搜档网
当前位置:搜档网 › e~x导数公式的推导及简单应用

e~x导数公式的推导及简单应用

e~x导数公式的推导及简单应用

导数计算公式

导数公式 一、基本初等函数的导数公式 已知函数:(1)y =f (x )=c ;(2)y =f (x )=x ;(3)y =f (x )=x 2;(4)y =f (x )=1 x ;(5)y =f (x )=x . 问题:上述函数的导数是什么? 提示:(1)∵Δy Δx =f (x +Δx )-f (x )Δx =c -c Δx =0,∴y ′=lim Δx →0 Δy Δx =0. 2)(x )′=1,(3)(x 2)′=2x ,(4)? ???? 1x ′=-1x 2,(5)(x )′=12x . 函数(2)(3)(5)均可表示为y =x α(α∈Q *)的形式,其导数有何规律? 提示:∵(2)(x )′=1·x 1-1,(3)(x 2)′=2·x 2-1,(5)(x )′=(x 1 2 )′=12x 112 -= 12x ,∴(x α)′=αx α-1. 基本初等函数的导数公式

二、导数运算法则 已知f (x )=x ,g (x )=1 x . 问题1:f (x ),g (x )的导数分别是什么? 问题2:试求Q (x )=x +1x ,H (x )=x -1 x 的导数. 提示:∵Δy =(x +Δx )+1 x +Δx -? ? ???x +1x =Δx +-Δx x (x +Δx ) , ∴Δy Δx =1-1x (x +Δx ),∴Q ′(x )=lim Δx →0 Δy Δx =lim Δx →0 ?? ????1-1x (x +Δx )=1-1x 2.同理H ′(x )=1+1 x 2. 问题3:Q (x ),H (x )的导数与f (x ),g (x )的导数有何关系? 提示:Q (x )的导数等于f (x ),g (x )导数的和,H (x )的导数等于f (x ),g (x )导数的差. 导数运算法则 1.[f (x )±g (x )]′=f ′(x )±g ′(x ) 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ) 3.??????f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0) 题型一 利用导数公式直接求导 [例1] 求下列函数的导数:(1)y =10x ;(2)y =lg x ;(3)x y 2 1log =; (4)y =4 x 3;(5)12cos 2sin 2 -??? ?? +=x x y . [解] (1)y ′=(10x )′=10x ln 10;(2)y ′=(lg x )′= 1 x ln 10;

基本初等函数的导数公式的推导过程

基本初等函数的导数公 式的推导过程 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题 若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααα ααααααααααααααααααα αααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++()1111 C x x x ααααα αα---?== 所以原命题得证.

命题 若()sin f x x =,则()cos f x x '=. 推导过程 ()f x ' ()() ()()()()0000020lim sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??+?-=??+?-=??+?-=???????????+?-- ? ????????=2 00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→????????- ???=???????- ???=?????+ ???=?????????=+??? ???????? 当0x ?→时,sin 22 x x ??=,所以此时sin 212x x ?=?. 所以()0lim cos cos 2x x f x x x ?→???'=+= ??? ,所以原命题得证.

导数公式及证明

编辑本段导数公式及证明 这里将列举五类基本初等函数的导数以及它们的推导过程(初等函数可由之运算来): 基本导数公式 1.y=c(c为常数) y'=0 2幂函数。y=x^n, y'=nx^(n-1)(n∈Q*) 熟记1/X的导数 3.(1)y=a^x ,y'=a^xlna ;(2)熟记y=e^x y'=e^x唯一一个导函数为本身的函数 4.(1)y=logaX, y'=1/xlna (a>0且a不等于1,x>0) ;熟记 y=lnx ,y'=1/x 5.y=(sinx )y'=cosx 6.y=(cosx) y'=-sinx 7.y=(tanx) y'=1/(cosx)^2 8.y=(cotx) y'=-1/(sinx)^2 9.y=(arcsinx)y'=1/√1-x^2 10.y=(arccosx) y'=-1/√1-x^2 11.y=(arctanx) y'=1/(1+x^2) 12.y=(arccotx) y'=-1/(1+x^2) 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』 2.y=u/v,y'=(u'v-uv')/v^2 3. 原函数与反函数导数关系(由三角函数导数推反三角函数的): y=f(x)的反函数是x=g(y),则有y'=1/x' 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的: y=c,Δy=c-c=0,limΔx→0Δy/Δx=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况,只能证其为整数Q。主要应用导数定义与

导数计算公式

、基本初等函数的导数公式 已知函数:(1) y = f(x) = c ; (2) y = f(x) = x ; (3) y = f(x) = x 2 ;⑷ y = 1 f(x)二x ; (5) y 二f(x)二:'x. 1 提示::(2)( x)'二 1 ? x 1 —1 , (3)(x 2 )'二 2 ? x 2— 1 , (5)( x)z 二(x 2 ) 1_ -1 1 2 -2x 1 a a — 1 基本初等函数的导数公式 提示:(1) V △ y f x +△ —f △ x — △ x 0. 2)( x)'二 1, 3( x 2 ) '=2x , 1 ⑷x 函数 ⑵(3)(5) 均可表示为y = a , x ( a x c — c , △ y —=U = °,二y =吹不 ,一 1 (5)( &)衣 € Q *)的形式,其导数有何规 律? 问题:上述函数的导数是什么?

、导数运算法则 1 已知 f(x) = X , g(x)=-. 入 问题1: f(x), g(x)的导数分别是什么? 问题2:试求Q(x) = x + -, H(x) = x — 1的导数. x x 提示: 1 1 —A x ???△ y = (x +A x) + X +A x — x + x =A x + x x +A x , fx 二 1 - x x +A x , ?- Q (X)二吹0 lx 二吹0 =1 —1 同理 H'(x) = 1+1 x / X 问题3: qx), H(x)的导数与f(x), g(x)的导数有何关系? 提示:Q(x)的导数等于f(x), g(x)导数的和,H(x)的导数等于f (x), g(x)导数的差. 1 x x +A x

函数导数公式及证明

函数导数公式及证明

复合函数导数公式

) ), ()0g x ≠' ''2 )()()()() ()()f x g x f x g x g x g x ?-=?? ())() x g x , 1.证明幂函数()a f x x =的导数为''1()()a a f x x ax -== 证: ' 00()()()()lim lim n n x x f x x f x x x x f x x x →→+-+-== 根据二项式定理展开()n x x + 011222110(...)lim n n n n n n n n n n n n n x C x C x x C x x C x x C x x x ----→+++++-= 消去0n n n C x x - 11222110...lim n n n n n n n n n n x C x x C x x C x x C x x ----→++++= 分式上下约去x 112211210 lim(...)n n n n n n n n n n x C x C x x C x x C x -----→=++++ 因0x →,上式去掉零项 111 n n n C x nx --== 12210()[()()...()]lim n n n n x x x x x x x x x x x x x x ----→+-+++++++=

12210 lim[()()...()]n n n n x x x x x x x x x x ----→=+++++++ 1221...n n n n x x x x x x ----=++++ 1n n x -= 2.证明指数函数()x f x a =的导数为'ln ()x x a a a = 证: ' 00()()()lim lim x x x x x f x x f x a a f x x x +→→+--== 0(1)lim x x x a a x →-= 令1x a m -=,则有log (1)a x m =-,代入上式 00(1)lim lim log (1)x x x x x a a a a m x m →→-==+ 1000 ln ln lim lim lim ln(1)1ln(1)ln(1)ln x x x x x x m a m a a a a m m m a m →→→===+++ 根据e 的定义1lim(1)x x e x →∞ =+ ,则1 0lim(1)m x m e →+=,于是 1 ln ln lim ln ln ln(1) x x x x m a a a a a a e m →===+ 3.证明对数函数()log a f x x =的导数为''1 ()(log )ln a f x x x a == 证: '0 0log ()log ()() ()lim lim a a x x x x x f x x f x f x x x →→+-+-== 00log log (1)ln(1) lim lim lim ln a a x x x x x x x x x x x x x a →→→+++===

导数运算公式的逆用

1.已知'()f x 是定义在R 上的函数()f x 的导函数,且5()(5),()'()02 f x f x x f x =--< 若1212,5x x x x <+<,则下列结论中正确的是 ( ) A .12()()f x f x < B .12()()f x f x > C .12()()0f x f x + 2.已知)(x f 为R 上的可导函数,且R x ∈?,均有)()(x f x f '>,则有 ( ) A .20132013(2013)(0),(2013)(0)e f f f e f -<> B .20132013(2013)(0),(2013)(0)e f f f e f -<< C .20132013(2013)(0),(2013)(0)e f f f e f ->> D .20132013(2013)(0),(2013)(0)e f f f e f ->< 3.定义在)2,0(π 上的函数)(x f ,()'f x 是它的导函数,且恒有x x f x f tan )()(?'<成立,则. ( ) A ()()43ππ > B .(1)2()sin16f f π < C ()()64f ππ > D ()()63f π π < 4.定义在R 上的函数()f x 满足f(1)=1,且对任意x∈R ,则不等式 ( ) A .(1,2) B .(0,1) C .(1,+∞) D .(-1,1) 5.设f(x)是定义在R 上的奇函数,且f(2)=0,当x>0时,有恒成立,则不等式 的解集是 ( ) A .(-2,0) ∪(2,+∞) B .(-2,0) ∪(0,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-2)∪(0,2) 6. 函数f (x )对定义在R 上的任意x 都有f (2-x )=f (x ),且当1x ≠时其导函数'()f x 满 足'()'()xf x f x >,若12a <<,则有 A 、2(2)(2)(log )a f f f a << B 、2(2)(log )(2)a f f a f << C 、2(log )(2)(2)a f a f f << D 、2(log )(2)(2)a f a f f <<

基本初等函数的导数公式的推导过程

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题 若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220 011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααααααααααααααααααααα ααααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++L L L L ()11 11 C x x x ααααααα---?== 所以原命题得证. 二、正弦函数()sin f x x =的导数公式推导过程 命题

推导过程 ()f x ' ()() ()()()()0000020lim sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??+?-=??+?-=??+?-=???????????+?-- ? ????????=2 00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→????????- ???=???????- ???=?????+ ???=?????????=+??? ???????? 当0x ?→时,sin 22 x x ??=,所以此时sin 212x x ?=?. 所以()0lim cos cos 2x x f x x x ?→???'=+= ??? ,所以原命题得证. 三、余弦函数()cos f x x =的导数公式推导过程 命题

高数常见导数公式推导

高数常见求导数题 1.√x+1((1+√x+13 ) =. 解:令t 6=x +1,则dx =6 t 5dt ?t =√x +16 dx √x +1((1+√x +13 ) = ∫ 6 t 5dt 3(2)=∫ 6t 2dt 2=6∫t 2+1?1 2dt =6∫1dt ?6∫ dt t 2+1 =6t ?6arctant +C ∴√x +1((1+√x +13 ) =6√x +16 ?6arctan√x +16 +C 2.∫ dx x ?2x+3 = 解:∫ dx x 2?2x+3=∫ dx 2+(x?1)2 = √2 ∫√2 dx 1+(x?12 ) 2= √2 2arctan (√2 )+C 3.√ 2 = .解:√1+x?x =√54?(x ?x+14 ) =√54?(x?12 )= √5 2√1?(2x?1√5 )= √52 ( 2x?1√5 )2√5 √1?(√5 ) √1?( √5 (√5)=arcsin (√5 )+C 4.23 = 解:令x=tant,则dx= 1 cos 2t dt ,易知x ∈R ?t ∈(?π 2,0)∪(0,π 2),从而有:sint = xcost =x√1 1+tan 2t =√ 2 dx 23 =1 cos 2t dt 23 =∫ 1 cos 2t dt 1 cos 3t =∫costdt =sint +C = x √1+x 2 +C ∴∫ dx 23 = x √+C 5.∫ √X 2+X+1 dx =

解: √X+X+1=∫(x+12+12)dx √x+x+1 =x+12 √x+x+1 +1 2 √x+x+1 = 2√x2+x+1+ 1 2 √(x+ 2 )+ 4 =√+ 1 2 ln(x+ 1 2 +√(x+ 1 2 ) 2 + 3 4 )+C 常用的积分公式及基本类型 (一) 1.∫tanxdx=?ln|cosx|+C∫cotxdx=ln|sinx|+C 2.∫tan2xdx=∫(sec2x?1)dx=∫sec2xdx?∫dx=tanx?x+C 3.∫cot2xdx=∫(csc2x?1)dx=cotx?x+C (二) 1..∫sinxcosxdx=sin2x 2+C=?cos2x 2 +C=?cos2x 4 +C 2.∫cos2xcos3xdx=1 2 ∫[cos(3x+2x)+cos(3x?2x)]dx= 1 2∫cos5xdx+1 2 ∫cosxdx=1 10 sin5x+1 2 sinx+C ∫sin3xsin2xdx= 1 2 ∫[cos(3x?2x)?cos(3x+2x)]dx= 1 2 sinx ? 1 10 sin5x+C 3.∫cos2xdx=∫1+cos2x 2dx=1 2 ∫dx+1 4 ?∫2cos2xdx = x 2 + 1 4 sin2x+C ∫sin2xdx=∫1?cos2x 2 dx= 1 2 ∫dx? 1 4 ∫2cos2xdx =x 2 ? 1 4 sin2x+C

导数计算公式

导数计算公式 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

导数公式 一、基本初等函数的导数公式 已知函数:(1)y =f (x )=c ;(2)y =f (x )=x ;(3)y =f (x )=x 2;(4)y =f (x )=1 x ;(5)y =f (x )=x . 问题:上述函数的导数是什么 提示:(1)∵Δy Δx =fx +Δx -fx Δx =c -c Δx =0,∴y ′=lim Δx →0 Δy Δx =0. 2)(x )′=1,(3)(x 2)′=2x ,(4)? ???? 1x ′=-1x 2,(5)(x )′=12x . 函数(2)(3)(5)均可表示为y =x α(α∈Q *)的形式,其导数有何规律 提示:∵(2)(x )′=1·x 1-1,(3)(x 2)′=2·x 2-1,(5)(x )′=(x 1 2 )′=12 x 112 -= 12x ,∴(x α)′=αx α-1. 基本初等函数的导数公式

已知f (x )=x ,g (x )=1 x . 问题1:f (x ),g (x )的导数分别是什么 问题2:试求Q (x )=x +1x ,H (x )=x -1 x 的导数. 提示:∵Δy =(x +Δx )+ 1x +Δx -? ???? x +1x =Δx +-Δx xx +Δx , ∴Δy Δx =1-1xx +Δx ,∴Q ′(x )=lim Δx →0 Δy Δx =lim Δx →0 ??????1-1xx +Δx =1-1x 2.同理H ′(x )=1+1 x 2. 问题3:Q (x ),H (x )的导数与f (x ),g (x )的导数有何关系 提示:Q (x )的导数等于f (x ),g (x )导数的和,H (x )的导数等于f (x ),g (x )导数的差. 导数运算法则 1.[f (x )±g (x )]′=f ′(x )±g ′(x ) 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ) ′= f ′xgx -fx g ′x [gx ]2 (g (x )≠0) 题型一 利用导数公式直接求导 [例1] 求下列函数的导数:(1)y =10x ;(2)y =lg x ;(3)x y 2 1log =; (4)y =4 x 3;(5)12cos 2sin 2 -??? ? ? +=x x y .

(完整版)流体力学NS方程推导过程

流体力学NS方程简易推导过程 小菜鸟0 引言 流体力学的NS方程对于整个流体力学以及空气动力学等领域的作用非常显著,不过其公式繁琐,推导思路不容易理顺,最近重新整理了一下NS方程的推导,记录一下整个推导过程,供自己学习,也可以供大家交流和学习。 1 基本假设 空气是由大量分子组成,分子做着无规则热运动,我们可以想象,随着观察尺度的逐渐降低,微观情况下流体的速度密度和温度等物理量不可能与宏观情况相同,其物理量存在间断的现象,例如我们在空间中取出一块控制体,当控制体中存在分子时,该控制体的密度等量较大,不存在时就会为0,这在微观尺度下是常见。不过随着观察尺度增加,在宏观情况下,控制体积内包含大量分子,控制体积的压力密度温度速度等物理量存在统计平均结果,这个结果是稳定的,例如流场变量的压力密度和温度满足理想气体状态方程。 自然界中宏观情况的流体运动毕竟占据大多数,NS方程限定了自己的适用条件为宏观运动,采用稍微专业一点难度术语是流体满足连续介质假设。连续介质假设的意思就是说,我们在流场中随意取出流体微团,这个流体微团在宏观上是无穷小的,因此整个流场的物理量可以进行数学上的极限微分积分等运算;同时,这个流体微团在微观上是无穷大的,微团中包含了大量分子,以至于可以进行分子层面的统计平均,获得我们通常见到的流场变量。 连续介质假设成立需要满足:所研究流体问题的最小空间尺度远远大于分子平均运动自由程(标准状况下空气的平均分子自由程在十分之一微米的量级,具

体值可以参考分子运动理论),这在大多数宏观情况下都是成立的,也是NS 方程能够广泛采用的基础,即使在湍流中,也是成立的,因此才保证NS 方程也适用于描述湍流。 有些情况下连续介质假设不成立,存在哪些情况?第一种是空间尺度特别小,例如热线风速仪的金属丝,直径通常在1~5微米量级,最小流体微团已经接近分子平均运动自由程,连续介质假设不能直接使用,类似情况还包括激波,激波面受到压缩,其尺度也较小,为几个分子平均自由程量级,不过采用连续介质假设进行激波内流场计算时,计算结果仍然可以得到比较合理,并且与实际情况相符,这也给激波问题的研究和解决带来了基础性的保证;第二种是分子平均运动自由程特别大,分子平均运动自由程是指两个分子之间碰撞距离的平均值,这个结果与分子有效直径,分子运动速度等相关,宏观上来讲,温度越高、压力越大,分子平均运动自由程越大,而在高空情况下,压力非常低,自由程可能很大,并且大到与飞行器尺度相近,于是连续介质假设失效,此时必须考虑稀薄气体效应。在层流边界层情况下,分子平均运动自由程与边界层之间存在近似关系: 从这个关系中,可以发现,当马赫数非常大但是同时雷诺数非常小的时候,流场微小尺度才可能达到分子平均运动自由程lmd 的程度。可以想象一下,在大多数我们能观察到的情况下,上述公式的结果都是非常小的,满足连续介质假设,这个公式不成立的情况在大气层外边缘,此时大气分子之间平均动量交换降低,导致粘性变得非常小,雷诺数很高,因此公式计算结果急剧降低,导致连续介质假设失效。 前面讨论了连续介质建设成立的条件以及不成立的例子,下面讨论的都是连 λδ≈

导数的八个求导公式和四则运算求导(高考复习)

导数的八个求导公式和四则运算求导(高考复 习) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第十二单元导数的八个求导公式和四则运算求导 体验高考 1.(2013·江西高考)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则 f′(1)=. 2.(09辽宁文15)若函数 2 () 1 x a f x x + = + 在1 x=处取极值,则a= . 本题是导数部分的基础,考察的知识点是导数的求值,熟练掌握导数的基本求导公式和四则运算法则是求解这类题目的敲门砖.若单独出题,本部分题目以填空、选择的形式出现, 另外,本部分作为一切导数题的必备基础,贯穿出现在所有的导数题型中。 解题基本思路:题1:用换元法求函数解析式——求) ('x f——求)1('f 题2:由题意知:)1('f=0,解a 知识铺垫 一、大纲要求 能利用基本初等函数的导数公式和导数的四则运算法则求简单的导数,能求简单的复合函数(仅限于形如) (b ax f+的复合函数)的导数。 二、知识点回顾 1基本初等函数的导数公式: 2

3 3简单复合函数的求导:函数))((x g f 是复合函数,且)(x f 和)(x g 都可导,则='))((x g f 三、典型例题 4.(山东省实验中学2013届高三适应训练)已知)1('2)(2xf x x f +=,则=)0('f . 思路分析:先求)1('f ——则)1('2)0('f f = 解:)1('22)('f x x f += )1('22)1('f f +=∴ 即:2)1('=-f 2)1('-=f 4)1('2)0('-==∴f f 四、方法指导

基本初等函数的导数公式的推导过程

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题 若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220 011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααααααααααααααααααααα ααααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++L L L L ()11 11 C x x x ααααααα---?== 所以原命题得证. 二、正弦函数()sin f x x =的导数公式推导过程 命题

若()sin f x x =,则()cos f x x '=. 推导过程 ()f x ' ()() ()()()()0000020lim sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??+?-=??+?-=??+?-=???????????+?-- ? ????????=2 00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→????????- ???=???????- ???=?????+ ???=?????????=+??? ???????? 当0x ?→时,sin 22 x x ??=,所以此时sin 212x x ?=?. 所以()0lim cos cos 2x x f x x x ?→???'=+= ??? ,所以原命题得证. 三、余弦函数()cos f x x =的导数公式推导过程 命题 若()cos f x x =,则()sin f x x '=-.

(完整版)导数公式及四则运算

专题一导数公式及四则运算 1、下列结论不正确的是( ) A.若,则 B.若,则 C.若,则 D.若,则 2、下列各式中正确的是( ) A. B. C. D. 3、已知,若,则的值为( ) A.-6 B.6 C.±6 D.不确定 4、已知函数的导函数为,且满足关系式, 则的值等于( ) A. B. C. D. 5、已知函数,则等于( ) A. B. C. D. 6、若,则的解集为( )

A. B. C. D. 7、函数的导函数是,则; 8、已知,则____________ 9、对任意实数,都有,,那么. 10、函数在处的导数是. 11、求下列函数的导数: 1.; 2.; 3.. 12、求下列函数的导数: 1.; 2.; 3.. 13、设,求. 14、求下列函数的导数. 1.; 2.. 15、求下列函数的导数: 1.; 2.; 3..

参考答案 1.答案:B 解析:对于B,,故选项B不正确. 2.答案:D 3.答案:B 4.答案:D 解析:∵,∴, 令,则,即,∴.故选D. 5.答案:C 解析:∵,∴,应注意的是 ,不要忘记负号,故应选C. 6.答案:A 解析:∵, ∴函数的定义域为,则 ,由,得 ,即 7.答案: 解析: 首先对原函数,求导得:,所 以:,所以答案为:. 8.答案: 解析: ∵

∴ 令 得: 解得: 故答案为:. 9.答案: 解析:由可知,中最高次.结合,可设 ,又∵,∴,∴,∴. 10.答案: 解析:, ∴. 11.答案:1. ; 2. ; 3.. 解析:对于简单函数的求导,关键是合理转化函数的关系式为可以直接应用公式的基本函 数的模式,如可以写成,等,这样就可以直接使用幂函数的求导公式求导,避免在求导过程中出现指数或系数的运算失误. 12.答案:1. . 2. ∵.

高数常见导数公式推导

高数常见求导数题 1.∫ dx √x +1((1+√x +13 ) =. 解:令t 6=x +1,则dx =6 t 5dt ?t =√x +16 ∫dx √x +1((1+√x +13) = ∫ 6 t 5dt t 3(1+t 2 )=∫ 6t 2dt 1+t 2=6∫t 2+1?1 t 2+1dt =6∫1dt ?6∫ dt t 2 +1 =6t ?6arctant +C ∴dx √x +1((1+√x +13 ) =6√x +16 ?6arctan √x +16 +C 2. ∫ dx x 2?2x +3 = 解:∫ dx x 2?2x +3 =∫ dx 2+(x ?1)2 = 1 √√2 1+( 2 = √2 2 arctan ( x ?1 √)+C 3.√ = .解:=√4?(x 2?x +4 )=√54?(x ?12 ) 2 = √52√ 1?(√5 )2= √ 52√1?( 2x ?1√) 2 2√√ 1?( 2x ?1√) 2 √ 1?( 2x ?1√) 2( √) =arcsin ( √) +C 4. √(1+x 2)3 =

解:令x=tant,则dx=1 cos2t dt,易知x∈R?t∈(?π 2 ,0)∪ (0,π 2),从而有:sint=xcost=x√1 1+tan2t = dx √(1+x2)3 = 1 cos2t dt √(1+tan2t)3 =∫ 1 cos2t dt 1 cos3t =∫costdt=sint+C= x √ +C ∴∫ dx √(1+x) = x √1+x2 +C 5.= 解:=∫(x+1 2 +1 2 )dx =x+ 1 2+1 2 = 2x+1√+x+1+ 1 2 dx √(x+1 2) 2 +3 4 =√x2+x+1 +1 2ln(x+ 1 2 +√(x+1 2 ) 2 +3 4) +C 常用的积分公式及基本类型 (一) 1.∫tanxdx=?ln|cosx|+C∫cotxdx=ln|sinx|+C 2.∫tan2xdx=∫(sec2x?1)dx=∫sec2xdx?∫dx=tanx?x+C

基本初等函数的导数公式的推导过程

基本初等函数的导数公式的推导过程

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q*)的导数公式推导过程 命题 若()f x x α=(α∈Q*),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααα ααααααααααααααααααα αααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++()1111 C x x x ααααα αα---?== 所以原命题得证.

三、余弦函数()cos f x x =的导数公式推导过程 命题 若()cos f x x =,则()sin f x x '=-. 推导过程 ()f x ' ()()()()()()0000020lim cos cos lim cos cos sin sin cos lim cos cos cos sin sin lim cos cos 1sin sin lim cos 12sin 1sin 2sin cos 222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??-?-=??--?=??--?=???????????---? ? ????????=() 2000002sin cos 2sin sin cos 222lim 2sin sin cos cos sin 222lim 2sin sin 22lim sin 2lim sin 22lim sin 2sin si x x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→???????-? ???=???????- ???=?????- ???=?????????=-??? ???????? ???=- ??? =-=-n x 所以原命题得证.

导数公式的证明(最全版)

导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δ x)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1) 证法二:(n为任意实数) f(x)=x^n

lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx =lim cosxsinΔx/Δx =cosx

(3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx (4)f(x)=a^x 证法一: f'(x) =lim (a^(x+Δx)-a^x)/Δx =lim a^x*(a^Δx-1)/Δx (设a^Δx-1=m,则Δx=loga^(m+1)) =lim a^x*m/loga^(m+1)

三角函数的求导公式 推导过程是什么

三角函数的求导公式推导过程是什么 1/2 (arccosx)’=-1/(1-x ) /2 (arctanx)’=1/(1+x ) (arccotx)’=-1/(1+x ) (arcsecx)’=1/(|x|(x -1) /2 ) (arccscx)’=-1/(|x|(x -1) /2 ) ④(sinhx)’=coshx (coshx)’=sinhx (tanhx)’=1/(coshx) =(sechx) (coth)’=-1/(sinhx) =-(cschx) (sechx)’=-tanhx·sechx (cschx)’=-cothx·cschx (arsinhx)’=1/(x +1) /2 (arcoshx)’=1/(x -1) /2 (artanhx)’=1/(x -1) (|x|(arcothx)’=1/(x -1) (|x|>1) (arsechx)’=1/(x(1-x ) /2 ) (arcschx)’=1/(x(1+x ) /2 ) 1 三角函数求导公式推导过程设f(x)=sinx;(f(x+dx)-f(x))/dx=(sin(x+dx)-sinx) /dx=(sinxcosdx+sindxcosx-sinx)/dx 因为dx 趋近于0cosdx 趋近于1(f(x+dx)- f(x))/dx=sindxcosx/dx 根据重要极限sinx/x 在x 趋近于0 时等于一,(f(x+dx)- f(x))/dx=cosx,即sinx 的导函数为cosx。 同理可得,设f(x)=cos(f(x+dx)-f(x))/dx=(cos(x+dx)-cosx)/dx=(cosxcosdx-

求导数的简单方法

求导数的简单方法 这里我们要讨论的是非常重要的议题——求导数.求导数是一件有趣的事情,而且求导数的各种基本技巧并不难掌握. 一、导数的基本公式和基本法则 没什么可说的,就像你记住“行人要走斑马线”、“不要随地吐痰”一样,要把这些公式法则记得滚瓜烂熟、倒背如流. 二、幂函数的导数 这个幂函数的导数公式英文名字叫:power rule ,很有气势吧. 式子里的n 可以是任何数字,既可以是正数,也可以是负数,还可以是分数,甚至可以是π跟2之类的无理数. 例如: 233)(x x dx d =; 1)(1=x dx d (这是一个特例); 322)(---=x x dx d ; 22111)()1(x x x dx d x dx d -=-==--; 21212 1)()(-==x x dx d x dx d ; 1)(-=πππx x dx d 三、乘积的导数 两个函数的乘积的导数,等于第一个函数的导数乘以第二个函数,加上第二个函数的导数乘上第一个函数. 假设f(x)=g(x)=x x x x x x x x x x dx d 2))(()()())((=+='+'= 符合前面幂函数的导数公式. 四、商的导数 我们还想求g f 这样的分式的导数,其中f 和 g 是两个函数. 这个公式不大容易记住,需要你多看几遍,分子的形式和乘积的导数类似,不过是减号,牢记在上面的函数优先求导,分子由一个函数增加到4个,变沉了,那么分母需要增加一个g ,才能抗得住,因此是g 的平方. 五、三角函数的导数

这两个公式必须牢记,都可以从这两个基本公式推导出来. 对于这两个公式,你可能不容易记住哪一个的前面有负号.我的建议是,你只要记住“正弦函数求导后还是正的”,那么意味着余弦函数求导后就要变号了. 我们在用导数定义来证明上面这两个导数公式时,需要用到下面的重要极限公式: 例如x x x x x x x x x x x x x x x x x dx d x dx d 2222222 sec cos 1cos sin cos cos sin sin cos cos )(cos )(cos sin cos )(sin )cos sin ()(tan ==+=+='-'== 因为这个正切函数的导数经常出现,所以值得把它背下来: 其他的三角函数似乎不需要去背,因为它们都很容易推导出来. 正如余弦函数的导数出现了负号,其他两个以“余”开头的三角函数,也就是余割及余切,求导后也要加负号. 六、对数函数的导数 我们在用导数定义来证明上面这个导数公式时,需要用到另一个重要极限公式: 特别地,当a=e 时,1log =e a ,于是得到自然对数的导数:

相关主题