搜档网
当前位置:搜档网 › 构造煤结构与储层物性

构造煤结构与储层物性

构造煤结构与储层物性
构造煤结构与储层物性

煤储层渗透率影响因素

煤层气储层渗透率影响因素 摘要:煤层气作为一种新型能源,而且我国煤层气储量丰富,因此其开采利用可以很大程度上缓解我国常规天然气需求的压力。煤储层的渗透率是煤岩渗透流体能力大小的度量,它的大小直接制约着煤层气的勘探选区及煤层气的开采等问题。因此掌握煤储层渗透率的研究方法及影响因素,对于指导煤层气开采具有重要的指导意义。本文主要在前人的基础上,从裂隙系统、煤变质程度、应力及当前其他领域的技术对渗透率的研究的理论、认识及存在的问题等进行总结,对煤储层渗透率的预测有一定的理论指导意义。 Abstract: Our country is rich in the CBM which is a new resource. So the development of CBM can lighten our pressure for the requirement of conventional gas.The permeability of the coal reservoir is a measure of fluid’s osmosis permeability, restricting the exploration area and mining of CBM. Therefore, controlling the method of mining and the effect factoring has an important guiding significance for mining .This article is summarized from fracture system,the degree of coal metamorphism, stress for the theory, matters and so on of permeability’s study which is based on the achievement of others,having a great guiding significance for the permeabilityprediction.关键词:煤层气;渗透率;影响因素 1、引言 煤层气是指赋存在煤层中常常以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于煤孔隙中或溶解在煤层水中的烃类气体[1]。美国是最早开发煤层气并取得成功的国家,其富产煤层气的煤级主要是气、肥、焦煤,即中级煤。我国煤盆地一般都具有复杂的热演化史和构造变形史,构造样式复杂多样,煤储层物性差异较大,孔渗性偏低,富产煤层气的煤级是几个高级煤、无烟煤和贫煤[2]。因此我们不能照搬美国的理论来指导我国煤层气的生产。近十几年来,我们在实践中不断认识到这种差异,并针对我国煤层气储层的特征进行了一系列的研究,在煤储层物性方面取得了丰硕的成果,已初步形成了一套研究的理论与方法。渗透性是制约煤层气勘探选区的最重要的参数之一,有效预测煤储层渗透性对我国煤层气的勘探开发具有重要意义[3]。笔者主要从煤储层裂隙系统、煤变质程度、有效应力等方面作以阐述。

煤层气储层评价指标及评价方法

煤层气储层评价指标及评价方法 赵胜绪 摘要:本文在总结前人对煤层气储层评价工作的基础上,综述了煤层气储层评价参数组合及获取方法,提出了一套新的煤层气储层评价体系。主要包括以下3大类16项参数: ①煤层气储层地质参数;②煤层气储层物性参数;③煤层气储层封盖参数。进而提出了煤层气储层评价标准。又综合对比分析了目前煤层气储层评价使用的评价方法,本文采用了基于GIS的多层次模糊数学综合判别法。该方法突出了层次分析法的系统性优势,与模糊综合评判法巧妙结合,充分发挥GIS技术展示空间数据在综合评价方面的功能优势。但是该方法不可避免地又涉及到赋权问题,客观性在此表现较差。如果将熵权法的赋权优势与基于GIS的多层次模糊数学综合评价体系相结合,则可创造一种精确度、可信度更高的煤层气储层评价方法。 关键词:煤层气储层评价评价参数获取评价指标体系评价方法选择 1 前言 煤层气产业是近20年在世界上崛起的新型能源产业,我国煤层气的资源量位列世界第三,在深埋2000米以内的

煤层气预测总资源量为30万亿至35万亿立方米[1]。中国的煤炭资源和煤层气资源非常丰富,煤层气勘探开发活动空前活跃。但由于煤储层条件差异变化大,煤层作为储气层与常规天然气储层相比有许多显著的差别。要取得煤层气勘探开发的突破,必须提高煤层气勘探开发工作的决策水平,建立一套适合中国的煤层气储层评价指标体系及评价方法。因此,本文在总结前人对煤层气储层评价工作的基础上,综合分析了目前对煤层气储层评价所建立的评价指标体系及使用的评价方法,建立了一套新的煤层气储层评价指标体系,并对现有的评价方法进行分析对比,提出建设性改进建议。 2 煤层气储层评价指标体系的建立 2.1煤层气储层评价参数组合及获取方法 煤层气储层评价是一项复杂的系统工程,在整个评价过程中,需要地质工程、气藏工程、钻井工程和生产工程技术人员互相配合。在实际工作中,对煤层气储层评价参数的大部分或者全部不可能都进行深入的探索和研究,特别是在煤层气勘探开发初期,由于技术、工程手段、实验方法和仪器等方面的限制,仅能获取有限的煤层气储层评价参数。因此,如何集中有限的资金、设备和技术人员,最大限度的获取煤层气储层评价所必须的主要参数,也是我们在煤层气储层评价研究中遇到的一个难题。

油田储层物性变化

油田开发过程中储层性质变化的机理和进本规律 班级:石工10-9班姓名:林鑫学号:2010022116 对于大多数油田来说,随着开发的进行,注水量的增加,油田储层的性质也随着变化,大多数情况是储层物性变差,以下,主要从储层孔隙度、渗透率,储层岩性、原油性质和润湿性变化这几个角度进行分析。 1.孔隙度和渗透率变化 孔隙度在油田开发中不是一成不变的,在注入水的冲刷下,中高渗储层水洗后,孔道内的衬边粘土矿物多被冲刷掉,孔道增大,且连通性能变好,发生了增渗速敏,尤其是“大孔道”在注水开发中变得越来越大, 相应地储层( 尤其是高渗储层)的渗透率增高,从而加剧了注入水的“水窜”,影响油藏的开发效果。另一方面, 一些泥质含量较高的砂体,孔隙大小一般未发生变化, 甚至有缩小趋势。 在实际条件下,注水井与产出井之间由于地层的非均质性、流体的流动速度不同及岩性的差异,不同岩石中的微粒对注入速度增加的反应不同,有的反应甚微,则岩石对流动速度不敏感;有的岩石当流体流速增大时, 表现出渗透率明显下降。因此,地层的渗透率变化是受岩性、注入速度等条件限制的,可能增大也可能减小。这种孔隙度和渗透率的变化,导致了储层非均质性的加重,加大了储层开发的难度。 例如:胜坨油田二区沙二段3层为砂岩储层,泥质胶结为主,在注水开发过程中,随着注水倍数的增加,砂岩中的胶结物不断被冲刷带出,胶结物含量逐渐减少。开发初期颗粒表面及孔隙间充填较多的粘土矿物,到特高含水期,样品颗粒表面较干净,粒间的粘土矿物减少。从不同含水期相同能量带的毛管压力曲线对比也可看出,由开发初期到特高含水期, 毛管压力曲线的门限压力减小,说明最大孔喉半径增大,随着最大孔喉半径增大,流体的流动能力增强,渗透率有较大幅度提高。而沙二8层粒度细、孔喉细小、泥质含量高,随着油田注水开发,蒙脱石膨胀、高岭石被打碎等原因部分堵塞喉道,使得孔喉半径变得更小,导致了储层的渗透率降低。 储层岩性的变化 对于储层岩性的变化主要从粘土矿物和岩石骨架两个方面进行研究。 注入水对粘土矿物的作用主要有两种:水化作用和机械搬运与聚积作用。注水过程中储层内水敏性强的粘土矿物吸水膨胀,原来的矿物结构遭到破坏。因此,水驱后储层中孔道中心的粘土矿物被冲散、冲走,在微孔隙处富集。由于注入水总是沿着物性好、渗透性好的部位流动,这样就使原来粘土矿物少的部位水驱后粘土矿物变得更少,而原来物性差、分选差的部位粘土矿物含量变得更多,结果是粗孔道更加通畅,细孔道更容易被堵塞,从而使两者的差距加大。 注入水对岩石骨架的作用为溶蚀作用。虽然储层中矿物的溶解度很低,但是长期积累的效果对整个储层而言也不可忽视,溶蚀作用的结果是水淹层的孔隙结构发生变化、孔隙度增大。尤其是高渗透条带,注入介质所造成的冲刷、溶解现

平顶山煤田煤储层物性特征与煤层气有利区预测

第32卷第2期 地球科学———中国地质大学学报 Vol.32 No.22007年3月 Earth Science —Journal of China University of G eosciences Mar. 2007 基金项目:国家自然科学基金项目(No.40572091);国家重点基础研究发展计划课题(No.2002CB211702);中国地质调查局资助项目(No. 20021010004);国家重点基础研究发展计划课题(No.2006CB202202). 作者简介:姚艳斌(1978-),男,博士研究生,从事油气及煤层气地质研究工作.E 2mail :yaoyanbin @https://www.sodocs.net/doc/318947149.html, 平顶山煤田煤储层物性特征与煤层气有利区预测 姚艳斌1,刘大锰1,汤达祯1,唐书恒1,黄文辉1,胡宝林2,车 遥1 1.中国地质大学能源学院,北京100083 2.安徽理工大学资源和环境系,安徽淮南232000 摘要:通过对平顶山煤田采集煤样的煤质、煤岩显微组分、煤相、煤岩显微裂隙分析,低温氮比表面及孔隙结构和压汞孔隙 结构测试,研究了该区的煤层气赋存地质条件、煤层气生气地质条件和煤储层物性特征.并采用基于GIS 的多层次模糊数学评价方法计算了该区的煤层气资源量,预测了煤层气资源分布的有利区.研究结果表明,该区煤层气总资源量为786.8×108m 3,煤层气资源丰度平均为1.05×108m 3/km 2,具有很好的煤层气资源开发潜力.其中,位于煤田中部的八矿深部预测区和十矿深部预测区周边地区,煤层累计有效厚度大,煤层气资源丰度高,煤层埋深适中,同时由于该受挤压构造应力影响,煤储层孔裂隙系统发育、渗透性高,是该区煤层气勘探、开发的最有利目标区.关键词:煤层气;平顶山煤田;储层物性;有利目标区.中图分类号:P618.130.2+1 文章编号:1000-2383(2007)02-0285-06 收稿日期:2006-05-20 Coal R eservoir Physical Characteristics and Prospective Areas for CBM Exploitation in Pingdingshan Coalf ield YAO Yan 2bin 1,L IU Da 2meng 1,TAN G Da 2zhen 1,TAN G Shu 2heng 1,HUAN G Wen 2hui 1,HU Bao 2lin 2,C H E Yao 1 1.Facult y of Energ y Resources ,China Universit y of Geosciences ,Bei j ing 100083,China 2.Department of Resources and Environmental Engineering ,A nhui Universit y of Science and T echnology ,Huainan 232000,China Abstract :Based on the elemental ,maceral ,micro 2fracture ,coal facies ,liquid nitrogen adsorption/desorption and mercury injection analyses ,the coalbed methane (CBM )geological characteristics ,coal reservoir physical characteristics ,CBM re 2sources and its exploration and exploitation prospect in Pingdingshan coalfield were systematically studied.The in 2place CBM resource was calculated using the f uzzy mathematics and stacking analysis of GIS (geographic information system )method.The results show that the in 2place CBM resources and the resources abundance in Pingdingshan coalfield are about 786.8×108m 3and 1.05×108m 3/km 2respectively ,which are very favorable for CBM exploration and development.The optimum target areas in this coalfield are the deep prediction districts of No.8and No.10coal districts ,where the coal reser 2voirs have higher coal thickness and CBM resource abundance ,good burial depth ,well connected pore 2cleat systems ,and higher permeability resulting f rom the tectonic stress. K ey w ords :coalbed methane ;Pingdingshan coalfield ;coal reservoir characteristics ;prospective and target area. 平顶山煤田位于河南省平顶山市,横跨宝、叶、襄、郏4县.东起洛岗正断层,西北至韩梁矿区,东北到襄郏正断层,南至煤层露头,整个煤田的勘探矿区和预测区面积约980km 2,煤炭探明储量和预测储量共计92亿t ,煤层气资源量786.8×108m 3,资源丰度平均为1.05×108m 3/km 2,具备良好的煤层气资源潜力.同时该区也是我国煤与瓦斯突发事故严重矿区,开发利用该区的煤层气具有充分利用资源、保

低渗储层物性特征分析

148 1?储层物性特征1.1?储层岩石学特征 储层岩石学特征的研究,是对储层的后续特征研究的一个基础,它包括对储集层岩石的组分、分选、磨圆、粒度、填隙物成分等一系列与储集岩体有关的内容,这些都是储集层的先天条件,是决定油气储层性能的关键因素[1]。 根据岩心和铸体薄片观察统计,储层的岩石类型基本为含长石石英砂岩、长石砂岩和岩屑长石砂岩,含少量岩屑石英砂岩。研究区长6油层组主要为长石砂岩,偶见岩屑长石砂岩,说明研究区长6油层组砂岩成分成熟度低。 1.2?储层填隙物成分 研究区长6油层组储层砂岩粘土杂基含量较少,平均为3.76%,最高达8.5%,表现出分布的不均匀性,一般位于河道砂体中下部的中~细粒长石砂岩中,泥质杂基含量很少;而位于河道砂体中上部和河道间沉积的粉砂岩中,泥质分布较为普遍,含量1%~7%不等;由于研究区长6油层组储层砂岩杂基普遍较少,因而胶结物对储层物性的影响更为重要。胶结物种类较多,有碳酸盐矿物、粘土矿物、次生石英和长石等,其含量分别为云母0.93%,绿泥石3.32%,方解石2.56%,石英加大0.96%,长石加大0.66%。 1.3?储层物性 根据研究区样品的物性分析,研究区粒间孔含量8.6%,溶孔含量1.1%,晶间孔含量0.3%,面孔率10.1%,平均孔径63.6μm。储层孔隙度最小值为4.55%,最大值为11.86%,平均值为9.2%,储层渗透率分布在(0.10~3.47)×10-3 μm 2 之间,平均1.0×10-3 μm 2 ,为低孔、低渗储层。 2?储层物性影响因素 2.1?机械压实作用和压溶作用 压实作用是在一定的埋深下,在上覆地层压力或构造运动力等能使其发生体积变小的力的作用下导致储层的空间结构变小,进而使得孔隙度变差的一种成岩作用[2]。在压实作用下,储层的砂岩颗粒可能会发生变形,破裂等, 进而形成更加致密的岩层,主要发生在成岩作用早期,对储层的破坏性较大。 2.2 溶蚀作用 溶蚀作用是对储层具有贡献性的成岩作用之一,多是在酸性条件下,碎屑颗粒及填隙物发生溶解而使得储层孔隙变大的作用[3]。工区长6储层发生溶蚀的组分主要以碎屑、杂基为主,主要与有机质演化过程中所形成的酸性物质发生化学反应,而产生一系列的空间较大的次生孔隙,该类孔隙连通性相对较好。 2.3?胶结作用 石英次生加大胶结在工区内较为常见,长石次生加大胶结稍微少见,据室内资料统计分析,石英次生加大是导致工区渗透性变差的主要因素之一,常见于粒度较粗、含碳酸盐胶结物的砂岩中,充填与粒间孔隙中。石英加大边在早期压溶作用的改造下产出,多覆盖于颗粒边缘。另自生石英胶结呈六方双锥状充填于粒间孔,致使储层孔隙度因空间结构减小而降低。 3?结论 1)研究区储层孔隙度平均为9.2%,渗透率平均为1.0×10-3μm 2,为低孔、低渗储层。 2)研究区长6储层砂岩成分成熟度较低。 3)影响研究区储层物性的主要因素有,压实作用、压溶作用、胶结作用以及溶蚀作用。其中,压实、胶结作用降低了储层物性,压溶作用、溶蚀作用对储层物性是有利的。 参考文献 [1]孙健,姚泾利,廖明光,等.?陇东地区延长组长_(4+5)特低渗储层岩石学特征[J].?特种油气藏,2015(6):70-74;144. [2]高潮,孙兵华,孙建博,等.?鄂尔多斯盆地西仁沟地区长2低渗储层特征研究[J].?岩性油气藏,2014(1):80-85. [3]李彩云,李忠兴,周荣安,等.?安塞油田长6特低渗储层特征[J].?西安石油学院学报:自然科学版,2001(6):30-32;3. 低渗储层物性特征分析 苗贝1,2? ? 鲁晋瑜1,2 1.西安石油大学 陕西 西安 710065 2.延长油田井下作业工程公司 陕西 延安 716000 摘要:目前低渗储层已成为我国开发的重点,对低渗储层物性特征进行研究对低渗储层的开发具有重要指导意义,本文对M区低渗储层物性特征进行了分析。 关键词:低渗储层?物性特征?成岩作用 Analysis?of?physical?properties?of?low?permeability?reservoirs Miao?Bei?1,2,Lu?Jinyu?1,2 1.Xi ’an Shiyou University ,Xi ’an 710065,China Abstract:The?low?permeability?reservoirs?have?become?the?focus?of?oilfield?development?in?China.?The?research?on?the?physical?properties?of?low?permeability?reservoirs?is?of?great?significance?to?the?development?of?low?permeability?reservoirs.?This?article?describes?the?characteristics?of?low?permeability?reservoirs?in?M?Block. Keywords:low?permeability?reservoir;physical?property;diagenesis

煤储层及其基本物理性质

第二章煤储层及其基本物理性质 煤储层是指在地层条件下储集煤层气的煤层。煤储层具有双重孔隙介质、渗透性较低、孔隙比表面积较大、吸附能力极强、储气能力大等特点。 第一节主要内容: 煤储层是由固态、气态、液态三相物质所构成。 固态物质:是煤基质 液态物质:一般是煤层中的水(有时也含有液态烃类物质) 气态物质:即煤层气 一、煤储层固态物质组成: 1、宏观煤岩组成 煤是一种有机岩类,包括三种成因类型: ①主要来源于高等植物的腐植煤 ②主要有低等生物形成的腐泥煤 ③介于前两者之间的腐植腐泥煤 (自然界中以腐植煤为主,也是煤层气赋集的主要煤储层类型) 2、显微煤岩组成 显微煤岩组成包括显微组分和矿物质。 显微组分是在光学显微镜下能够识别的煤的基本有机成分,其鉴别标志包括:颜色,突起,反射力,光学各向异性,结构,形态等。 矿物质是煤及煤储层中含有数量不等的无机成分,主要为黏土类和硫化类矿物,其次为碳酸盐类、氧化硅类矿物以颗粒状。团块状散布于煤中,常见显微条带状产出的黏土矿物。 3、煤的大分子结构 煤中有机质大分子结构基本结构单元(BSU)的骨架结构由缩合芳香体系组成,其基本化学结构为芳香环。 煤中有机质大分子结构基本结构单元的缩聚过程主要起源于三种反应机制:芳构化作用、环缩合作用和拼叠作用。 芳构化作用是指:非芳香化合物经由脱氢生成芳香化合物的作用,可通过碳数不低于六个的链烃的闭环、五圆或六圆脂环和杂环的脱氢等方式实现,是煤中有机质生气的主要机理。 环缩合作用通过单个芳香环间联结、稠环芳香分子间或分子内联结、自由基分子间重新结合等方式得以实现,是中~高级无烟煤阶段芳香体系缩聚的主要机理。 拼叠作用是指基本结构单元之间相互联结而使煤中有机质化学结构短程有序化范围(有序畴)增大的作用,与自由基反应密切相关,是高级无烟煤阶段基本结构单元增大和秩理化程度增高的主要机理。 二、煤储层液态物质组成 煤储层中液态物质包括裂隙、大孔隙中的自由水(油)及煤基质中的束缚水。 在煤化学中,将煤中水划分为三类,即外在水分、内在水分和化合水。外在

储层物性参数解释方法研究

储层物性参数解释方法研究 宋岩竹 (大庆油田有限责任公司第十采油厂黑龙江大庆 166405) 摘要:首先以测井曲线的分辨率、探测原理为基础,优选出与孔隙度、渗透率相关性较高的声波时差曲线和自然伽玛曲线来建立孔隙度和渗透率的解释方程,并且用非建立关系的密闭取心井和评价井进行验证,解释结果比较合理,为多学科油藏研究奠定良好的基础。 主题词:孔隙度渗透率多元回归 Study on reservoir physical property interpretation method Song Yanzhu (No.10 Oil Production Plant of Daqing Oilfield Co.,Ltd.,Heilongjiang Daqing 166405) 「Abstract」It is a difficult problem in the Oilfield.First,we choose the well log of AC and GR to establish the reservoir physical property interpretation equation,in the base of the differentiated rate and exploration principle of well log.Then it is verified that the result is reasonable based on datas of sealing core drill well and assessment well,and it lays a favorable foundation for the study on multidisciplinary reservoir. 「Keywords」porosity;permeability;multiple regression 1 前言 统计某油田扶余油层探明区内86口探井、几千个样品分析结果表明,油层砂岩平均孔隙度15.3%,平均渗透率10.8×10-3μm2。 作者简介:宋岩竹,工程师,1994年毕业于大庆石油学院采油工程专业,主要从事精细地质描述工作。E-mail:songyanz@https://www.sodocs.net/doc/318947149.html,

煤层气勘探开发中的煤储层评价_王生维

*本文受 国家973计划 中国煤层气成藏机制及经济开采基础研究 项目 资助。 作者简介:王生维,1956年生,博士;已发表煤储层研究论文31篇,出版专著1部。地址:(430074)湖北省武汉中国地质大学。E mail:sww ang@https://www.sodocs.net/doc/318947149.html, 煤层气勘探开发中的煤储层评价* 王生维 段连秀 陈钟惠 张明 (中国地质大学资源学院) 王生维等.煤层气勘探开发中的煤储层评价.天然气工业,2004;24(5):82~84 摘 要 煤储层评价参数的获取可以大致分为宏观煤储层、煤岩类型、普通显微镜下测试和电镜等超显微孔隙测试四个层次。煤层气井煤心和煤储层露头的煤岩类型系统测量是获取煤储层评价参数的关键环节。建立煤储层描述参数与规范,积累系统的煤储层评价资料,以满足煤层气勘探开发的需要。煤储层评价的重点内容包括煤体几何形态与内部结构特征、煤储层顶板和底板岩石与裂隙发育特征、煤储层孔裂隙系统发育特征和煤储层渗透率、煤岩组成和煤质特征、煤的机械力学性质、煤层气的解吸特征、煤储层的可改造性,以及煤变质作用类型和煤级分带特征等。煤储层评价的基本原则包括乘积原则、加权平均原则、 木桶效应 原则、类比评价原则和综合评价原则。 主题词 煤储层 描述参数与规范 评价内容 评价原则 煤储层评价的资料基础和评价原则是科学评价煤储层的关键。目前煤层气地质工作者公认的科学评价煤储层的重要内容是煤储层的孔裂隙系统和煤储层渗透性、煤储层的机械力学性质、煤岩和煤质特征、煤层气的解吸特征等。 原有的煤田地质勘探和矿井生产规范中并没有考虑煤层气勘探开发中煤储层评价的要求。 关于煤储层评价的原则,目前比较有代表性的有两种倾向:一种是罗列煤储层的若干特性,强调若干有利方面,以此来得出肯定结论;另一种是比较重视煤储层的关键不利参数,以此来得出否定结论。 煤储层描述关键尺度的确定 煤储层岩石本身的强非均质性造成煤储层评价原始参数获取具有相当的随意性和难度。为满足煤层气勘探开发对煤储层评价的客观要求,要求评价参数尽可能量化和系统化、观测方法科学、观测重点突出。 对某一地区而言,控制煤储层内孔隙、裂隙系统特征的主导因素是煤岩成分。可以从煤层的宏观角度把握大裂隙系统的总体特征。这就为煤储层描述参数的定量或半定量表达提供了先决条件。 从我国华北、东北、华南、西北等几大煤区的煤储层描述初步实践看,建立煤储层描述参数与规范的客观条件已具备。其重点是现场描述与室内微观 描述的有机结合。煤储层矿井露头观测与描述,其描述对象是整个煤储层,描述的主要内容包括煤层内部夹矸、宏观煤岩类型、煤储层中的外生节理系统、煤储层的内生裂隙系统等,并获取代表性煤样,以便进一步在显微尺度或更小的尺度上进行对应观测。值得指出的是,由于煤岩成分的复杂性,对矿井或煤芯样品进行煤的工业分析是一种切实可行的常规测试指标。 显微观测与测试,其样品来源是矿井煤储层井下标本、露头标本、钻井煤心标本等,观测尺度是毫米级的,观测重点是煤岩组分、孔隙和部分微裂隙等。 由于煤储层中孔隙的多级性和煤岩成分的复杂性,必要时需采用其他特殊观测与测试手段加以研究,常用的如扫描电镜观测煤中的微裂隙和孔隙。如有必要还可进行更为精细观测与测试。 综合考虑煤储层描述的基本要求,结合煤储层的非均质性特征,工作量大小和可操作性,参考国内外的成功做法,将各种尺度的描述有机结合,围绕煤岩类型尺度部署各种实物工作量,对于煤储层的科学评价至关重要。 煤储层评价的主要内容 煤储层评价的内容和参数必须全面,参数要量化。煤层气地质评价的核心内容之一是对煤储层中 82 开发试采 天 然 气 工 业 2004年5月

鄂尔多斯盆地煤储层特征研究

龙源期刊网 https://www.sodocs.net/doc/318947149.html, 鄂尔多斯盆地煤储层特征研究 作者:周龙飞 来源:《城市建设理论研究》2014年第01期 摘要:煤层气是以吸附态为主赋存在煤层中的一种清洁能源。我国煤炭资源非常丰富,煤层气资源量也相当可观。开发煤层气不仅只是提供能源,对减少瓦斯事故、保护大气层也都有重要意义。煤储层是煤基质快、气、水(油)三相物质组成的三维地质体,煤储层较常规储层具有非常特殊的物理特征,其物性包括孔裂隙性、吸附解吸特性、力学性质、渗透性等多个方面。通过汞置换法、低温氮吸附法等实验和各种数据资料统计,总结出鄂尔多斯西缘煤储层特征,有利于准确预测煤层气开发前景、优选煤层气地面开发高渗富集区、制定有效的煤层气开发战略和完井方案,为煤层气资源评价、产能预测、储层改造和提高采收率提供理论依据。 关键词:鄂尔多斯盆地、煤储层特征、孔隙特征、渗透性、最大含气量 中图分类号:TD82文献标识码: A The Coal Reservoir Feature’s Study on the Odors Basin ZHOU Long-fei (The third Road and Bride Department, Zhongyuan Oilfield Construction Group, Puyang 457000, China) Abstract: Coalbed methane (CBM) is a kind of clean energy which is adsorbed in coalbed. There is abundant coal resources in China and the CBM reserves is a considerable figure. Exploitation of CBM not only provides energy but also has important significance on improving safe production level of coal mines and also can protect the atmosphere.Coal reservoir is three-phase composition of 3D geological body which is constitute by matrix fast, gas, water(oil).Coal reservoir had the special physical characteristic that compared to relatively conventional reservoir,its physical properties including hole fractured, adsorption, desorption characteristics, mechanical properties,permeability, etc. By experiencing mercury displacement,low temperature nitrogen adsorption andanalysing various data,summarized the west margin of ordos coal reservoir characteristics,which is benefit to predict the coalbed gas’s the development of prospects, optimize hypertonic CBM’s zone where the CBM is plentiful on the ground, make effective CBM’s the development of strategy and completed program,which provided theoretical basis for evaluating coal bed methane resource,predicting productivity, reconstructing reservoir ,improving the recovery. Key words: Ordos Basin、Coal reservoir feature、Hole feature、Permeability、The biggest gas content 1、引言

储层物性研究

4.3 储层物性及其影响因素分析 4.3.1 储层物性分布特征 统计油田范围内46口取心井3043个孔、渗样品数据,孔隙度0.6~33.8%,平均值10.83%;渗透率0.01~4093mD,平均值32.37mD(图4-3-1、4-3-2)。其中,Ⅰ油组孔隙度1.7~27.1%,平均值12.53%;渗透率0.01~2681mD,平均值55.47mD;Ⅱ油组孔隙度2.5~21.9%,平均值12.95%;渗透率0.01~4093mD,平均值154.03mD。 图4-3-1 储层孔隙度分布直方图图4-3-2 储层渗透率分布直方图 根据中石油储层评价标准(表4-3-1)判断铜钵庙组储层物性以低孔、超低渗为主,特低孔、特低渗次之。 对应油层段991个物性样品资料统计,孔隙度6.0~27.1%,平均值13.58%,主峰分布于7~17%之间(图4-3-3);渗透率0.1~4093mD,平均值2.57mD,主峰分布于0.1~4.2mD之间(图4-3-4)。其中Ⅰ油组孔隙度6.0~27.1%,平均值12.53%;渗透率0.1~2681mD,平均值1.47mD。Ⅱ油组孔隙度6.0~21.9%,平均值13.95%;渗透率0.1~4093mD,平均值3.03mD。 图4-3-3 油层段孔隙度分布直方图图4-3-4 油层段渗透率分布直方图 孔隙度和渗透率有一定的正相相关关系,随孔隙度的增大渗透率也增大(图4-3-5)。油层段孔-渗和含油气显示之间相关性较差,总体表现出随孔-渗的增大逐步由荧光、油斑显示变为油浸和含油显示,当孔隙度大于20%,渗透率大于20mD时,含油显示级别为油浸和含油显示。 图4-3-5 铜钵庙组油层孔-渗~含油性关系图 根据储层属性反演结果,以测井解释孔隙度值为人工调整依据,完成了铜钵庙组孔隙度平面分布特征研究。从各油组孔隙度等值线图分析(图4-3-6、图4-3-7),储层物性受沉积相带控制明显,在扇三角洲内前缘亚相区和近物源的扇三角洲平原亚相分布区物性较好,而扇三角洲外前缘亚相和滨浅湖区物性明显变差。 Ⅰ油组孔隙度分布范围在5-30%之间,孔隙度大于12%的优质储层在油田中西部连片分布。 图4-3-6 Ⅰ油组孔隙度等值线图图4-3-7 Ⅱ油组孔隙度等值线图 Ⅱ油组孔隙度分布趋势同Ⅰ油组相近,孔隙度分布范围在5-22%之间,孔隙度值大于12%的优质储层在油田中西部地区连片分布。 4.3.2 储层物性影响因素分析 图4-3-8 储层孔隙度-渗透率随深度变化关系图 ①孔-渗随深度变化的关系 铜钵庙组储层孔隙度-渗透率与深度关系图分析表明(图4-3-8),储层物性随深度的增加而不断变差,在1900m以上孔-渗随深度增加呈线性减少;在1900~3000m之间存在次生

第四节 储层流体的高压物性

第四节储层流体的高压物性 一、名词解释。 1.石油的压缩系数 C(oil compressibility coefficient): o 2.原油饱和压力 P (crude oil bubble point pressure): b 3.单相石油体积系数B( single phase volume factor of oil): 4.两相体积系数 B(bi-phase volume factor): t 二.判断题。 1.地层油单相体积系数总是大于1的。() 2.地层油单相体积系数在饱和压力时是最小的。() 3.地层油粘度在饱和压力时是最小的。() 4.在低于饱和压力下,随着压力下降地层油也将释放出弹性能量。() 5.当压力等于饱和压力时,石油两相体积系数大于单相体积系数。() 6.地层水矿化度愈大,则地层水压缩系数愈大。() 三.选择题。 1.石油是 A.单质物质 B.化合物 C.混合物 D.不能确定( ) 2.地层油的压缩系数将随着压力增加而,随温度增加而。 A.上升,上升 B.上升,下降 C.下降,上升 D.下降,下降( )

2 3.在饱和压力下,地层油的单相体积系数最 ,地层油的粘度最 。 A.大,大 B.大,小 C.小,大 D.小,小 ( ) 4.若地层原油中重质组分含量愈高,则其相对密度愈 ,其API 度愈 。 A.大,大 B.大,小 C.小,大 D.小,小 ( ) 5.天然气的体积系数恒 1,地层油的体积系数恒 1 。 A.大于,大于 B.大于,小于 C.小于,大于 D.小于,小于 ( ) 6.温度一定时,地层原油的饱和压力大小主要受_____的控制. A. 地层压力 B. 地层温度 C. 脱气方式 D.油气组成 ( ) 7.当地层压力小于饱和压力时,随着石油中溶解的天然气量 ,石油的粘度 。 A.增加,增大 B.增加,不变 C.降低,降低 D.增加,降低 ( ) 8.温度一定时,石油在 点密度 。 A.临界压力,最小 B.饱和压力,最大 C.地层压力,最大 D.饱和压力,最小 ( ) 9.油气藏中的两种主要水型是 。 A.Na2SO4,NaHCO3 B.Na2SO4,MgCl2 C.CaCl2, MgCl2 D.NaHCO3,CaCl2 ( ) 10.若某水样中+2Ca 的矿化度为2000ppm ,而其原子量为40,则该水样+2Ca 的毫克当量浓

相关主题