搜档网
当前位置:搜档网 › 二氧化碳制冷、空调和热泵技术

二氧化碳制冷、空调和热泵技术

二氧化碳制冷、空调和热泵技术
二氧化碳制冷、空调和热泵技术

CO2 Refrigeration, Air Conditioning and Heat Pump Technology
Petter Neks?, Senior Research Scientist SINTEF Energy Research Refrigeration and Air Conditioning NO-7465 Trondheim, Norway Petter.Neksa@energy.sintef.no Jostein Pettersen, Professor Norwegian University of Science and Technology (NTNU) NO-7491 Trondheim, Norway Jostein.Pettersen@kkt.ntnu.no
Geir Skaugen, Senior Research Scientist SINTEF Energy Research Refrigeration and Air Conditioning NO-7465 Trondheim, Norway Geir.Skaugen@energy.sintef.no CO2 – THE REDISCOVERED NATURAL REFRIGERANT Although CO2 (R-744) was widely used as refrigerant in the early 20th century, its use disappeared from around 1940 with the advent of the fluorocarbon chemicals. Thus, when professor Gustav Lorentzen at NTNU/SINTEF in the late 1980s proposed to reconsider the use of CO2, it had been absent for almost half a century. Increasing focus on environmental issues of fluorocarbon chemicals created a strong interest in systems using natural fluids in general, and CO2 in particular (Lorentzen and Pettersen, 1992) due to its non-flammability and non-toxicity. New concepts of high-side pressure control in what came to be called a “transcritical” cycle were devised in early patent applications by Lorentzen and his co-workers. The industrial group Norsk Hydro acquired all commercial rights to this technology in 1990, and through a joint R&D program at SINTEF/NTNU in the early 1990s the feasibility and competitiveness of the technology was demonstrated. We are now seeing the first commercial use of transcritical CO2 systems, in hot water heat pumps starting from 1999, and in fuel cell electric vehicles starting from 2003. In both cases, the CO2 technology developed at SINTEF/NTNU has been licensed to the system manufacturer through Hydro Pronova under the tradename Shecco Technology (https://www.sodocs.net/doc/311807491.html,). The present article outlines key development areas and results for CO2 systems in Europe, mainly focusing on projects where SINTEF/NTNU has been or is involved. Initially, a brief introduction to the peculiarities of CO2 as a refrigerant is given, before the status and trends within selected areas of technology is discussed, including heat pump water heaters, mobile air conditioning and heat pumps, commercial refrigeration, and heat pumps for space conditioning. Some comments are given regarding component development, mainly focusing on compressors. Finally, some concluding remarks are given on general trends and outlook for the next years. CARBON DIOXIDE AS WORKING FLUID Compared to conventional refrigerants, the most remarkable property of CO2 is the low critical temperature of 31.1oC. Vapour compression systems with CO2 operating at normal ambient temperatures thus work close to and even above the critical pressure of 73.8 bar. This leads to three distinct features of CO2 systems:

? Heat is rejected at supercritical pressure in many situations. The system will then use a transcritical cycle that operates partly below and partly above the critical pressure. High-side pressure in a transcritical system is determined by refrigerant charge and not by saturation pressure. The system design thus has to consider the need for controlling high-side pressure to ensure sufficient COP and capacity. An example of the measured effect of varying high-side pressure (compressor discharge) on heating capacity and COP in a heat pump water heater system is shown in Figure 1. ? The pressure level in the system will be quite high (around 30-100 bar). Components therefore have to be redesigned to fit the properties of CO2. Due to smaller volumes of piping and components, the stored explosion energy in a CO2 system is not much different from a conventional system (Pettersen, 1999). A benefit of high pressure is the 80-90% smaller compressor displacement needed for a given capacity. Compressor pressure ratios are low, thus giving favourable conditions for high compressor efficiency. ? Large refrigerant temperature glide during heat rejection. At supercritical or nearcritical pressure, all or most of the heat transfer from the refrigerant takes place by cooling the compressed gas. The heat rejecting heat exchanger is then called gascooler instead of condenser. Gliding temperature can be useful in heat pumps for heating water or air. With proper heat exchanger design the refrigerant can be cooled to a few degrees above the entering coolant (air, water) temperature, and this contributes to high COP of the system.
Heating cap., Shaft Power, [kW]
50 40 Capacity 30 20 10 0 70
COP Compressor Shaft Power Optimum Pressure Heating
7 6
COP, [-]
5 4 3 0 120
80
90 100 110 Discharge Pressure, [bar]
Figure 1 - Variation of heating capacity, heating-COP and compressor shaft power with the discharge pressure for a CO2 heat pump water heater
Experience from testing and modelling of CO2 refrigeration and air conditioning systems shows that cooling COP is more sensitive to ambient temperature variation than with conventional refrigerants. This typically leads to the situation shown in Figure 2, where the CO2 system is superior at moderate and low ambient temperature, and slightly inferior at very high temperature. In this situation, it would be misleading to base the comparison on designpoint conditions, which typically are at an extreme ambient temperature. A more sensible basis for comparison is to use mean/average conditions, or to apply a seasonal analysis based on climatic variation.
2

COP
Design point ambient temperature
CO2
Baseline
Ambient temperature
Figure 2 – Principal COP behaviour of CO2 system and conventional (baseline) system at varying ambient temperature. EFFICIENT HEAT PUMP WATER HEATERS The first application of CO2 systems on the market is heat pump water heaters, where the thermodynamic properties are very favourable. Figure 3 shows, in a temperature-entropy diagram, how the temperature characteristics of the transcritical cycle matches the temperature profiles of the heat source and heat sink, giving small heat transfer losses and high efficiency.
ba r
120
3
15 0
Temperature [°C]
4
Int. Heat Exchanger 1 2 Compressor Gas Cooler
p=
100 80 60 40 20 0 3.0
4
2
Throttle Valve 5
6
Evaporator Receiver
5
6
3.2
3.4
3.6
3.8
4.0
Entropy, [kJ/kg K]
Figure 3 - T-s-diagram showing the transcritical CO2 cycle used for water heating. Studies on CO2 heat pump water heaters were initiated at SINTEF/NTNU from the late eighties, and a full-scale lab.prototype system of 50 kW heating capacity was completed in 1996, Figure 4. Results from extensive measurements on this prototype showed that a COP above 4 was achievable even for a hot water temperature of 60oC, Figure 5 (Neks?, Rekstad et al., 1998). The high process efficiency is partly due to good adaptation of the process to the application, but also due to efficient compression and the good heat transfer characteristics for CO2. A CO2 heat pump water heater may produce hot water with temperatures up to 90oC without operational 3
p= 2
1
0b ar
3
4.2

6 hp-COP, [-] (incl. motor) 5 4 3 2 1
Hot Water Temperature = 60 °C
0-25 -20 -15 -10 -5 0 5 10 Evaporating Temperature, [°C]
Figure 4 – 50 kW prototype haet pump water heater in SINTEF/NTNU laboratory
15
Figure 5 – Measured heating COP of lab.prototype system, at water inlet temp 10oC
problems and with only a small loss in efficiency. Increasing the required hot water temperature from 60oC to 80oC reduces the heating COP only slightly (from 4.3 to 3.6 at an evaporating temperature of 0oC), and one of the big advantages of this technology is the ability to supply water at high temperature with good COP. Important application areas for commercial-size systems are in hotels, apartment houses, hospitals, and food industries. The above heat pump water heater system was included in the European Union (EU) cooperative project “COHEPS” from 1996 to 1998, where research groups in Norway (SINTEF/NTNU), Germany (University of Hannover, Essen University) and Belgium (Catholic University of Leuven) together with their industrial partners studied various aspects of heat pumping applications for CO2, including commercial-scale heat pumps, residential heat pumps, systems for hydronic heating circuits, and drying heat pumps. A 25 kW pilot plant was installed in a food-processing factory in Larvik, Norway in 1999, using waste heat from an industrial NH3 refrigerating system as a heat source. Performance has exceeded the initial expectations, and the system has proven to be a very profitable investment for the company. A new pilot plant is now under erection in Oslo, Norway.
MOBILE AIR CONDITIONING Mobile air conditioning systems have been and still are a dominating source of refrigerant emissions to the atmosphere, and the growing production volume of HFC-134a for this purpose is raising concern. As a result, government bodies and environmental organizations are focusing on the need for reducing the emissions. A recent study made for the German environmental agency shows that a full replacement of HFC-134a by CO2 in mobile AC systems from 2007 would cut the greenhouse gas emissions of Germany by 1 million tonnes CO2-equivalents in 2010 and completely eliminate the emissions by 2021 (Schwartz, 2000), Figure 6. A comprehensive study using statistical data from German automobile workshops showed that the average annual emission rate from HFC-134a mobile AC systems was 10.2% (Schwartz, 2002). The EU-commission is now working on a legislation to phase out HFC-134a in mobile air conditioning systems. Current proposal is to have a 20% phase in of alternatives in 2008 and gradually increase to 100% in 2012 (Callaghan, 2003). 4

A presentation given by a group of 17 members from car manufactures and companies involved in manufacturing of MAC systems worldwide, considered CO2 systems as one of the most promising alternatives, and estimated that the remaining technical issues can be solved within 2 to 3 years (Mager, 2003)
Figure 6 – Equivalent emissions (in million tonnes CO2-equivalents) from mobile AC systems in Germany, using a Business-as-Usual scenario (BaU) and a reduction scenario with phasein of CO2-based AC systems from 2007. From (Scwartz, 2000). Lorentzen and Pettersen (1992) published the first experimental data on CO2 in a mobile air conditioning lab.prototype system, demonstrating COP data that were competitive to baseline CFC-12 system performance. Based on these positive test results, the automobile industry initiated several development projects and further studies on CO2 systems. The European RACE project from 1994 to 1997 (Gentner, 1998) included development and testing of car-installed prototype systems, with results confirming the potential for CO2-based car air conditioning. Members in the RACE project included car manufacturers (BMW, Daimler-Benz, Rover, Volvo, Volkswagen), system suppliers (Behr, Valeo), and a compressor manufacturer (Danfoss). City bus air conditioning systems with CO2 have also been developed, and the results from two years (1800 hours) of road testing are very positive. (K?hler, 1999). Over the last years, the German Motor Vehicle Industry Association (VDA) has coordinated development and testing of CO2 systems, and several car manufacturers have had test vehicles on the road since the late nineties. Presentations made by BMW, Audi and DaimlerChrysler at a recent industry meeting (Mager et al., 2002) showed the following consistent results from independent studies by the three companies: ? higher performance in cool-down mode for R-744 (CO2) than for R-134a ? lower compartment temperature and faster temperature pull-down with R-744 ? reduced fuel consumption for R-744 system The technology for CO2-based mobile air conditioning systems has reached a very advanced level after years of development. One example is a recent compressor model shown by Parsch (2002), where the potential for a compact design with CO2 has been exploited, Figure 7.
5

Figure 7- Mobile AC compressors with variable displacement. State-of-the-art R-134a design (left) and a recent designfor CO2 by LuK-Sanden (right). From Parsch (2002). HEAT PUMPS IN AUTOMOBILES Modern cars with fuel-injection engines often have insufficient waste heat for heating of the passenger compartment in the winter season. The long heating-up period and slow defroster action is unacceptable both in terms of safety and comfort. Supplementary heating is therefore necessary, and one attractive solution may be to operate the air conditioning system as a heat pump. Carbon dioxide systems have special benefits in heat pump mode, since high capacity and COP can be achieved also at low ambient temperature and with high air supply temperature to the passenger compartment. Hafner et al. (1998) proposed an advanced circuit for reversible cooling and heating, but work is also progressing on simplified system concepts for internal-combustion engine cars and electric/hybrid vehicles. The heat pump feature may turn out to be an important factor for the introduction of CO2 systems in motor vehicles. One of the key questions is the choice of heat source. The simplest solution is of course to use ambient air, but this may give problems related to frosting and defrosting. Other solutions being studied use engine coolant or exhaust as heat source. Hammer and Wertenbach (2000) showed test data for an Audi A4 car with 1.6 liter gasoline engine, comparing a standard heater and a CO2 heat pump system based on engine coolant as heat source. Figure 8 shows measured air temperatures at foot outlet nozzles and passenger compartment temperatures using standard heater core (“production”), and a heat
Figure 8 – Measured air temperatures in during start-up of an Audi A4 test vehicle (production) and same car with CO2 heat pump (“heatpump”). From Hammer and Wertenbach (2000).
6

pump system (without heater core). The more rapid heating up with heat pump is clear, with almost 50% reduction in the heating-up time from –20 to +20oC. Since the heat pump used engine coolant as heat source, the possible risk of extended heating-up time for the engine was of some concern. Measurements showed that owing to the added load on the engine by the heat pump compressor, the heating-up time was in fact slightly reduced even when heat was absorbed from the coolant circuit. Systems using air as heat source will be simpler and less costly, and there is quite some interest in clarifying the practical possibilities and limits of reversible air-to-air systems. Frost build up may in many situations be slow enough to allow heat pump operation until the heating system can take over, and solutions may be developed that control and delay frost build up. Figure 9 shows experimental data from a test on a “reversed” AC system operated as a heat pump, with interior/exterior air temperature 5oC (Hafner, 2000). As may be observed, the heat pump delivers an air temperature of more than 60oC, i.e. a temperature rise of almost 60 K.
100
Temperature [°C]
150 125
Pressure [bar]
100 75 50 25 0
10 400
-25
500 600 700 800 Specific enthalpy [kJ/kg]
900
3.25
3.5 3.75 4 4.25 Specific Entropy [kJ/kg*K]
Figure 9 - Process data for air-to-air mobile heat pump operated at +5oC interior and exterior temperature, using components designed for AC operation. From Hafner (2000) COMMERCIAL REFRIGERATION Commercial refrigeration systems for shops, supermarkets, larger kitchens etc. have large refrigerant emissions, and the energy use is in many cases high. Thus, there is a need for efficient, safe and environmentally friendly refrigeration systems. New concepts based on CO2 have been demonstrated for centralized systems using CO2 as a secondary heat transfer fluid or in a low-temperature cascade stage, and recently decentralized concepts with heat recovery have been shown. Some of these developments are outlined in the following text. Eggen and Aflekt (1998) reviewed the possibilities for CO2: i) as secondary refrigerant, ii) as a primary refrigerant in a low temperature stage in a cascade system, and iii) in all-CO2 centralised systems. They also presented a prototype CO2/NH3 cascade system built in Norway. Several secondary fluid systems are already operating in the Nordic countries using CO2 as a volatile secondary refrigerant. The safety aspects and good thermophysical properties of CO2, leading to small pipe dimensions and good heat transfer, make it a preferable fluid in indirect systems. Further advantages of cascade systems include the greatly reduced low-temperature compressor sizes, the absence of a liquid pump, and fewer stages of heat transfer. With heat recovery, centralized all-CO2 systems may also have an interesting potential The decentralized supermarket system described by Neks?, Girotto et al. (1998) uses CO2 as the only refrigerant in a system with heat recovery. Self-contained display cabinets each 7

Heat recovery water
HX2
HX1
HX3
Waste heat rejection system Heat recovery for space
HX4
CO2 refrigeration Auxiliary Cooler
Freezer
Figure 10 - Distributed CO2 supermarket refrigeration system with central heat recovery
with CO2 refrigeration units are connected to a hydronic heat recovery circuit that heats service water and buildings, Figure 10. By utilizing the transcritical CO2 process, it is possible to have a large temperature glide in the hydronic circuit, typically 50-60 K, and a correspondingly low volume flow rate and small pipe dimensions. Waste heat with high temperature (70-75oC) is available for tap water and/or space heating. Excess heat is rejected to the ambient air by direct heat exchange. The system offers a very easy installation and gives the owner of the store a great flexibility in arranging and rearranging the cabinets. System simulations for a medium size supermarket have been carried out. Optimum hydronic supply and return temperatures to the cooling and freezing cabinets were identified. A comparison of the CO2 system and a conventional R-22 system with respect to the overall energy consumption of the supermarket for one year of operation in a southern European climate was carried out. The CO2 system was found to reduce the energy consumption by 32% compared to the R-22 system. Each CO2 unit can also be equipped with a condensing unit in order to reject heat directly to the shopping area when space heating is required. In the warm season with a heat surplus, the waste heat recovery circuit remove the heat. This concept reduces the power demand for the refrigeration units to the same level as for the baseline R-22 system, and the resulting overall energy consumption of the supermarket will then be further reduced. The company Costan has now installed CO2 systems in supermarkets in Italy and other European countries for field-testing.
8

HEAT PUMPS FOR SPACE HEATING The market for CO2 heat pumps would of course be extended significantly if the demand for space heating could be covered efficiently in addition to the demand for water heating. Schiefloe and Neks? (1999) investigated a system design as shown in Figure 11. In order to achieve a lowest possible return temperature from the heating system, radiator and air heating are connected in series. Tap water is pre-heated in parallel with the space heating and heat exchange against hot discharge gas is used to achieve the required hot water temperature. In order to simplify the system design, the tap water heating part could also be implemented as a separate system or covered when space heating is not required.
CO2 Heat Pump System
Water Heater HX
Gas Cooler
Temperature
Evaporator
Auxiliary System
Radiator
Coo
Throttling
D on buti i st r i
ter
ling
CompressioHeatin n
g
Evaporation
Wa
Air heater
Entropy, s
Space Heating
Figure 11 System design for a combined space and water heating system. The process is also illustrated in the T-s diagram. A comparison to using R-134a as working fluid showed favourable seasonal performance for CO2 when more than 30% of the power demand for space heating was covered by the air heating system. The rest is then covered by the radiator system. A 70/50oC radiator system and heat recovery efficiency of the balanced ventilation system of 60% was assumed. In larger buildings in Norway typically more than 50% of the heating demand is air heating and this percentage is increasing due to better insulation and increased air quality requirements. This indicates that CO2 may be a promising candidate for this application. (Rieberer and Halozan 1998) and (Rieberer, Kasper et al. 1997) made detailed theoretical studies of controlled ventilation air heating systems with an integrated CO2 heat pump. The results look very promising. The overall system seasonal performance factor for a Graz, Austria climate was calculated to be in the range 6.15 to 6.5. This corresponds to a seasonal performance factor of the heat pump of above 4 (author's remark).
Hot Water Storage Tank
9

HEAT PUMP DRYERS Another interesting application is heat pump dryers. Based on theoretical considerations, Steimle (1997) reported that energy saving is possible due to better temperature adaptation in the heat exchangers, compared to subcritical processes. It is also possible to achieve higher air temperatures without loss in efficiency, thus increasing the moisture extraction rate. Experimental results from Schmidt, Kl?cker et al. (1999) reports hp-COPs in the range 5.5 and 55% reduction in the energy consumption, including fan power, compared to a traditional electrically heated clothes dryer. The results were achieved after a first optimising of the prototype system and it is hoped that further essential improvements still can be reached. COMPRESSORS The company Dorin, Italy, developed the first high-pressure semi-hermetic CO2 compressor series in the range of 1.7-10.7 m3/h swept volume. The series comprises singleand two-stage compressors with two cylinders, running at nominal speeds of 1450 and 2900 rpm (50Hz). This corresponds to cooling capacities in the range of 3-25 kW at –10oC evaporating temperature. A description and analysis of the pre-series one- and two-stage compressors can be found in (Neks?, Dorin et al 1999 and 2000). Figure 12 shows a picture of the compressor, and measured overall isentropic and volumetric efficiency figures for medium sized compressors at the current stage of development.
1.0
λ,
λ ηis tot
0.8
λ2-stage ηis tot 2-stage
ηis 0.6
0.4 0.2 0.0 1 2 3
80 95 110 4 5 6 p2/p1 7 8 9 10
Figure 12 – Compressor design and measured volumetric and isentropic efficiency for a single-stage and a two-stage pre-series CO2 compressor with a swept volume of 2.7m3/h, as function of the pressure ratio, for high-pressures of 80, 95 and 110 bar. A constant suction gas superheat of 10oC was applied. For the two-stage compressor the intermediate pressure gas was cooled to 20oC. The single-stage machine reaches quite high efficiencies, especially at lower pressure ratios, representative for medium temperature refrigeration and upward. Two-stage figures are representative for the compressor operating in a system without throttling to medium pressure, indicating how it would perform in a single stage process compared to the single stage compressor. As the efficiency figures indicate, two-stage compression will give an advantage regarding energy efficiency in low temperature applications, typically for pressure ratios in the range of 6 to 9 when using CO2. The German company Bock developed a high-pressure, open-type compressor for transport applications. This development is described by Kaiser (1996). A semi-hermetic version of this compressor was introduced in 2002. By introducing an expander, the thermodynamic losses in the CO2 cycle can be greatly reduced. Several European groups are working on expander concepts for CO2 systems, 10

including the free-piston expander by Heyl (1999) and the axial-piston machine by Heidelck (2001).
HEAT EXCHANGERS AND HEAT TRANSFER
Owing to the high operating pressure, CO2 heat exchangers generally use small-diameter tubing. Studies on compact heat exchangers for mobile and unitary applications have demonstrated the potential for compact and lightweight designs with high performance, especially when using extruded microchannel tubing, Figure 13 (Pettersen et al., 1998).
Manifold Heat transfer tube
Fin
Figure 13 - Principles of CO2 heat exchanger geometry using “multi-port” extruded tubes with microchannels, folded fins, and a compact “double barrel” manifold. The heat exchanger is assembled by brazing in a furnace. From Pettersen et al., (1998).
Extensive studies have been conducted on heat transfer and pressure drop in microchannels, both covering supercritical-pressure cooled flow (Pettersen et al., 2000), and flow vaporization (Pettersen, 2002). Supercritical-pressure microchannel heat transfer is correlated well with well-known single-phase correlations, while flow vaporization is greatly influenced by nucleate boiling, dryout and post-dryout heat transfer and thus need more advanced correlations. Heat exchangers for heat pump water heaters have been built using double-tube concepts, thus creating the counter-current flow conditions required for large temperature glide.
CONCLUSION
The revival of CO2 as a refrigerant started in Europe more than 10 years ago, and there has been a strong development of new technology using this refrigerant in several application areas since then. Developments which initially were driven primarily by environmental concerns has in many cases given many additional advantages by using CO2 such as higher COP, higher cooling and heating capacity, better comfort, and added possibilities of heat recovery. With increasing focus on climate gas emission reductions, strict regulations on the use of HFC chemicals may be expected, possibly followed by phase-out targets and dates as announced recently by Denmark and Austria. These trends will clearly drive the interest in the direction of natural refrigerants in general and CO2 in particular.
11

REFERENCES
Callaghan, P. and Vainio, M., 2003, EC poised for action on HFC134a in MACs: Results of MAC Summit 2003, Earth Technology Forum, Motor Vehicle A/C Regulatory Innovations, Washington, April 23 Eggen, G. and Aflekt, K., 1998 Commercial Refirgeration with Ammonia and CO2 as Working Fluids, Natural Working Fluids '98, IIR - Gustav Lorentzen Conference, Oslo, Norway, IIR, June 2-5. Gentner H., 1998, Passenger car air conditioning using carbon dioxide as refrigerant. Proc. Natural Working Fluids’98, IIR-Gustav Lorentzen Conference, Oslo, Norway, June. Hafner A. Pettersen J. Skaugen G. Neks? P., 1998. An Automobile HVAC System with CO2 as the Refrigerant. IIR – Gustav Lorentzen Conference Natural Working Fluids’98. Oslo, Norway, June 2-5. Hafner, A., 2000, Experimental Study on Heat Pump Operation of Prototype CO2 Mobile Air Conditioning System, 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Purdue, USA, July 25-28. Hammer, H., and Wertenbach, J., 2000. Carbon dioxide (R-744) as supplementary heating device. 2000 SAE Automotive Alternate Refrigerants Systems Symposium, July 11-13, Scottsdale, Arizona. Heidelck, R., 2001, Expansionsmaschinen auf der basis modifizierter Hubkolbenmaschinen, Ki Luftund K?ltetechnik, Vol 37, No 3, pp. 114-117. Heyl, P., 1999, Untersuchungen transkritischer CO2-Prozesse mit arbeitsleistender Entspannung Proze?berechnungen, Auslegung und Test einer Expansions-Kompressions-Maschine. Dissertation, Institute of Refrigeration and Cryogenics, TU Dresden Kaiser, H., 1996, Verdichter fur naturliche Kaltemittel in Nutzfahrzeugen und Omnibussen, Ki Luftund Kaltetechnik, No 8 K?hler, J., 1999. Update – Second year of CO2 air conditioning operation on German city bus. SAE Automotive Alternate Refrigerants Symposium, June 28 – July 1, Scottsdale, Arizona Lorentzen, G., and Pettersen J. 1992. New Possibilities for Non-CFC Refrigeration. Proceedings from International Symposium on Refrigeration, Energy and Environment, Trondheim, pp. 147-163, June Mager, R., Hammer, H., Wertenbach, J., 2002, Comparative Study on AC and HP-systems using the Refrigerants R-134a and R-744, VDA Alternate Refrigerant Wintermeeting, Saalfelden, Austria, January 30-31. Mager, R et al, 2003, New Technology: CO2 (R-744) as an Alternative Refrigerant, MAC Summit 2003, Brussels, 10/11 02. 2003 Neks?, P., Girotto, S. and Schiefloe, P. A., 1998, Commercial Refrigeration Using CO2 as Refrigerant - System Design and Experimental Results. Natural Working Fluids '98, IIR - Gustav Lorentzen Conference, Oslo, Norway, IIR, June 2-5. Neks?, P., Rekstad, H., Zakeri, G. R. and Schiefloe, P. A., 1998, CO2-Heat Pump Water Heater: Characteristics, System Design and Experimental Results. Int. Journal of Refrigeration 21: 172-179 Neks?, P., Dorin, F., Rekstad, H., Bredesen, A.M., Serbisse, A. (1999) Development of SemiHermetic CO2-Compressors, 20th International Congress of Refrigeration, IIR/IIF, Sydney Neks?, P., Dorin, F., Rekstad, H. and Bredesen, A.M., 2000, Development of two-stage semi-hermetic CO2-compressors, 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Purdue, USA, July 25-28 Parsch, W., 2002, Status of Compressor Development for R-744 Systems, VDA Alternate Refrigerant Wintermeeting, Saalfelden, Austria, January 30-31 Pettersen, J., Hafner, A., Skaugen, G. and Rekstad, H, 1998, Development of Compact Heat Exchangers for CO2 Air Conditioning Systems, International Journal of Refrigeration, Vol 21, No 3, pp. 180-193 Pettersen, J., 1999. Comparison of explosion energies in residential air-conditioning systems based on HCFC-22 and CO2. 20th International Congress of Refrigeration (IIR), Sydney, Australia, September 19-24 Pettersen, J., Rieberer, R., Munkejord, S.T. 2000. Heat Transfer and Pressure Drop for flow of Supercritical and Subcritical CO2 in Microchannel Tubes. Final Technical Report. US Army, European Research Office, Contract N-68171-99-M-5674. Report issued by SINTEF Energy Research and Norwegian University of Science and Technology, February.
12

Pettersen, J., 2002, Flow Vaporization in Microchannel Tubes, Dr.techn. thesis, Faculty of Engineering Science and Technology, NTNU, February. Schwatrz, 2001, Forecasting R-134a emissions from car air conditioning systems until 2020 in Germany, translation of lecture at DKV Deutsche Kaelte-Klima-Tagung, Bremen, 22.-24. November, http://www.oekorecherche.de/english/ac-2000.html Schwartz, W, 2002, R-134a Emissions from Passenger Car Air Conditioning Systems, VDA Alternate Refrigerant Wintermeeting, Saalfelden, Austria, January 30-31. Schmidt, E. L., Kl?cker, K. and Flacke, N., 1999, Heat Pumps for Dehumidification and Drying Processes in Residential and Commercial Applications. - Hot Air Drying Heat Pump using a Transcritical CO2 Process - CO2 Technology in Refrigeration, Heat Pump and Air Conditioning Systems, Mainz, Germany. Steimle, F. (1997), CO2-Drying Heat Pumps. CO2 Technology in Refrigeration, Heat Pump & Air Conditioning Systems, Trondheim, Norway, IEA Heat Pump Program, May 13-14.
13

CO2制冷机

CO2制冷装置CDPL500-SIE-29-Y 工作原理 一:工作原理 二:操作流程: 三:仪表的操作: 四:冷干机的操作: 五:几种常见报警及消除:

CO2制冷装置 CDPL500-SIE-29-Y 工作原理 (一):工作原理 干燥清洁的二氧化碳气体在进入二氧化碳液化器进行液化,液化器是一个列管式换热器,制冷剂在管中流动,不断蒸发汽化吸收热量,二氧化碳气体被冷却到-20~-25℃(温度随压力的变化而变化)左右并被液化,在此温度下不能液化的气体(称为不凝性气体,主要成份是氧气和氮气)积聚在液化器的顶部被排放出液化器。制冷剂可在一定温度及压力下被冷却循环水冷凝成液体,使制冷剂具有制冷能力,吸收的热量被冷却水带走。液化的二氧化碳液体自流被送入储液罐储存。 储存液体时或生产用气时压力超过一定值时(1.93Mpa),冷冻机组自动开启(制冷机组满负荷运行)进行降温降压,将气体液化,避免安全阀起跳损耗气体。当制冷机组压力下降至一定值时(1.83Mpa),液化器冷冻机组自动停止工作;当二氧化碳来气量减少时,二氧化碳回路压力会降低,此时螺杆制冷压缩机会进行卸载。制冷机组工作时压力超过2MPa,建议关闭手动控制气体压缩机,如压力仍维持2Mpa,建议用户关闭制冷机组,检测发酵罐来气中二氧化碳浓度。 制冷压缩机的卸载范围: 1:二氧化碳回路压力>1.8 Mpa:制冷机组满负荷加经济器运行

2:二氧化碳回路压力>1.8Mpa ,<1.7 Mpa :制冷机组满负荷运行 3:二氧化碳回路压力<1.7 Mpa :制冷机组75%负荷运行 2:二氧化碳回路压力<1.6 Mpa :制冷机组停止运行,等待气体压缩机给二氧化碳回路升压。 (二): 操作流程: (1)自动运行:(系统正常运行) 按下启动按钮,这时候制冷压缩机进入运行准备状态,启动 按钮灯亮。当系统压力大于18KG,制冷压缩机就可以运行,低于16KG 自动停止,然后当系统压力再次大于18KG 后会自动再运行,除非按下停止按钮,机器才会停止运行,同时停止按钮灯亮。如果运行中发现有报警发生,机器也会停止运行,人为的消除报警后再次按下启动按钮才能让机器运行。 (2)降压操作:(系统长时间停机可能会导致压力超高系统长时间停机可能会导致压力超高系统长时间停机可能会导致压力超高)) 将允许降压打在开的位置,允许降压指示灯亮。系统系统长时间停机长时间停机可能会导致压力超高可能会导致压力超高。。当高过19.3KG 时,制冷压缩机强制投入运行,到压力低于18KG 停止。一般可以将允许降压打在开的位置。 (3)工作流程: 系统运行后3秒制冷压缩机启动,首先线圈1得电,500毫秒后线圈2得电。这时能调阀1和2都未得电,压缩机为50%功率运行,线圈1运行后1分钟能调阀2得电,为75%功率运行。再过1分钟能

暖通空调新技术大纲

河南工程学院 专科课程教学大纲 课程名称:暖通空调新技术 课程编码: 080367 适用专业:供热通风与空调工程技术学制:三年 所属系部:土木工程系 制订日期:二零零九年三月三十日

河南工程学院 专科《暖通空调新技术》课程教学大纲 课程中英文名称:暖通空调新技术 The New Technologies Of HVAC 课程编码:080367 课程性质:限选课 适用专业:供热通风与空调工程技术专业 学时数: 24 ;其中:讲课学时: 24 ;实验学时: 0 ;学分数: 2 ; 编写人:陈爱东;审定人:段焕林; 一、课程简介 (一)课程性质与任务 本课程是供热通风与空调工程技术专业学生了解本行业技术发展前沿的一门专业选修课,主要讲授暖通行业技术的最新发展情况,使学生了解置换通风、电锅炉、冰蓄冷、地源热泵技术、分户热计量、辐射采暖、CFD技术的应用、空调自控、节能及CO2热泵技术等暖通行业发展的新的研究课题及其应用现状,达到拓展学生知识面,开阔眼界、使学生树立对新事物不断探索的精神,养成终身学习的习惯。 (二)课程教学目的及要求 掌握置换通风的工作原理、系统的组成及与稀释性通风相比较的特点。掌握电锅炉的基本结构、工作原理、主要特点及性能优劣;了解电锅炉的现状和发展前景。掌握冰蓄冷系统工作原理、运行方式,了解冰蓄冷系统设计方法;低温空调系统组成和特点。掌握水源热泵工作原理、系统组成,了解其发展趋势及应用中存在问题;了解CFD技术的应用;了解CO2作为制冷剂的历史及其性质,CO2热泵系统的原理、优势、研究现状、发展前景;了解分户热计量现状、系统安装形式,了解热计量方式、热费的收取等。 (三)先修课程及后续课程 1、先修课程:《空调制冷技术》、《建筑给排水》、《空气调节》、《热源与供热工程》、《通风工程》 2、后续课程:《综合设计》、《毕业设计》 二、课程教学总体安排 (一)学时分配建议表

空调制冷技术结课论文

2013级暖通空调结课论文 暖通空调技术的发展 与建筑节能 学生姓名:李刚 学号:201305104101 指导教师:李琼 所在学院:建筑工程 专业:建筑环境与能源应用工程

呼和浩特市某办公建筑节能设计 摘要 随着现代人们的生活理念和方式的多样化细节化,对于建筑物内的环境要求也日益增加,舒适和高品质的居住环境成为人们追求的趋势,伴随着建筑能耗的总量呈逐年上升趋势,而暖通空调系统在建筑能耗中占有重要比重。本文通过分析暖通空调系统能耗的构成及主要特点,针对当前在节能方面面临的问题,对暖通空调控制系统设计进行了探讨,并提出解决途径与方法。 关键词:暖通空调,环保节能,解决方案 HVAC development and building energy saving Abstract: along with the modern concept of people's lives and the diversification of means of details, to the environment within a building requirements are also increasing, comfortable and high quality living environment become the trend, with the total building energy consumption is rising year by year, and HV AC system in building energy consumption occupies the important proportion, In this paper, through the analysis of HV AC system energy consumption composition and main characteristics, in view of the current in the energy saving problems, HV AC control system design is discussed, and puts forward the ways and methods. Keywords: HV AC, Environmental protection and energy saving, Solution 1 引言 随着生活水平的提高,空调系统的应用越来越普及,中央空调系统的能最消耗一般占整个建筑耗能的50%以上。但目前实际情况是,空调系统是按满足用户最大需求而设计,所有的空调系统长时间处在低负荷下运行。由于能源十分紧张,同时暖通空调的能耗在国

现代几种简单的制冷技术

目录 第一章制冷的热力学基础 (2) 第1节热力学第一定律 (2) 第2节热力学第二定律 (6) 第二章传统的制冷物质与制冷技术 (7) 第1节制冷剂的历史[4] (7) 第2节传统制冷技术的简单介绍 (7) 第三章半导体制冷 (10) 第1节半导体[4] (10) 第2节半导体制冷器 (11) 参考文献 (12) 致谢 (13)

第一章 制冷的热力学基础 第1节 热力学第一定律 1、热力学第一定律 自然界中的所有物质都有能量,能量不能被创造也不能被消灭,它只能进行能量之间的转换,从一种形态变成另一种形态,但是能量的总和不会改变,这就是能量守恒与转换定律,是自然界的基础规律之一,也是热力学第一定律的理论基础[2]。热力学第一定律就是能量守恒与转换在一个热力学系统中的应用。 热力学第一定律的解析式为: W U Q +?= (1.1.1) 式中Q 为系统中的热量,U ?表示热力学能的变化量,W 为与环境交换的功。式中热力学能变化量U ?、热量Q 、和功W 都是代数值,可正可负,系统吸热Q 值为正,放热Q 值为负;同理,系统对外做功W 为正,反之为负。系统的热力学能增大时,U ?为正。可以理解为在一个热力学系统内,热力学变化量U ?与对环境做的功的总和为系统中的总热量。这也说明了一个道理热力学第一定律是一个准静态过程,即在这个过程中的每一时刻,系统都处于平衡态。 说简单些,就是在一个系统中,热和功是可以相互转换的,消耗一定量的热即可产生一定量的功,同时,消耗一定量的功会产生一定量的热,但其二者之和是保持不变的一个固定值。 热力学的第一定律解析式的微分形式为 W dU Q δδ+= (1.1.2) 2、热力学第一定律对理想气体的应用[1] 下面我们来看看热力学第一定律在理想气体下的一些简单的能量转换。 (1)等体过程 等体过程即使在系统体积保持不变,外界做功为零,故此根据热力学第一定律的解析式可得出

热泵除湿干燥系统简介

热泵除湿干燥系统简介 设备工作原理 除湿回热循环是在热泵除湿干燥机内增加回热器,使进入蒸发器的空气温度下降而进去冷凝器的空气温度上升;回热循环使蒸发器冷量用于空气降温减少(无效耗冷过程),而用于降温除湿过程冷量增加,使热泵干燥的最佳蒸发温度及最佳除湿量上升;增加回热循环的热泵除湿干燥比普通热泵干燥节能30%以上。 技术特点 1、集除湿、加热、制冷、排湿、通风为一体智能化设备,为新型节能减排干燥设备; 2、采用双效、三效除湿专利技术的中间换热降温除湿及温度梯度利用技术、大大提高除湿性能比,节能效果明显; 3、突破传统除湿机及普通热泵除湿干燥机技术瓶颈:解决传统除湿设备在高温低湿条件下的除湿性能差甚至空转(压缩机运转不除水)技术难题; 4、创新的排湿功能设计:可利用干燥房电机余热排除干燥房湿度,可提高综合除湿性能比(SMER)为5以上;另排湿功能的设计可充分结合传统加热模式,满足

各种不同工艺要求; 5、采用先进的热泵热回收技术,温度范围广(18~85℃),产品系列齐全; 6、独特的排风热回收设计:减少排放损失,综合节能性更好; 7、先进的新风预除湿功能可保证进新风干燥,适合严格的干燥工艺; 8、自主研发热泵除湿干燥机PLC可编程控制系统,设置独特的温湿度曲线程序,可充分满足干燥工艺的要求,结合触摸屏人机界面,操作使用方便; 9、采用干湿球温度计算湿度系统,解决传统湿度传感器精度差易损坏的弊端,可满足干燥工艺中高温高湿等恶劣环境,控制精确,使用寿命长; 10、采用先进的制冷剂回热技术(通过省能器低压气体与高压液体进行热交换),使低压气体过热及制冷剂液体过冷,提高压缩机制冷效率,节约运行费用;11、采用先进的模块机组设计方案,可按要求切换机组的运行的模块数,避免大机组频繁启动/停机及节能的目的;

二氧化碳在冷库制冷系统的应用讲课稿

C O2在冷库制冷系统的应用 辽宁石油化工大学汤玉鹏一、C O2作为制冷剂的发展历史 在19世纪末至20世纪30年代前,C O2(R744),氨(R717),S O2(R764),氯甲烷(R40)等曾被广泛应用。 1850年,最初是由美国人A l e x a n d e r T w i n i n g提出在蒸汽压缩系统中采用C O2作为制冷剂,并获英国专利[1]。 1867年,T h a d d e u s S C L o w e首次成功使用C O2应用于商业机,获得了英国专利。于1869年制造了一台制冰机。 1882年,C a r l v o n L i n d e为德国埃森的F K r u p p公司设计和开发了采用C O2 作为工质的制冷机。 1884年,WR a y d t设计的C O2压缩制冰系统获得了英国15475号专利。澳大利亚的J Ha r r i s o n设计了一台用于制冷的C O2装置获得了英国1890号专利。 1886年,德国人F r a n z Wi n d h a u s e n设计的C O2压缩机获得了英国专利。英国的J&E Ha l公司收购了该专利,将其改进后于1890年开始投入生产。 19世纪90年代美国开始将C O2应用于制冷。 1897年K r o e s c h e l B r o s锅炉公司在芝加哥成立了分公司,生产C O2压缩机。 1919年前后,C O2制冷压缩机才被广泛应用在舒适性空调中。 1920年,在教堂的空调系统中得到应用。 1925年,干冰循环用于空气调节。 1927年,在办公室的空调系统中得到使用。 1930年,在住宅的空调系统中得到使用,后来又被用于各种商业建筑和公共设施的空调制冷系统。 C O2制冷曾经达到很辉煌的程度。据统计,1900年全世界范围内的356艘船舶中,37%用空气循环制冷机,37%用氨吸收式制冷机,25%使用C O2蒸气压缩式制冷机。发展到1930年,80%的船舶采用C O2制冷机,其余的20%则用氨制冷机。由于当时的技术水平比较差,C O2较低的临界温度(31.1℃)和较高的临界压力(7.37MP a),使得C O2系统的效率较低。加上其冷凝器的冷却介质多采用温度较低的地下水或海水,基本属于亚临界循环。当水温较高时(如热带海洋上行驶的轮船其冷却水的温度可接近30℃),其制冷效率会更加下降。所以C O2制冷技术并没有进一步开发运用于汽车空调、热泵等。

空调用制冷技术课程设计

目录 目录 (1) 设计任务书 (2) 设计说明书 (3) 一、制冷机组的类型及条件 (3) 二、热力计算 (6) 三、制冷压缩机型号及台数的确定 (7) 四、冷凝器的选择计算 (8) 五、蒸发器的选择计算 (12) 六、冷却水系统的选择 (14) 七、冷冻水系统的选择 (14) 八、管径的确定 (14) 九、其它辅助设备的选择计算 (15) 十、制冷机组与管道的保温 (17) 十一、设备清单 (18) 十二、参考文献 (18)

空调用制冷技术课程设计任务书 一、课程设计题目:本市某空调用制冷机房 二、原始数据 1.制冷系统采用空冷式直接制冷,空调制冷量定为100KW。 2.制冷剂为:氨(R717)。 3.冷却水进出口温度为:28℃/31℃。 4.大连市空调设计干球温度为28.4℃,湿球温度为25℃。 三、设计内容 1.确定设计方案根据制冷剂为:氨(R717)确定制冷系统型式。 2.根据冷冻水、冷却水的要求和条件,确定制冷工况并用压焓图来表示。 3.确定压缩机型号、台数、校核制冷量等参数。 4.根据蒸发温度、冷凝温度选择蒸发器(卧式壳管)冷凝器(水冷或空冷),并做其中一个设备(蒸发器或冷凝器)的传热计算。 5.确定辅助设备并选型 6.编写课程设计说明书。

空调用制冷技术课程设计说明书 一、制冷机组的类型及条件 1、初参数 1)、制冷系统主要提供空调用冷冻水,供水与回水温度为:7℃/12℃,空调制冷量定为100KW 。 2)、制冷剂为:氨(R717)。 3)、冷却水进出口温度为:28℃/31℃。 4)、大连市空调设计干球温度为28.4℃,湿球温度为25℃。 2、确定制冷剂种类和系统形式 根据设计的要求,本制冷系统为100KW 的氨制冷系统,一般用于小型冷库,该制冷机房应设单独机房且远离被制冷建筑物。因为制冷总负荷为100KW,所以可选双螺杆制冷压缩机来满足制冷量要求(空气调节用制冷技术第四版中国建筑工业出版社P48)。冷却水系统选用冷却塔使用循环水,冷凝器使用立式壳管式冷凝器,蒸发器使用强制循环对流直接蒸发式空气冷却器(即末端制冷设备)。 3、确定制冷系统设计工况 确定制冷系统的设计工况主要指确定蒸发温度、冷凝温度、压缩机吸气温度和过冷温度等工作参数。有关主要工作参数的确定参考《制冷工程设计手册》进行计算。 确定冷凝温度时,冷凝器冷却水进、出水温度应根据冷却水的使用情况来确定。 ①、 冷凝温度()的确定 从《制冷工程设计手册》中查到大连地区夏季室外平均每年不保证50h 的湿球温度(℃) C o s 25t 对于使用冷却水塔的循环水系统,冷却水进水温度按下式计算:

关于CO2制冷的说明

关于CO2制冷的说明 CO2制冷的优点: 1、CO2为自然工质 2、优良的经济性,无回收问题 3、良好的安全性,无毒,不燃 4、优良的传热和流动性。 CO2制冷现阶段的局限性: 1、管道材质:CO2常温下压力为75kgf ,采用R717和CO2复叠制冷,温度控制在-5℃ ~-10℃范围内,设计压力为52kgf ,运行压力在30kgf ,在此压力下,管道采用不锈钢 或16Mnr ,不锈钢焊口需经过处理,否则容易腐蚀,16Mnr 焊接后需经过热处理,在中 国现有条件下,现场没法进行处理,如果出现问题,危险性更大。此外,中国没有这方 面的规范和部门对此进行检验,检验标准生产厂家按自己厂家的标准执行。 2、CO2的水的影响:CO2系统中如果有水分,不但会造成冰堵,CO2和水反应生产碳酸, 对系统造成腐蚀。通常在系统中增加干燥过滤器,经常更换干燥过滤器,但在如此高的 压力下,更换过滤器,对设备管理人员提出了更高的要求。 3、CO2冲霜的问题:如果采用电融霜,运行费用非常高;采用水融霜,融霜时间长, 并且冷库地面会出现冻冰现象。通常采用工质融霜。CO2制冷压缩机组工作范围-5℃ ~-10℃,压缩机设计压力在35kgf ,而融霜温度在10℃左右,需增加进口压缩机进行 融霜,设计压力在50kgf~60kgf ,融霜压缩机组都是进口,如果出现故障,现场很难 处理,维修周期非常长。 4、辅助制冷系统:由于CO2 常温下压力过高,系统停止运行时,需开启辅助制冷系

统保持系统压力升高,辅助制冷系统需配置专用发电机组,并且都要有备用,时刻保证辅助制冷系统和专用发电机组都在良好的工作状态,平时不使用,一旦制冷系统停止运行,必须保证辅助制冷系统可靠运行,辅助制冷压缩机采用进口,维修麻烦。 5、操作维护:CO2制冷系统同R22制冷系统一样,系统很难回油,完全靠人工操作进行系统回油,在如此高的压力和复杂的系统下,对设备操作人员技术水平提出非常高的要求。该系统有制冷压缩机组、融霜压缩机组和辅助制冷系统,各压缩机组都不能出现故障,对设备维护人员要求很高的技术水平。系统压力非常高,运行补充CO2和冷冻油,更换阀门、安全阀等,都要求有非常专业的设备维护人员。 6、CO2的危险性:直接存在于人类的呼吸过程中,3% (30,000ppm) 导致呼吸加重 (+100%),5% (50,000ppm)导致麻醉,10% (100,000ppm) 导致昏迷,> 30% 立即导致由于浓度过高而引起的死亡!大气中CO2和O2的浓度比为1:700。O2浓度下降1-5%不会引起致命的危害。CO2浓度上升1-5%是致命的,需要设置类似于NH3那样明显的警示标志以便使现场受过训练的工作人员能够随时意识到可能存在的安全性问题。 综上所述,在中国现有的国情下,无论从技术上、工艺上、还是用户的操作维护上,都不适合作为商业推广,只能作为实验项目使用,只有各方面都进一步发展,才适合推广。蒙牛、伊利公司都研究过CO2制冷,伊利公司还到CO2制冷现场参观过,但现在都没采用,就是CO2制冷现在还不可靠,风险性比较大。此次羊屠宰项目采用CO2 制冷,系统也需要氨液(可能2吨左右),采用氨制冷,系统充氨量才9吨左右,没超过十吨(超过十吨为重大危险源),采用CO2制冷没什么意义。

太阳能与热泵节能干燥技术

GM产业与布场 一.太阳能千燥 太阳能是清洁、廉价的可再生能源,取之不尽用之不竭。每年到达地球表面的太阳能辐射能约为目前全世界所消耗的各种能量的1万倍。我国有较丰富的太阳能资源,约有2/3的国土年辐射时间超过2200h,年辐射总量超过5000MJ/m2。 1.太阳能干燥室的类型 太阳能干燥室一般可分为温室型和集热器型两大类,实际应用中还有两者结合的半温室型或整体式太阳能干燥室。 (1)温室型太阳能干燥室温室型太阳能干燥室如图1所示。这是一种具有排湿口的温室。这种干燥室的东、西、南墙及倾斜屋顶均采用玻璃或塑料薄膜等透光材料,太阳能透过玻璃进入干燥室后,辐射能转换为热能,其转换效率取决于木材表面及墙体材料的吸收特性。一般将墙体(或吸热板)表面涂上黑色涂料以提高对太阳能的吸收率。温室型干燥室一般为自然通风,如有条件也可以装风机实行强制通风,以加快木材的干燥速度。图1所示为自然通风,但在干燥室顶部加了一段烟囱,以增强通风能力,且烟囱越高,通风能力越强。 温室型干燥室的优点是:造价低;建造容易;操作简单;干燥成本低。它的缺点是:保温性能不好,昼夜温差大;干燥室容量少。 舒番专豸c 阳能与热泵节能燥技术 玻璃 北京林业大学张璧光 图l温室型太阳能干燥室外观 材堆 (2)集热器型太阳能干燥室这类干燥室是利用太阳能空气集热器把空气加热到预定温度后,通入干燥室进行干燥作业的。从操作系统来看,此类型太阳能干燥室可以比较好地与常规能源干燥装置相结合,用太阳能全部或部分地代替常规能源。且集热器布置灵活,干燥室容量较大。但集热器型比温室型投资大,干燥成本高一些。图2、3分别为集热器型干燥室原理图和实物照片。集热器型干燥室都采取了强制通风,除集热器系统有风机外,干燥室内设有循环风机。 集热器放置的倾角(包括温室型南面的倾角)与所处的纬度有关,冬季最大日射量收集角之倾角为纬度加10。,夏季减10。。如北京地区为北纬40。,可取集热器安装角为45。,以适当照顾冬季太阳能的收集。一般情况下集热器倾 角可取当地的纬度。根据干燥室湿度的大小和干燥工艺的要

R717-R744复叠式制冷系统的热力学分析

R744-R717复叠式制冷系统的热力学分析 摘要:本文对R744-R717复叠式制冷系统的热力学特性进行了分析,目的是优化该系统的设计和工艺参数。本文中考虑的设计和工艺参数包括(1)高温氨循环中的冷凝温度、过冷度、蒸发温度和过热度;(2)复叠式换热器中的换热温差;(3)低温二氧化碳循环中的蒸发温度、过热度、冷凝温度和过冷度。基于过冷度、过热度、蒸发温度、冷凝温度和复叠式换热器中的温差建立了多线性的数学表达式,旨在得到最大的COP值,同时,得到了最优化的高温循环蒸发温度和R717与R744的质量流量的比率。 关键词:制冷系统;压缩系统;复叠式系统;氨;二氧化碳;R744;计算;性能;优化1.引言 两级式复叠式制冷系统(见图1)适合于工业应用,尤其适合于食物冷冻间蒸发温度在-30℃—-50℃的超市制冷工业。在此系统中,两个单独的制冷系统由复叠式冷凝器连接在一起。复叠式制冷系统的高温级制冷剂可以由氨(R717)、丙烷(R290)、丙烯(R1270)、乙醇或者R404A来充当。相反,二氧化碳被用于低温级循环。氨是一种易得的自然工质,但是由于其可燃性和毒性,限制了它的应用。丙烷、丙烯和乙醇的缺点是他们具有高度的可燃性。乙醇的蒸发和冷凝压力均低于环境压力,这会导致气体泄露进系统内部。然而,毒性和可燃性所带来的风险可以通过选取合适的用于超市和厂区的高温循环温度将这些风险降到最低。二氧化碳的缺点是当临界温度在31℃时,它的压力就高达7.4MPa,这为管道的设计带来了难度。因此,将二氧化碳用于低温级循环是经济可行的。 传统的直接膨胀低温制冷系统在冷凝器和蒸发器之间存在大的压差,这直接导致压缩机的压缩效率和容积效率的下降。另外,全球变暖所带来的一系列问题促使超市所有者必须采取环保的,能提供更低温度的制冷系统。因此,自然工质在超市制冷工业中的应用引起了大家的注意,尤其是以二氧化碳为低温级循环制冷剂的复叠式制冷系统最为被大家看好。例如,新西兰的奥克兰市将二氧化碳-丙烯复叠式制冷系统用于低温储存食品,虽然复叠式式制冷系统的最初安装费用要比传统R404A的单循环制冷系统高10%,但是这与复叠式系统运行中所带来的经济效益和环境效益相比是微不足道的。很重要的一点是,复叠式制冷系统能够大幅度的降低高温循环段的压缩机排气温度,因而可以增加热效率。同时,如果换热器的尺寸

制冷空调节能新技术探讨

制冷空调节能新技术探讨 【摘要】 随着人们生活水平的提高,家用电器的已成为人们的生活必需品,冰箱、彩电、空调的使用逐渐普及。而这些电器当中我们看到由于电子控制技术的发展,使得一些新技术在这些电器上应用日益广泛,就拿空调为例,从节能上考虑,空调变频技术的应用、太阳能技术及蓄能技术的出现,使得空调的更新速度也在加快,对这些新技术进行了研究探讨。 【关键词】 空调节能;新技术;变频 我们知道由于全球经济的发展造成自然资源和能源的日益减少,出现资源和能源供应紧张现象,象一些地方出现的水荒、电紧张等现象足以说明现地球的资源已非常宝贵,已经到了人们想方设法节约资源,维护生态平衡的时候了。空调作为一种日常必备的家用电器,随着时代的发展,人们对空调的质量提出了更高的要求,节能降耗成为了其中的很重要的一项,空调变频技术和太阳能技术的应用,虽然使空调的发展上了一个新台阶,但是,我们还应该去对空调的节能技术进行可持续的研究。 一、变频技术的发展

随着空调技术的发展,变频技术在空调压缩机内的使用是重要的节能方法之一。传统空调主要是以停止压缩机工作来实现对室内温度的调节,这就需要额外的能量来支持压缩机由静止到转动所需要的动能,而且频繁开关压缩机会造成压缩机内部件的磨损。与传统空调进行比较,变频技术在压缩机内的使用使得压缩机的转速可以由变频器来进行调节,可以根据室内温度随时对制冷剂的流量进行调节,改变制冷剂或制热剂的供给。一般情况下,空调以较大的制冷或制热功率迅速对温度调节至设置的温度,然后对压缩机进行变频,调节至低能耗、低转速运行状态,保证室内温度在较小的范围内波动,这样使得室内的舒适度提高,也节省了频繁开关机耗费的能量,节能效果提高了百分之二十。变频技术主要在于其控制方面,主要的技术实现包括以下几个方面:(一)全数字直流变频该变频技术主要是把交流电首先转换为直流电,然后根据室内的温度进行变频调节,全数字直流变频主要采用脉冲幅度调制和脉冲宽度调制数字符合 变频的控制。 (二)超宽变频主要是利用微电脑控制技术,对环境温度快速的进行测量然后做出判断,实现恒定温度的维持,达到节能的效果。 (三)模糊控制技术该技术是在模糊控制技术的基础上,对室内人群活动的情况及室内温度的变化进行感知,以此作

氨双级与二氧化碳压缩制冷系统

氨双级与二氧化碳压缩制冷系统 NH3双级+CO2压缩制冷系统中CO2是作为载冷剂向设计冷库、食品冷冻等人工环境输送冷量。与CO2/NH3复叠式不同,NH3双级+CO2系统在CO2循环过程中无压缩机,CO2工质只是作为载冷剂在内部流动,由CO2循环水泵或者自然循环提供动力即可。 CO2载冷剂在循环中进行相变换热,与一般的载冷剂相比可以大大减少流量,并且在低温下仍然具有较大传热系数和较小的运动黏度。该制冷系统相比于普通的NH3双级压缩制冷系统可以大大减少NH3的充注量,并且用CO2代替NH3向外界供冷,使得氨制冷系统可以远离公共场所和人群密集的区域。 NH3双级+CO2制冷系统热力循环过程即由一个NH3双级制冷循环和一个CO2载冷剂的循环组成,NH3双级+CO2制冷系统一次节流中间完全冷却的两级压缩制冷循环压焓图,内部制冷工质为NHCO2/NH3复叠式系统与NH3双级+CO2系统在原理上有着根本不同,CO2/NH3复叠式系统的为两个不同工质的制冷循环,即使蒸发冷凝器中的热量传递无任何外界损耗,两种工质仍然存在6℃左右的换热温差,这使得该系统的COP偏小;NH 3双级+CO2系统的制冷工质为氣,在一个大气压下其蒸发温度为239.56K(-33.59C),若要获得更低的蒸发温度,则蒸发器内形成负压,容易造成空气渗入使制冷剂变质的现象,这就限制了该系统的最低蒸发温度;NH3双级+CO2系统的蒸发冷凝器存在6℃左右的换热温差,在相同的供冷温度下,会要求比CO2/NH3复叠式系统更低的蒸发温度,使得系统COP的下降。 上海冰函制冷科技有限公司(简称冰函制冷)位于中国第一大城市上海,集中美德技术为一体的合资企业。德国工业化进程已日趋完善,工业4.0也已经进入中德合作新时代,冰函制冷拥有国际上最先进的低温传热科研技术和德国工业的实践印证。冰函制冷将会以优秀的研发团队、完善的管理团队和无微不至的售后服务体系为中国工业4.0做出贡献。冰函制冷研发中心依托于德国工程院和德国马普研究院,联合研发了适合中国现阶段工业发展的低温传热介质(简称冰函载冷剂),现有产品30余种,可满足-150-350C的工况使用,产品无任何腐蚀,低温粘度小、高温性能稳定、比热大、安全环保,适用于医药、化工、食品等工业生产和冷库间接制冷等工艺的载冷需求。

热泵干燥装置的基础知识与设计

干燥的目的是除去某些原料、半成品中的水分或溶剂,以便于物料的包装、运输、贮藏、加工和使用。工程上将物料中水分除去的方法包括机械法(离心、压榨等)、加热方法、化学吸附方法等。干燥一般是指利用加热方法除去物料中水分的过程(热传导、热对流和热辐射三种)。常规干燥装置通常直接用电加热或燃料燃烧来获得干燥所需的热能,能耗大,污染大。而热泵是一种高效制热装置(产出的热能>消耗的能量)。 干燥是工农业生产中广泛使用且耗能巨大的加工工艺,世界各国都在对干燥工艺的节能技术进行大量的研究。作为一种新型技术的热泵干燥系统,由于其较常规气流干燥在能源消耗和干燥成本方面具有明显的优势,因而逐渐成为人们研究的热点。热泵实质上是一种热量提升装置,其作用是从周围环境中吸取热量并把它传递给温度更高的被加热对象(原理与制冷机相同,都按照逆卡诺循环原理来工作,区别在于工作温度范围不一样)。 热泵干燥系统是一种不采用电加热丝加热或其它热源辐射加热的除湿干燥设备,因而其具有节能、低温、安全、环保等优点。目前所开发的热泵干燥系统按照热泵特性划分,主要有如下几类: 1.蒸气压缩式热泵干燥系统,由压缩机、冷凝器、节流部件和蒸发器构成封闭系统。蒸气压缩式热泵也称为机械压缩式热泵,该类热泵用电机、内燃机、燃气轮机、蒸汽轮机等驱动压缩机,使热泵工质在热泵中循环流动,实现高效制热,是应用最广泛的热泵装置。 2.吸收式热泵干燥系统,由发生器、吸收器、冷凝器、蒸发器、节流

阀、溶液泵、溶液阀、溶液交换器组成封闭回路。吸收式热泵以热能为驱动能源,使发生器中的工质对(工质+吸收剂)溶液沸腾,产生工质蒸汽,并在热泵中循环流动,实现热泵的制热功能,也是目前应用较多的热泵装置。 3.化学热泵干燥系统(如吸附式热泵干燥系统等)以热能为驱动能源,可以利用低品位的工业余热、太阳能热源等,因此具有节能、清洁的优点。然而此类热泵的单位制冷、制热量较低,且总体除湿率偏低。 4.其它热泵干燥系统(蒸汽喷射式等),因能源效率或者技术问题应用不如前三种广泛。 此处仅对应用最广泛的蒸气压缩式热泵干燥系统详加介绍,有工作原理、设计步骤等相关知识。 蒸气压缩式热泵由压缩机、冷凝器、节流部件和蒸发器构成封闭系统,系统中冲入一定量的热泵工质。热泵工质在蒸发器中为低压低温状态,可吸收低温热源的热能,发生液-气相变(蒸发),变为低压蒸汽进入压缩机并被压缩机升压后进入冷凝器,高压高温的工质蒸汽在冷凝器中放热给热用户,工质变为高压液体进入节流阀,经节流阀节流后变为低压低温的饱和气和饱和液的混合物进入蒸发器,开始下一个循环,如此不断循环。 由于热泵工作时不可避免地存在各种损失,因此实际循环特性与卡诺循环有较大的偏离。在热泵循环的分析和计算中,采用较多的是对实际循环作适当简化,分析处理也较方便、与实际循环较接近,且能代表实际循环本质特性的理论循环。当冷凝器和蒸发器中与热泵

关于制冷空调节能技术的思考

关于制冷空调节能技术的思考 随着人们生活水平的提高以及能源紧缺现状的进一步加剧,我们必须加大技术研发来实现制冷空调节能技术的不断进步。作者在此先简述我国制冷空调行业的发展现状,继而对制冷空调节能技术的主要几种进行全面、细致的分析,希望能够促进我国制冷空调节能技术的不断发展,在减少能耗的同时,给人们的工作、生活带来更多的便利。 标签:制冷空调;发展现状;节能技术 前言 随着空调制冷技术的不断发展,在积累了大量技术和经验的同时,空调制冷节能技术也在不断的进步,特别是在当前能源日益紧缺的环境下,我国空调制造企业正面临着发展的分叉口,如果不能充分发展制冷空调节能技术,那么空调制造企业必然要面对发展的严冬。作为一种高能耗设备,制冷空调如果能够充分应用节能技术,那么不仅可以减少能源的消耗,还能够提高企业的市场竞争力,因此,发展制冷空调节能技术迫在眉睫。 1 制冷空调行业的发展现状 我国的在制冷空调行业起步较晚,但是经过了几十年的发展,虽然还存在一些不完善的方面,但是总体来说已经取得了一定的成绩。但是与发达国家先进的制冷空调相比较,我国的制冷空调在节能技术方面存在很大不足,大多是采用的国外先进技术,并没有自己的研发成果。瑕不掩瑜,我国的制冷企业已经充分注意到制冷空调节能技术的重要性,特别是近年来大力推动了新技术、新工艺的研发工作,目前已经具备了一定程度的研发能力,与西方发达国家在制冷空调节能技术之间的差距正在不断缩小。 2 制冷空调技能技术 制冷空调节能技术主要的目的就是要实现合理用能,并且降低电力高峰期的符合,现阶段主要的制冷空调节能技术主要有七种,分别是:蓄冷技术、燃气技术、太阳能技术、热电冷联产技术、热泵技术、热声制冷技术以及人工智能技术。 2.1 蓄冷技术 现阶段空调用电量已经占据了人们生活总耗电量中的70%左右,并且由于电力紧张以及能源紧缺现状的不断加剧,促进了制冷空调新技术的研发。蓄冷技术是在这种条件下被研发出来的,该技术就是使空调在非高峰期用电来保持最佳节能状态,此时空调系统的冷负荷由所需的潜热的形式释放冷量来满足,也就是通常所说的,空调系统冷负荷使用融冰释放的冷量来满足,蓄冷设备也就是储存冰的容器,这样的空调不仅可以提高本身的经济效率,还能够增强系统稳定性。按

制冷空调科技成果简介

一、电冰箱用线性压缩机 1、项目概述 我国是世界上最大的电冰箱使用和生产国,我国冰箱年产量高达六、七千万台,占全球三分之一以上,且在以每年10%~15%的速度增长,目前我国电冰箱保有量已达2亿台。在我国城乡居民的家庭用电量中,40%左右为电冰箱用电,其耗电量约占我国全社会用电量的5%以上,相应于消耗了2.3个三峡工程发电。而其中压缩机占电冰箱耗电的绝大部分。目前国内外冰箱压缩机大多是采用旋转电机驱动的往复式活塞压缩机,这种传统的往复式活塞压缩机由于本身结构限制,性能系数COP进一步的提升空间已极小。因此,研究和开发新型高效压缩机,才能从根本上降低电冰箱能耗。 线性压缩机作为公认的冰箱用下一代新型压缩机,冰箱工况下的制冷效率比传统活塞压缩机高10%以上,可以有效地降低电冰箱的能耗,还具有结构简单、体积小、重量轻、无油或少润滑油、变容量特性优异等优点,其发展潜力巨大。但目前线性压缩机的核心技术掌握在少数几家国外公司手中,并被严密封锁,在我国此类产品尚属空白。 中国科学院理化技术研究所在低温系统线性压缩机航天技术和 国家863计划课题冰箱线性压缩机实验室样机基础上,目前已完成产品样机和控制系统开发工作,正在进行产业化推进工作。(1)在压缩机产品样机研制方面,已完成制冷量为220W产品样机多轮技术攻关,产品样机制冷效率比传统压缩机提高11%,制冷实验见图1;(2)在控制系统方面,已突破无位移传感器活塞行程控制技术,开发出线性压缩机控制系统(图2);(3)在产业化方面,已完成小批量生产工艺关键技术攻关;(4)已获得发明专利6项,申请发明专利5项。 图1 制冷实验图2压缩机控制器

CO2跨临界制冷技术

单一C02跨临界压缩机运行制冷技术简况 技术优势: 该循环系统的最大特点就是工质的吸、放热过程分别在亚临界区和超临界区进行。压缩机的吸气压力低于临界压力,蒸发温度也低于临界温度,循环的吸热过程仍在亚临界条件下进行,换热过程主要是依靠潜热来完成。但是压缩机的排气压力高于临界压力,工质的冷凝过程与在亚临界状态下完全不同,换热过程依靠显热来完成,此时高压换热器不再称为冷凝器,而称为气体冷却器。 在以空气为热源、热汇的制冷和热泵系统(主要是汽车空调以及家用空调)中,CO2循环在跨临界条件下运行,其工作压力虽然较高,但压比却很低,压缩机的效率相对较高;流体在超临界条件下的特殊热物理性质使它在流动和换热方面都具有无与伦比的优势,超临界流体优良的传热和热力学特性使得换热器的效率也很高,这就使得整个系统的能效较高,完全可与传统的制冷剂(如R12、R22等)及其现有的替代物(如R134a、R410A等)竞争。加上CO2在气体冷却器中大的温度变化,使得气体冷却器进口空气温度与出口制冷剂温度可能非常接近,这自然可减少高压侧不可逆传热引起的损失。由于CO2的临界温度低,为31, ℃因此, 制冷循环采用跨临界制冷循环时,其排热过程不是一个冷凝过程,压缩机的排气压力与冷却温度是两个独立的参数,改变高压侧压力将影响制冷量、压缩机耗工量及系统的COP。研究分析表明,高压侧压力变化时,循环的COP 存在着一个最大值,因此,CO2跨临界制冷循环在对不同工况下,存在对应于最大COP 值的最佳排气压力。 CO2 在气体冷却器中较大的温度变化,正好适合于水的加热,从而使热泵的效率较高。 传统空调系统大多把冷凝热当作废热而直接排向大气,既造成能量的浪费又产生环境的局部热污染。而对跨临界循环,由于超临界区工质密度在不断增加,循环的放热过程必将有较大的温度滑移,这种温度滑移正好与所需的变温热源相匹配,是一种特殊的劳伦兹循环,其用于热回收时,必将有较高的放热效率,因而用于较高温度和较大温差需要的热回收时具有独特的优势。 优点: (1)安全、环保、无污染; CO2 作为制冷剂其优点在于,无毒,没有可燃性,价格便宜、来源丰富、无须回收,与普通润滑油相溶,容积制冷量约是R22 的5 倍,CO2 是唯一同时具有优良的热力特性、安全特性和环境特性的自然工质。 制冷系统蒸发器采用顶排管,冷凝方式采用植入式地源冷凝技术。 (2)节能(以每立方米容积年耗电量计算):我国年平均耗电量为130度左右,先进发达国家年耗电量为60多度,而该冷库年耗电量仅6度左右。 (3)库温稳定:该冷库温差波动在±0.5度波动,将大大提升冻品的储藏品质,延长食品的实质质保期。 (4)机房占地面积小。 应用: 经过调查,北京市京科伦工程技术有限公司、北京市京科伦冷冻设备有限公司近年来多次承办智能立体库、速冻隧道等项目,工程项目遍布全国的22个省份的40个多城市,项目合作企业包括双汇、金锣、雨润、思念、三全、惠发等中国知名企业,所承担的项目均达到或超过了设计要求。

二氧化碳制冷技术

二氧化碳制冷技术 二氧化碳具有高密度和低粘度,其流动损失小、传热效果良好,并且通过对传热作用的强化,可以弥补其循环不高的缺点。同时二氧化碳环境表现优良、费用低易获取、稳定性好、有利于减小装置体积。最重要的是,其安全无毒,不可燃,这一点比R290具有明显的优势。 当然,采用二氧化碳为制冷剂也有缺点,二氧化碳高的临界压力和低的临界温度也给它做制冷剂带来了许多难题。无论亚临界循环还是跨临界循环,二氧化碳制冷系统的运行压力都将高于传统的制冷空调系统,这必然会给系统及部件的设计带来许多新的要求。同时现阶段还存在二氧化碳制冷系统的效率相对较低的问题。 目前二氧化碳的研究和应用主要集中于三个方面: 一方面是汽车空调领域,由于制冷剂排放量大,对环境的危害也大,必须尽早采用对环境无危害的制冷剂; 第二方面是热泵热水器,二氧化碳在超临界条件下放热存在一个相当大的温度滑移,有利于将热水加热到一个更高的温度; 第三方面是考虑到二氧化碳良好的低温流动性能和换热特性,采用它作为复叠制冷循环低温级制冷剂。

在复叠式制冷系统中,二氧化碳循环在亚临界条件下运行。此时二氧化碳用作低压级制冷剂,高压级用NH3作制冷剂。与其它低压制冷剂相比,即使处在低温,二氧化碳的粘度也非常小,传热性能良好,因为利用潜热,其制冷能力相当大。 目前,欧洲在超市中已建立了几个这种用二氧化碳作低温制冷剂的复叠式制冷系统,运行情况表明技术上是可行的,这种系统还适用于低温冷冻干燥过程。 当前关于R22制冷剂的替代国际上主要有两种技术方案: 一种是以北欧国家和韩国为代表,其主张采用天然工质作为替代物,如纯工质R290、R1270、R744、R600a、R600、R717等,以及HCs类的混合物; 另一种是以美国和日本为代表的采用HFCs作为替代物,如美国联合信号公司的非共沸混合物R410A、杜邦公司和I.C.I公司的混合物R407C,以及R32和R152a等,这些制冷剂的ODP均为0,能够达到保护臭氧层的目的,但是会产生温室效应。 目前看来,二氧化碳在国内市场的前景,还有点像“雾里看花”,就像王立群所言,他们都了解它的好,但真正用的少。国内空调行业暂时看不到二氧化碳发展的影子,其在国内冷冻冷藏市场也才刚刚迈步,但在热

制冷空调节能技术的应用分析及发展方向 赵春晨

制冷空调节能技术的应用分析及发展方向赵春晨 发表时间:2019-06-21T11:53:50.330Z 来源:《科学与技术》2019年第03期作者:赵春晨 [导读] 对节能技术的发展方向以及应用进行了相应的探讨。 天津市第一商业学校 300180 【摘要】近些年,随着科学技术水平不断地发展,社会经济水平的不断提高,人们生活水平不断提高,人们对于资源的需求量越来越大,尤其是不可再生资源。现如今“节能减排”已经成了国家人民最关注的问题,而这也是我国广大科学研究人员研究的重点之一,同时也是各个行业未来发展的目标。本文就针对空调的需求量急剧上升,甚至出现供不应求的现象,从现阶段制冷空调的现状出发,对节能技术的发展方向以及应用进行了相应的探讨。 【关键词】制冷;空调调节技术;节能技术 自我国改革开放以来,人们的生活水平有了非常大的提高,国家经济也实现了跳跃式的发展,但是随着全球气候变化的不断加剧,导致我国夏季气温逐渐呈升高趋势,自然而然地就使得制冷空调市场的需求量剧增,从而出现供不应求现象。而旧式的制冷空调存在着诸多的技术问题,容易造成大气污染,加快全球气候变暖的趋势,造成恶性循环。所以,国家要加快冷空调的质检,从而在技术上实现冷空调的更新换代。那么,怎样在提升制冷空调技术的同时兼顾全球的环境质量问题,是现阶段空调企业在生产过程中值得研究的问题。 一、目前我国制冷空调节能技术发展现状 随着社会的不断的进步,节能减排成为我国重点关注解决的问题,在我国的制冷空调方面,空调制冷节能技术是各大空调制造商关注的问题,同时也是各大高校研究的重点,虽然我国在该领域技术的发展相较于其他西方国家,只有几十年的时问,但是随着近些年国家在经济领域和科技领域的不断重视,我国国内企业已经慢慢从为国外高新技术制冷企业“打工”的阶段,到现在的逐步形成自己的知识产权的阶段,新技术的应用和新产品的开发速度明显加快。伴随企业对此技术的不断关注,国家针对此项技术改革也在不断推进中,推进技术的更高层次发展。 二、目前应用制冷空调节能技术的情况 现阶段随着人们环保意识的不断提高,人们在购买制冷空调时,不仅仅考虑空调制冷的能力,还会考虑到切实的制冷空调节能性能。面对近几年对制冷空调需求的不断提升,要想实现空调制冷技术的升级就要做到以下几点。 (一)燃气制冷技术的应用 燃气制冷技术具有污染较小、能源利用率高的优点,能于电网的负荷,是目前比较好的制冷空调节能技术,较高的够减轻对能源利用率使得对于能源的消耗减少,对于能源的节约起到了一定的作用。 (二)蒸发冷却式空调的应用 蒸发冷却式的空调制冷原理是制冷系统冷凝器,通过运用水蒸发吸热的工作原理,把高温高压制冷剂气体中的热量排出,实现冷凝温度与压力的降低,达到降低能耗的目的。蒸发冷却式空调是通过蒸发冷却式冷泵机组作为空调的核心技术。它的制冷过程是:冷却水通过水泵输送到换热排管当中,在这个过程中均匀地喷洒至换热管的表层,从而在换热管的表层形成水膜,并在风机风力的作用下吸收热量蒸发从而形成水蒸气,最终达到降温的作用。在这个过程中,把所蒸发的水滴落至集水盆中,进行循环利用。蒸发冷却空调利用节能技术可以使冷却水温保持在32℃,制冷剂冷凝的温度保持在35℃,和其他的制冷空调相比较具有明显的优势,并且还能运用节能技术节省耗能。 (三)热泵技术的应用 热泵技术在我国应用的方式主要有两种,一种是水源热泵技术,另一种是土壤源热泵技术。热泵节能技术具有很好的可靠性、污染比较的小、节能的时候比较高效等优点,在我国额空调行业得到了广泛的应用。 (四)温湿度独立控制系统的应用 温湿度独立控制就是向室内送入干燥空气来控制湿度,采用另外独立的系统排除显热来控制温度,从而全面调节室内热湿环境。温湿度独立控制空调系统的余热消除末端装置以干工况运行,冷凝水及湿表面不会在室内存在。传统空调系统在夏季,由于除湿的需要,风机盘管与新风机组中的表冷器、凝水盘甚至送风管道,基本都是潮湿的,这些表面就成为病菌等繁殖的最好场所。 溶液除湿空调系统就可以很好地去除空气中的有害物质,比如VOC、细菌以及灰尘等。有关材料证明,一些疾病与空调系统的微生物污染有直接关系。溶液除湿空调系统利用溶液直接处理空气,在室内风机盘管中没有冷凝水,从而避免了传统空调系统中风机盘管的凝水盘滋生细菌的问题。另外,常用的除湿盐溶液,如氯化铿、澳化铿、氯化钙等均具有杀灭细菌微生物等作用。 (五)磁悬浮压缩机的应用 磁悬浮压缩机是一种两级压缩机的离心式压缩机。在各种制冷压缩机中,离心式压缩机通常具有最理想的效率。新型的磁悬浮压缩机还结合了数字变频控制技术,使压缩机的制冷量最低可以达到20%的负荷。磁悬浮式压缩机相比传统压缩机实现了中央空调单机组多压缩机的冗余机制,提高了系统的可靠性。同时磁悬浮压缩机具有超强的自适应逻辑控制能力,能按照负荷的变化情况自动调节制冷量,即使制冷量非常低,也不会因负荷过小导致其自动关机,实现了机组的高效率工作,符合当今社会可持续发展的需要。此外,由于不采用润滑系统,既节能减排,又降低了机组运行费用,实现了社会低碳发展。 三、制冷空调节能技术发展方向 节能是现在的空调生产和研发商的共识,目前己经有许多的制冷空调的节能技术应用于空调制造的行业中,并取得了一定的成果。 (一)人工智能的发展应用 随着近些年科技的不断发展,人工智能已经成为科技发展的重要课题,这也就说明,人工智能不仅可以为人们的生活提供便利,还可以提升企业的经济收益。在这一情况下,企业越来越注重对人工智能的应用,在制冷空调的制造过程中把人工智能技术融入其中,可以及

相关主题