搜档网
当前位置:搜档网 › 第九章 二重积分习题课

第九章 二重积分习题课

第九章 二重积分习题课
第九章 二重积分习题课

高等数学课讲教案主讲人

课题第九章重积分习题课

目的任务使学生进一步理解本章的知识要点,熟练重积分的计算。重点难点本章知识要点的进一步理解,重积分计算的熟练掌握。

教学方法讲授法

使用教具

提问作业

备课时间年月日上课时间年月日

查阅抽查

一、 本章内容小结

1. 二重积分的定义及其几何意义

1) 重积分的定义:

2) 说明:

* 二重积分是和式i i n

i i f σηξ?∑=),(1 的极限值,故是一个数,这个数只与被积函数

),(y x f 及积分区域有关,与积分变量的字母无关,即有

????

=D D d t s f d y x f σσ),(),(

* 和式的极限若存在,则与区域D 如何划分及点),(i i ηξ如何选无关,为此常选方便

计算的分割方法,如选用平行于坐标轴的直线网来分割区域,则dxdy d =σ,此时二重积分 ????

=D D dxdy y x f d y x f ),(),(σ

* 若函数),(y x f 在有界闭区域上连续,则函数),(y x f 在D 上的二重积分总存在,称函数),(y x f 在D 上可积。

3) 重积分的几何意义.

2. 二重积分的性质:

注意性质所适用的条件,中值定理的几何意义

3. 二重积分的计算法:

二重积分的计算法采用累次积分,即把二重积分化为二次积分,通过两次定积分的计算即求得二重积分值,分以下两种情况。

1) 在直角坐标系下:将区域划分为-x 型或-y 型计算.

2) 在极坐标系下:将区域按照与极点的位置来划分并计算.

* 两种坐标系的适用范围、面积元素、表达式及变量替换对照表如下:

* 计算二重积分关键步骤是确定累次积分的上、下限,而上、下限的确定关键在于正确画出积分区域草图和正确运用不等式表示积分区域,把不等式小的一端列为积分下限,大的一端为积分上限。注意:先一次积分的上、下限一般是后面积分变量的函数,且最后一次积分的上、下限应是常数。

* 若在极坐标系中要注意θ

σrdrd

d=,r不能丢:正确写出积分区域的边界曲线在极坐标系下的方程;选正确公式。

4.二重积分的应用:

1)曲顶柱体的体积;

2)平面区域的面积??

=

D d

Sσ;

二、习题讲解(课后习题)

三、课堂练习(复习题九)

不定积分例题及参考答案

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2)dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)2 2x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +?

思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式, 通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134 (- +-)2 思路:分项积分。 解:3411 342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8)23( 1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 111 7248 8 x x ++==,直接积分。 解 : 715 8 88 .15x dx x C ==+? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1) (1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12)3x x e dx ?

第十章 重积分练习题(答案)

1.填空: (1)设D 是由x 轴,y 轴及直线1=+y x 所围成的三角形闭区域,则比较二重积分的值的大小,有2()D x y d σ+??≥3 ()D x y d σ+??. (2)设??++=D d y x I σ)94(22,其中(){} 4,22≤+=y x y x D ,则估计二重积分的值,有 36π≤≤I 100π. (3)交换积分次序:=??-2210),(y y dx y x f dy ????-+222021 010),(),(x x dy y x f dx dy y x f dx . (4)设D 是由直线y x 2=及抛物线2y x =所围成的闭区域,化二重积分σd y x f D ),(??为两个不同次序的二次积分是????x x y y dy y x f dx dx y x f dy 24022 0),(),(2,. (5)在极坐标系中,面积元素为d d ρρθ。 2.选择: (1)设平面区域(){}(){} 0,0,1,,1,22122≥≥≤+=≤+=y x y x y x D y x y x D ,则下列等式一定成立的是( C ). (A)????=1),(4),(D D dxdy y x f dxdy y x f . (B)????=1 4D D xydxdy xydxdy . (C)14D D =. (D)????=1 4D D xdxdy xdxdy . (2)设平面区域(){}(){}a y x a x y x D a y x a x a y x D ≤≤≤≤=≤≤≤≤-=,0,,,,1,则=+??D dxdy y x xy )sin cos (( A ). (A)??1sin cos 2 D ydxdy x . (B)??12D xydxdy . (C)??+1 )sin cos (4D dxdy y x xy . (D)0. (3)设?? ????+=+=+=σσσd y x I d y x I d y x I D 2223222221)cos(,)cos(cos ,,其中 (){} 1,22≤+=y x y x D ,则( A ). (A)123I I I >>. (B)321I I I >>.

二重积分练习题

二重积分自测题 (一)选择题 1.设D 是由直线0=x ,0=y ,3=+y x ,5=+y x 所围成的闭区域, 记:??σ+= D d y x I )ln(1,??σ+=D d y x I )(ln 22 ,则( ) A .21I I < B .21I I > C .122I I = D .无法比较 2.设D 是由x 轴和∈=x x y (sin [0,π])所围成,则积分??=σD yd ( ) A . 6π B .4π C .3π D .2 π 3.设积分区域D 由2 x y =和2+=x y 围成,则=σ??D d y x f ),(( ) A .? ?-+2 122),(x x dy y x f dx B .??-212 ),(dy y x f dx C . ? ?-+1 2 22),(x x dy y x f dx D .??+1 2 2),(x x dy y x f dx 4.设),(y x f 是连续函数,则累次积分? ? =4 2),(x x dy y x f dx ( ) A . ?? 40 412),(y y dx y x f dy B .?? -4 412),(y y dx y x f dy C . ? ?4 4 1),(y dx y x f dy D .??40 2 1 2 ),(y y dx y x f dy 5.累次积分? ?=-2 2 2 x y dy e dx ( ) A . )1(212--e B .)1(314--e C .)1(214--e D .)1(3 1 2--e 6.设D 由14122≤+≤y x 确定,若??σ+=D d y x I 2211,??σ+=D d y x I )(2 22, ??σ+=D d y x I )ln(223,则1I ,2I ,3I 之间的大小顺序为( ) A .321I I I << B .231I I I << C .132I I I << D .123I I I << 7.设D 由1||≤x ,1||≤y 确定,则 =??D xy xydxdy xe sin cos ( ) A .0 B .e C .2 D .2-e 8.若积分区域D 由1≤+y x ,0≥x ,0≥y 确定,且 ? ?=1 1 )()(x dx x xf dx x f , 则 ??=D dxdy x f )(( )

定积分练习题精品文档10页

第九章 定 积 分 练 习 题 §1定积分概念 习 题 1.按定积分定义证明:?-=b a a b k kdx ).( 2.通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作 是对应的积分和的极限,来计算下列定积分: (1)?∑=+= 1 1 22 33 )1(4 1:;n i n n i dx x 提示 (2)?10;dx e x (3)?b a x dx e ; (4 )2(0).(:b i a dx a b x ξ<<=? 提示取 §2 牛顿一菜布尼茨公式 1.计算下列定积分: (1)?+1 0)32(dx x ; (2)?+-1 022 11dx x x ; (3)?2ln e e x x dx ; (4)?--1 02dx e e x x ; (5)?302tan π xdx (6)?+94;)1(dx x x (7)?+4 0;1x dx (8)?e e dx x x 12 )(ln 1 2.利用定积分求极限: (1));21(13 34lim n n n +++∞→Λ (2);)(1)2(1)1(1222lim ?? ????++++++∞→n n n n n n Λ (3));21 )2(111( 2 22lim n n n n n +++++∞ →Λ

(4))1sin 2sin (sin 1lim n n n n n n -+++∞→Λππ 3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点 外有F '(x )=f (x),则有 ()()().b a f x dx F b F a =-? §3 可积条件 1.证明:若T ˊ是T 增加若干个分点后所得的分割,则 ∑∑?≤?' .'' T T i i i i χωχω 2.证明:若f 在[a,b]上可积,[][][]上也可积在则ββ,,,,a f b a a ?. 3.设f ﹑g 均为定义在[a,b]上的有界函数。证明:若仅在[a,b]中有限个点处()(),χχg f ≠则当f 在[a,b]上可积时,g 在[a,b]上也可积,且 ()().χχχχd g a b d f a b ??= 3.设f 在[a,b]上有界,{}[], ,b a a n ?.lim c a n n =∞ →证明:在[a,b]上只有 ()Λ,2,1=n a n 为其间断点,则f 在[a,b]上可积。 4.证明:若f 在区间?上有界,则 ()()()()"','".sup sup inf f f f f χ χχχχχχχ∈? ∈? ∈? -=-。 §4 定积分的性质 1.证明:若f 与g 都在[a,b]上可积,则 ∑?=→=?n i b a i i i T dx x g x f x g f 1 0,)()()()(lim ηξ 其中i i ηξ,是T 所属小区间△i 中的任意两点,i=1,2…,n. 2.不求出定积分的值,比较下列各对定积分的大小:

经济数学(二重积分习题及答案)

第九章二重积分 习题 9-1 1.设0),(≥y x f ,试阐述二重积分(,)d D f x y σ ??的几何意义. 解 当0),(≥y x f 时,二重积分(,)d D f x y σ??表示的是以xy 平面上的有界闭区间为底, 以曲面),(y x f z =为顶,母线平行于z 轴,准线为区域D 的边界的一个曲顶柱体的体积. 2.试确定下列积分的符号并说明理由: 221 (1) ln()d d x y x y x y +<+?? 224 (2) d x y x y *+≤?? 解 (1) 因 1x y +<, 则将此式两边平方,得 220121 x y xy ≤+<-< 于是 0)ln(2 2 <+y x 故 221 ln()d d 0. x y x y x y +<+

二重积分的计算方法

重庆三峡学院数学分析课程论文 二重积分的计算方法 院系数学与统计学院 专业数学与应用数学(师范) 姓名 年级 2010级 学号 指导教师刘学飞 2014年5月

二重积分的计算方法 (重庆三峡学院数学与统计学院10级数本1班) 摘 要 :本文总结出了求二重积分的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 引言 二重积分的概念和计算是多元函数微积分学的重要部分,在几何、物理、力学等方面有着重 要的应用.重积分是由一元函数积分推广而来的,但与一元函数相比,计算重积分的难度除了与被 积函数有关外,还与积分区域的特点有关,计算重积分的主要思想方法是化重积分为累次积分.求 二重积分的方法很多且非常灵活,本文归纳了二重积分计算的一些常见方法和技巧. 1. 预备知识 1.1二重积分的定义 设(),f x y 是定义在可求面积的有界区域D 上的函数. J 是一个确定的数,若对任给的正数 ε,总存在某个正数δ,使对于D 的任意分割T ,当它的细度T δ<时,属于T 的所有积分和都有 ()1 ,n i i i i f J ξησ ε=?-<∑, 则称(),f x y 在D 上可积,数J 称为函数(),f x y 在D 上的二重积分,记作(),D J f x y d σ= ??, 其中(),f x y 称为二重积分的被积函数, ,x y 称为积分变量, D 称为积分区域. 1.2二重积分的若干性质 1.21若(),f x y 在区域D 上可积, k 为常数,则(),kf x y 在D 上也可积,且 (),D kf x y d σ??(),D k f x y d σ=??. 1.22 若(),f x y ,(),g x y 在D 上都可积,则()(),,f x y g x y ±在D 上也可积,且 ()()[,,]D f x y g x y d σ±??()(),,D D f x y d g x y d σσ=±????.

定积分习题

第九章 定 积 分 练 习 题 §1定积分概念 习 题 1. 按定积分定义证明:?-=b a a b k kdx ).( 2. 通过对积分区间作等分分割,并取适当的点集{}i ξ,把定积分看作是对应的积分和的极限,来计算下列定积分: (1)?∑=+= 1 1 22 33 )1(4 1:;n i n n i dx x 提示 (2)?10;dx e x (3)?b a x dx e ; (4 )2(0).(:b i a dx a b x ξ<<=? 提示取 : §2 牛顿一菜布尼茨公式 1.计算下列定积分: (1)?+1 0)32(dx x ; (2)?+-1 022 11dx x x ; (3)?2ln e e x x dx ; (4)?--1 02dx e e x x ; (5)?302tan π xdx (6)?+94 ;)1(dx x x (7)?+4 0;1x dx (8)?e e dx x x 12 )(ln 1 2.利用定积分求极限: (1));21(13 34lim n n n +++∞→ (2);)(1)2(1) 1(1222lim ??????++++++∞→n n n n n n # (3));21 )2(111( 222lim n n n n n +++++∞ →

(4))1sin 2sin (sin 1lim n n n n n n -+++∞→ ππ 3.证明:若f 在[a,b]上可积,F 在[a,b]上连续,且除有限个点外有F '(x ) =f (x),则有 ()()().b a f x dx F b F a =-? §3 可积条件 1. 证明:若T ˊ是T 增加若干个分点后所得的分割,则∑∑?≤?' .''T T i i i i χωχω 2. 证明:若f 在[a,b]上可积,[][][]上也可积在则ββ,,,,a f b a a ?. ! 3.设f ﹑g 均为定义在[a,b]上的有界函数。证明:若仅在[a,b]中有限个点处 ()(),χχg f ≠则当f 在[a,b]上可积时,g 在[a,b]上也可积,且()().χχχχd g a b d f a b ??= 3. 设f 在[a,b]上有界,{}[], ,b a a n ?.lim c a n n =∞ →证明:在[a,b]上只有 () ,2,1=n a n 为其间断点,则f 在[a,b]上可积。 4. 证明:若f 在区间?上有界,则 ()()()()"','".sup sup inf f f f f χ χχχχχχχ∈? ∈? ∈? -=-。 §4 定积分的性质 1.证明:若f 与g 都在[a,b]上可积,则 ∑?=→=?n i b a i i i T dx x g x f x g f 1 0,)()()()(lim ηξ 其中i i ηξ,是T 所属小区间△i 中的任意两点,i=1,2…,n. 《 2.不求出定积分的值,比较下列各对定积分的大小: (1)??1 1 0;2dx x xdx 与 (2)??20 20 .sin π π xdx xdx 与 3.证明下列不等式:

二重积分练习题,DOC

二重积分自测题(一)选择题 1.设D 是由直线0=x ,0=y ,3=+y x ,5=+y x 所围成的闭区域, 记:??σ+=D d y x I )ln(1,??σ+=D d y x I )(ln 22,则() A .21I I < B .21I I > C .122I I = D .无法比较 2.设D 是由x 轴和∈=x x y (sin [0,π])所围成,则积分??=σD yd () A .6π B .4π C .3π D .2 π 3.设积分区域D 由2x y =和2+=x y 围成,则=σ??D d y x f ),(() A .??-+212 2 ),(x x dy y x f dx B .??-212 0),(dy y x f dx C .??-+1 22 2 ),(x x dy y x f dx D .??+1 02 2 ),(x x dy y x f dx 4.设),(y x f 是连续函数,则累次积分??=4 02),(x x dy y x f dx () A .??404 12 ),(y y dx y x f dy B .?? -4 0412),(y y dx y x f dy C .??4041),(y dx y x f dy D .??402 12 ),(y y dx y x f dy 5.累次积分??=-202 2 x y dy e dx () A .)1(212--e B .)1(314--e C .)1(214--e D .)1(3 12--e 6.设D 由 141 22≤+≤y x 确定,若??σ+=D d y x I 2 2 11,??σ+=D d y x I )(222, ??σ+=D d y x I )ln(223,则1I ,2I ,3I 之间的大小顺序为()

二重积分的计算方法

第二节 二重积分的计算法 教学目的:熟练掌握二重积分的计算方法 教学重点:利用直角坐标和极坐标计算二重积分 教学难点:化二重积分为二次积分的定限问题 教学内容: 利用二重积分的定义来计算二重积分显然是不实际的,二重积分的计算是通过两个定积分的计算(即二次积分)来实现的. 一、利用直角坐标计算二重积分 我们用几何观点来讨论二重积分的计算问题. 讨论中,我们假定 ; 假定积分区域可用不等式 表示, 其中, 在上连续. 据二重积分的几何意义可知,的值等于以为底,以曲面为顶的曲顶柱体的体积. 在区间上任意取定一个点,作平行于面的平面,这平面截曲顶柱体所得截面是一个以区间为底,曲线为曲边的曲边梯形,其面积为

一般地,过区间上任一点且平行于面的平面截曲顶柱体所得截面的面积为 利用计算平行截面面积为已知的立体之体积的方法,该曲顶柱体的体积为 从而有 (1) 上述积分叫做先对Y,后对X的二次积分,即先把看作常数,只看作的函数,对 计算从到的定积分,然后把所得的结果( 它是的函数 )再对从到计算定积分. 这个先对, 后对的二次积分也常记作 在上述讨论中,假定了,利用二重积分的几何意义,导出了二重积分的计算公式(1).但实际上,公式(1)并不受此条件限制,对一般的(在上连续),公式(1)总是成立的. 例如:计算 解: 类似地,如果积分区域可以用下述不等式 表示,且函数,在上连续,在上连续,则 (2)

显然,(2)式是先对,后对的二次积分. 二重积分化二次积分时应注意的问题 1、积分区域的形状 前面所画的两类积分区域的形状具有一个共同点: 对于I型(或II型)区域, 用平行于轴(轴 )的直线穿过区域内部,直线与区域的边界相交不多于两点. 如果积分区域不满足这一条件时,可对区域进行剖分,化归为I型(或II型)区域的并集. 2、积分限的确定 二重积分化二次积分, 确定两个定积分的限是关键.这里,我们介绍配置二 次积分限的方法 -- 几何法.画出积分区域的图形(假设的图形如下 ) 在上任取一点,过作平行于轴的直线,该直线穿过区域,与区域的边界有两个交 点与,这里的、就是将,看作常数而对积分时的下限和上限; 又因是在区间上任意取的,所以再将看作变量而对积分时,积分的下限为、上限为 . 例1计算,其中是由轴,轴和抛物线在第一象限内所围成的区域.

定积分典型例题

定积分典型例题 例1 求21lim n n →∞ . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+ =1lim n n →∞+ =34=?. 例2 0 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 ? =2 2 tdt ππ- ? =2tdt =220 2cos tdt π ?= 2 π 例3 比较1 2 x e dx ?,2 1 2 x e dx ?,1 2 (1)x dx +?. 分析 对于定积分的大小比较,可以先算出定积分的值再比较大小,而在无法求出积分值时则只能利用定积分的性质通过比较被积函数之间的大小来确定积分值的大小. 解法1 在[1,2]上,有2 x x e e ≤.而令()(1)x f x e x =-+,则()1x f x e '=-.当0x >时,()0f x '>,()f x 在(0,)+∞上单调递增,从而()(0)f x f >,可知在[1,2]上,有1x e x >+.又 1 22 1 ()()f x dx f x dx =-? ?,从而有2 111 2 2 2 (1)x x x dx e dx e dx +>>???. 解法2 在[1,2]上,有2 x x e e ≤.由泰勒中值定理2 12! x e e x x ξ=++得1x e x >+.注意到 1 2 2 1 ()()f x dx f x dx =-? ?.因此 2 1 11 2 2 2 (1)x x x dx e dx e dx +>>? ??. 例4 估计定积分2 2x x e dx -?的值. 分析 要估计定积分的值, 关键在于确定被积函数在积分区间上的最大值与最小值.

二重积分习题答案

二重积分习题答案 This model paper was revised by the Standardization Office on December 10, 2020

第八章二重积分习题答 案 练习题 1.设D :0y ≤,0x a ≤≤,由二重积分的几何意义 计算d D x y 解:d D x y =200 d π θ?? =222 01()2r d a r π θ=--?? 2. 设二重积分的积分区域为2214x y ≤+≤,则2dxdy =?? 解:2dxdy =??22 1 26d rdr π θπ=? ? 练习题 1.2d D x σ??其中D 是两个圆,y x 122=+与,y x 422=+围成的环型区域. 解:2d D x σ??=22 222301 001515 cos [cos2]84 d r dr d d πππθθθθθπ= +=???? 2计算二重积分σd y x D )3 41(-- ??,其中D 是由直线2,,2=-=x x ;1,1=-=y y 围成的矩形。 解:σd y x D )341(--??= 221211212(1)[(1)]4346x y x y dx dy y dx ------=--??? =222(1)84 x dx --=?

3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积. 解: 2 2 2 42 20 2320(42) 28(2)|33 x x x D A dxdy dx dy x x x x -===-=- =????? 4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积 解: 22 222 2 (4)(4)48D V x y d d r rdr d ππ σθθπ=--=-==????? 习 题 八 一.判断题 1.d D σ??等于平面区域D 的面积.(√) 2.二重积分 100f(x,y)d y dy x ??交换积分次序后为1 1 f(x,y)d x dx x ? ? (×) 二.填空题 1.二重积分的积分区域为2214x y ≤+≤,则4dxdy = ?? 12π12π. 2.二重积分d d D xy x y ??的值为 1 12 ,其中2:0D y x ≤≤,01x ≤≤. 112 3.二重积分10 (,)y dy f x y dx ??交换积分次序后为 11 (,)x dx f x y dy ?? . 11 (,)x dx f x y dy ?? 4.设区域D 为1x ≤,1y ≤,则??(sin x x -)d d x y = 0.0 5.交换积分次序

习题课 (4) 含参积分与二重积分题目_46401582

习题课 (4) 含参积分与二重积分 一. 含参积分 1. 设dt ds e x f x x t s ???? ? ???=-02)(, 求)(x f '与)(x f . 2. 求)(x f ', 其中? -=x x y x dy e x f cos sin 12 )(. 3. 求?+→++a a a a x dx 12 201lim 4. 能否交换顺序? dx e y x y x y ? -→10 20 2 2 lim 二. 二重积分 1. 将二重积分 ()dx y x f D ?? ,, ?? ? ??≥≥-+≤-+00204:2222y ax y x ax y x D , 化成累次积分,交换积分次序。 2. )(t f 为连续函数, D 是由1,1,3-===x y x y 围成的区域, 则 =+??D dxdy y x xyf )(22 .

3. 设)(x f 在[]b a ,上连续, 利用二重积分证明: ??-≤?? ????b a b a dx x f a b dx x f )()()(22 其中等号当且仅当)(x f 为常数时成立. 4. 交换积分()??π 20 sin 0 ,x dy y x f dx 的积分次序. 5. 不计算,判断二重积分?? ≤+--4 3 22221y x dxdy y x 的符号. 6. 设σd y x I D 221cos +=??,()σd y x I D 222cos +=??,() σd y x I D 2 223cos +=??,其中 {} 1),(22≤+=y x y x D ,则( ) (A )123I I I >> (B )321I I I >> (C )312I I I >> (D )213I I I >> 7. 设{} 0,0,42 2≥≥≤+=y x y x D ,)(x f 为D 上的正值连续函数,b a , 为常数,则

不定积分例题及答案

第4章不定积分 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!

★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C --==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+? ?? ★★(5)4223311x x dx x +++? 思路:观察到422 22 3311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:422 32233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

二重积分习题答案

第 八 章 二 重 积 分 习 题 答 案 练习题8.1 1.设D : 0y ≤,0x a ≤≤,由二重积分的几何意义 计算 d x y 1.D ??2D 解:σd y x D 341(--??= 22 1 21 1212(1[(1]4346x y x y dx dy y dx ------=--??? =2 22(1)84 x dx --=? 3. 应用二重积分,求在xy 平面上由曲线224x x y x y -==与所围成的区域D 的面积.

解: 2 2 2 42 20 2320(42) 28(2)|33 x x x D A dxdy dx dy x x x x -===-=- =????? 4. 求旋转抛物面224z x y =--与xy 平面所围成的立体体积 解: 2222 2 2 (4)(4)48D V x y d d r rdr d ππ σθθπ=--=-==????? 1.D ??2.1.2. 3.二重积分0 (,)dy f x y dx ?? 交换积分次序后为 (,)x dx f x y dy ?? . (,)x dx f x y dy ?? 4.设区域D 为1x ≤,1y ≤,则??(sin x x -)d d x y = 0.0 5.交换积分次序 1 d (,)y f x y dx ? = 2 1 1 (,)(,)x dx f x y dy f x y dy +?? .

2 1 1 (,)(,)x dx f x y dy f x y dy +?? 6.设D 是由221x y +≤所确定的区域。则22 1D dxdy x y ++?? =_ln 2πln2π 三. 选择题 1. 20x =, ). 2.3. ). 4.设D 是由22x y a +≤所确定的区域,当a =( B )时D π= A 1 B C . D 四 计算二重积分

第09篇二重积分(习题)

第九章 二重积分 习题9-1 1、设??+= 1 322 1)(D d y x I σ, 其中}22,11|),{(1≤≤-≤≤-=y x y x D ; 又??+= 2 322 2)(D d y x I σ, 其中}20,10|),{(2≤≤≤≤=y x y x D , 试利用二重积分的几何意义说明1I 与2I 之间的关系. 解:由于二重积分1I 表示的立体关于坐标面0=x 及0=y 对称,且1I 位于第一卦限部分与2I 一致,因此214I I =. 2、利用二重积分的几何意义说明: (1)当积分区域D 关于y 轴对称,),(y x f 为x 的奇函数,即 ),(),(y x f y x f -=-时,有0),(=??D d y x f σ; (2)当积分区域D 关于y 轴对称,),(y x f 为x 的偶函数,即 ),(),(y x f y x f =-时,有 ????=1),(2),(D D d y x f d y x f σ σ,其中1D 为D 在 0≥x 的部分. 并由此计算下列积分的值,其中}|),{(2 2 2 R y x y x D ≤+=. (I)??D d xy σ4 ; (II)??--D d y x R y σ2 2 2 ; (III)??++D d y x x y σ2 231cos . 解:令??= D d y x f I σ),(,??=1 ),(1 D d y x f I σ,其中1 D 为D 在0≥x 的部分, (1)由于D 关于y 轴对称,),(y x f 为x 的奇函数,那么I 表示的立体关于坐标面0=x 对称,且在0≥x 的部分的体积为1I ,在0

不定积分的例题分析及解法[1]

不定积分的例题分析及解法 这一章的基本概念是原函数、不定积分、主要的积分法是利用基本积分公式,换元积分法和分部积分法。对于第一换元积分法,要求熟练掌握凑微分法和设中间变量)(x u ?=,而第二换元积分法重点要求掌握三角函数代换,分部积分法是通过“部分地”凑微分将?υud 转化成?du υ,这种转化应是朝有利于求积分的方向转化。对于不同的被积函数类型应该有针对性地、灵活地采用有效的积分方法,例如)(x f 为有理函数时,通过多项式除法分解成最简分式来积分,)(x f 为无理函数时,常可用换元积分法。 应该指出的是:积分运算比起微分运算来,不仅技巧性更强,而且业已证明,有许多初等函数是“积不出来”的,就是说这些函数的原函数不能用初等函数来表示,例如 dx x x ? sin ;dx e x ?-2 ;dx x ? ln 1;? -x k dx 2 2 sin 1(其中10<