or like drawing, then geometry is for you! Geometry can be divided into: Plane Geometry is about flat shapes like lines, circles and triangles ... shapes that can be drawn on a piece of paper Solid Geometry is about three dimensional objects like cubes, prisms, cylinders and spheres. Hint: Try drawing some of the shapes and angles as you learn ... it helps. Point, Line, Plane and Solid A Point has no dimensions, only position A Line is one-dimensional A Plane is two dimensional (2D) A Solid is three-dimensional (3D)

Why? Why do we do Geometry? To discover patterns, find areas, volumes, lengths and angles, and better understand the world around us. Plane Geometry Plane Geometry is all about shapes on a flat surface (like on an endless piece of paper). 2D Shapes Activity: Sorting Shapes Triangles Right Angled Triangles Interactive Triangles Quadrilaterals (Rhombus, Parallelogram, etc) Rectangle, Rhombus, Square, Parallelogram, Trapezoid and Kite Interactive Quadrilaterals Shapes Freeplay Perimeter

空间解析几何教学大纲

《空间解析几何》课程教学大纲 一课程说明 1.课程基本情况 课程名称:空间解析几何 英文名称:Analytic geometry 课程编号:2411207 开课专业:数学与应用数学 开课学期:第1学期 学分/周学时:3/3 课程类型:专业基础课 2.课程性质(本课程在该专业的地位作用) 本课程是数学与应用数学及信息与计算机科学专业的一门专业基础课,是初等数学通向高等数学的桥梁,是高等数学的基石,线性代数,数学分析,微分方程,微分几何,高等几何等课程的学习都离不开空间解析几何的基本知识及研究方法。空间解析几何是用代数的方法研究几何图形的一门学科,是从初等数学进入高等数学的转折点,是沟通几何形式与数学关系的一座桥梁。 3.本课程的教学目的和任务 通过本课程的学习,学生在掌握解析几何的基本概念的基础上,树立起空间观念。使学生受到几何直观及逻辑推理等方面的训练,扩大知识领域,培养空间想象能力以及运用向量法与坐标法计算几何问题和证明几何问题的能力,并且能用解析方法研究几何问题和对解析表达式给予几何解释,为进一步学习其它课程打下基础;另一方面加深对中学几何理论与方法的理解,从而获得在比较高的观点下处理几何问题的能力,借助解析几何所具有的较强的直观效果提高学生认识事物的能力。 4.本课程与相关课程的关系、教材体系特点及具体要求

本课程的教学,要求学生熟练掌握用代数的方法在空间直角坐标系下,研究平面、空间直线、柱面、锥面、旋转曲面和二次曲面等几何图形的性质,能对坐标化方法运用自如,从而达到数与形的统一。了解二次曲线的一般理论和二次曲面的一般理论。以培养学生掌握解析几何的基础知识为主,着力培养学生运用解析几何的思想和方法解决实际问题的能力,以及娴熟的矢量代数的计算能力和推理、演绎的逻辑思维能力,为后续课程的学习打下良好的基础。 5.教学时数及课时分配 二教材及主要参考书 1.李养成,《空间解析几何》,科学出版社。 2.吴光磊、田畴编,《解析几何简明教程》,高等教育出版社。 3.丘维声,《解析几何》,北京大学出版社。 4.南开大学《空间解析几何引论》编写组编,《空间解析几何引论》,高教出版社。 5.吕林根许子道等编《解析几何》(第三版),高等教育出版社出版 三教学方法和教学手段说明 1.启发式教学,课堂教学与课后练习相结合。 2.可考虑运用多媒体教学软件辅助教学。

参数方程及极坐标专题(学生版)

参数方程与极坐标专题 1.选修4-4:坐标系与参数方程 已知直线1:x t l y =???=??(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立直角坐标系, 圆1C :2cos 4sin 60ρθρθ--+=. (1)求圆1C 的直角坐标方程,直线1l 的极坐标方程; (2)设1l 与1C 的交点为,M N ,求1C MN ?的面积. 2.在极坐标系中,曲线C 的方程为2cos 29ρθ= ,点)6P π.以极点O 为原点,极轴为x 轴的正半轴建立直角坐标系. (1)求直线OP 的参数方程和曲线C 的直角坐标方程; (2)若直线OP 与曲线C 交于A 、B 两点,求 11|||| PA PB +的值. 3.在平面直角坐标系xOy 中,曲线1C 的参数方程为(sin x a a y a ?=??=??为参数) ,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin cos ρθθ =+. (1)求曲线12,C C 的直角坐标方程; (2)已知点,P Q 分别是线12,C C 的动点,求PQ 的最小值.

在直角坐标系xOy 中,过点(2,1)P -的直线l 的倾斜角为45?,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2 sin 4cos ρθθ=,直线l 与曲线C 的交点为A ,B . (1)求曲线C 的直角坐标方程; (2)求||||PA PB ?. 5.选修4-4:坐标系与参数方程 在直角坐标系xOy 中,直线l 的参数方程为315415x t y t ?=-+????=-+?? (t 为参数),以原点O 为极点,x 轴正半轴为极轴建 立极坐标系,曲线C 的极坐标方程)4π ρθ=+. (I )求曲线C 的直角坐标方程; (II )若直线l 与曲线C 交于M N ,两点,求||MN . 6.坐标系与参数方程 在平面直角坐标系中,直线l 的参数方程为13 x t y t =+?? =-?(t 为参数),在以直角坐标系的原点O 为极点,x 轴的正 半轴为极轴的极坐标系中,曲线C 的极坐标方程为22cos sin θρθ =. (Ⅰ)求曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若直线l 与曲线C 相交于A B 、两点,求弦长AB .

浅谈最常用的代谢组学分析方法

代谢组学是一门对某一生物或细胞所有低分子质量代谢产物(以相对分子质量<1000的有机和无机的代谢物为研究核心区)进行分析的新兴学科。生物样本通过NMR、GC-MS、LC-MS等高通量仪器分析检测后,能产生大量的数据,这些数据具有高维,少样本、高噪声等复杂特征,同时代谢物多且代谢物之间联系密切,因此从复杂的代谢组学数据中确定与所研究的现象有关的代谢物,筛选出候选生物标记物成为代谢物组学研究的热点和难点。 代谢组学分析数据用于统计分析时,数据集通常为一个N ×K 的矩阵(X矩阵),N表示N个样本数,每一行代表一个样品,K表示K个变量,每一列代表一个变量,在代谢组学中变量通常是指代谢物含量。常用的分析方法如图1所示: 数据分析方法 单变量分析 多变量分析差异倍数分析 显著性检验 无监督分析 有监督分析 PLS-DA PCA OPLS-DA 图1 代谢组学常用的数据分析方法 单变量分析 单变量分析方法仅分别分析单个变量,不考虑多个变量的相互作用与内在联系。具有简单性、易应用性和可解释性。但是无法基于整

体数据对所测样品的优劣、差异进行综合评价和分析。 (1)差异倍数分析 差异倍数变化大小(Fold Change,FC)表示实验组与对照组的含量比值,可以快速考察各个代谢物在不同组别之间的含量变化大小。(2)显著性检验 p值即概率,反映某一事件发生的可能性大小,用于区分该变量是否具有统计显著性,通常认为p<0.05具有统计显著性。常用的检验方法有t-test、方差分析(Analysis of Variance,ANOVA),但是由于代谢组学的变量较多,必要时需要进行多重假设检验,对p值进行校正,减少Ⅰ类错误,降低假阳性。 多变量分析 多变量分析方法能同时处理数百或数千个变量,并且能处理变量之间的相互关系。利用变量之间的协方差或相关性,使原始数据在较低维空间上的投影能尽可能地捕获数据中的信息。但是如果存在大量无信息变量可能会妨碍多变量分析的能力,无信息变量的数量越多,减少真阳性数量的效果就越显著。 多变量分析分为无监督分析方法和有监督分析方法。在代谢组学分析中无监督学习有主成分分析(Principal Component Analysis,PCA),只需要数据集X,而有监督分析方法主要是偏小二乘判别分析(Partial Least Squares Discrimination Analysis, PLS-DA)和正交偏小二乘判别分析(Orthogonal Partial Least Squares

相关主题