搜档网
当前位置:搜档网 › 灭菌温度与时间关系

灭菌温度与时间关系

灭菌温度与时间关系

杀灭细菌芽孢的温度和时间

[4]McCulloch, E.C., Disinfection and Sterilization, 2nd, P.472, Philadelphia, Lea & Febiger, 1946.

气温的时空变化规律资料

气温的时空变化规律 1.气温的日变化规律 一天中气温变化规律,主要由大气得到热量(地面辐射)和失去热量(大气辐射)的差值决定。 地面的热量主要来自太阳辐射;大气(对流层)的热量直接来着地面。 (1)太阳辐射:最强时为当地地方时12时。 (2)地面辐射:当地地方时为12点时,地面获得的太阳辐射热量大于地面损失的辐射热量,地面热量盈余,地面温度仍在升高。当地地方时大约午后1点左右,地面热量由盈余转为亏损,地面温度为一天中最高值。 (3)大气温度:当地地方时大约午后2点左右,地面已经通过辐射、对流、湍流等方式把热量传给大气,此时气温达到最高值。随后,太阳辐射继续减弱,地面热量持续亏损,地面温度不断降低,气温随之也不断下降。至日出后,地面热量由亏损转为盈余的时刻,地面温度达到最低值,气温也随后达到最低值。因此气温最低值总是出现在日出前后。 2.气温的年变化规律 由于地面吸收、储存、传递热量的原因,气温在一年中的最高、最低值,也并不出现在辐射最强、最弱的月份,而是有所滞后。 3.全球气温水平分布规律 (1)气温从低纬向各纬递减。太阳辐射是地面热量的根本来源,并由低纬向高纬递减。受太阳辐射、大气运动、地面状况等因素影响,等温线并不完全与纬线平行。 (2)南半球的等温线比北半球平直。南半球物理性质比较均一的海洋比北半球广阔,气温变化和缓。 (3)北半球1月份大陆等温线向南(低纬)凸出,海洋上则向(高纬)凸出;7月份正好相反。在同一纬度上,冬季大陆比海洋冷,夏季大陆比海洋热。同一纬度的陆地与海洋,热的地方等温线向高纬凸出,冷的地方等温线向低纬凸出,即“热高冷低”。 (4)7月份,世界值热的地方是北纬20-30大陆上的沙漠地区,撒哈拉沙漠是全球炎热中心,1月份,西伯利亚是全球的寒冷中心,世界极端最低气温出现在南极洲大陆上。 二、等温差线 1、气温的日变化 (1)气温的日变化 一天中气温随时间的连续变化,称气温的日变化。在一天中空气温度有一个最高值和一个最低值,两者之差为气温日较差。通常最高温度出现在14~15时,最低温度出现在日出前后。 由于季节和天气的影响,出现时间可能提前也可能落后。比如,夏季最高温度大多出现在14~15时;冬季则在13~14时。由于纬度不同日出时间也不同,最低温度出现时间随纬度的不同也会产生差异。气温日较差小于地表面土温日较差,并且气温日较差离地面越远则越小,最高、最低气温出现时间也越滞后。 (2) 气温的日变化与农业生产 在农业生产上有时需要较大的气温日较差,这样有利于作物获得高产。因为,日较差大就意味着,白天温度较高,而夜间温度较低,这样白天叶片光合作用强,制造碳水化合物较多,而夜间呼吸消耗少,积累较多,作物产量高,品质好。 (3)影响气温日较差的因素有: 气温的日变化规律,主要是由太阳辐射在地表面上有规律的日变化引起的,同时也受纬度、季节、地形、下垫面性质、天气状况和海拔高度等因素的影响。

气温空间分布和时间变化

气温空间分布和时间变化 主要知识点: 1气温垂直分布 2气温水平分布 3气温日变化和年变化 一、气温垂直分布 ⑴读下表记忆低层大气的主要成分及作用 ⑵读下图比较对流层和平流层的主要特点 答案:对流层气温随高度增加而递减;空气以对流运动为主;天气现象复杂多变 平流层气温随高度增加而增减;空气以平流运动为主;天气晴朗稳定 重要结论: 1对流层气温垂直递减率:6℃/1000米 2上冷下热利于空气对流 低层大气组成 体积(%) 作用 干 洁 空 气 N 2 78 地球生物体蛋白质的重要组成部分 O 2 21 人类和一切生物维持生命活动所必需的物质 CO 2 0.033 绿色植物进行光合作用的基本原料,并对地面起保温作用 03 很少 能吸收太阳紫外线,对地球上的生物起着保护作用 水汽 很少 产生云、雨、雾、雪等天气现象;影响地面和大气的温度 固体杂质 很少 作为凝结核,是成云致雨的必要条件

图2为北半球中纬度某地某日5次观测到的近地面气温垂直分布示意图。当日天气晴朗,日出时间为5时。读图回答3~4题。(10高考文综卷) 3.由图息可分析出 A.5时、20时大气较稳定 B.12时、15时出现逆温现象 C.大气热量直接来自太阳辐射 D.气温日较差自下而上增大 4.当地该日 A.日落时间为17时 B.与相比白昼较长 C.正午地物影子年最长 D.正午太阳位于正北方向 答案:3.A 4.B 二、气温水平分布

世界气温水平分布规律 ①在南北半球上,无论 7 月或 1 月,气温都是从低纬向两极递减。 ②南半球的等温线比北半球平直 ③北半球,1月份大陆上的等温线向南(低纬)凸出,海祥上则向北(高纬)凸出;7 月份正好相反。 ④7 月份,世界上最热的地方是北纬20°-30°大陆上的沙漠地区。1 月份,西伯利亚形成北半球的寒冷中心。世界极端最低气温出现在冰雪覆盖的南极洲大陆上。 中国一、七月气温分布特点? 一月:由南向北降低,南北温差大 七月:除青藏高原和高山外,普遍高温,南北温差小

温度的变化

温度的变化 1、用图像分析变量之间的关系 图像是刻画变量之间的关系的一重要方式,其特点是非常的直观。用图像表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量;用竖直方向的数轴(称为纵轴)上的点表示因变量。 2、变量之间关系的表达方式与特点 表达方式特点 表格多个变量可以同时出现在一张表格中 关系式准确地反映因变量与自变量的数值关系 图像形象地给出了因变量随自变量的变化趋势 一般题型 1、如图是某地一天的气温随时间变化的图象,根据图象可知,在这一天中最高气温与达到最高气温的时刻分别是() A.14℃,12时B.4℃,2时 C.12℃,14时D.2℃,4时 练习 1、下图是西安市99年某天的气温随时间变化的图象:那么这天() A.最高气温10℃,最低气温2℃ B.最高气温10℃,最低气温-2℃ C.最高气温6℃,最低气温-2℃ D.最高气温6℃,最低气温2℃

2、下图是桂林冬季某一天的气温随时间变化的图象:请根据图象填空: 在时气温最低,最低气温为℃,当天最高气温为℃,这一天的温差为℃(所有结果都取整数). 、 经典题型 1、如图是某地一天的气温随时间变化的图象,根据这张图回答: 2、在这一天中, (1)什么时间气温最高?什么时间气温最低?最高气温和最低气温各是多少度? (2)20时的气温是多少? (3)什么时候气温为6℃? (4)哪段时间内气温不断下降? (5)哪段时间内气温持续不变? 练习 1、如图是襄樊地区一天的气温随时间变化的图象,根据图象回答:在这一天中: (1)气温T(℃)(填“是”或“不是”)时间t(时)的函数. (2)时气温最高,时气温最低,最高汽温是℃,最低气温是℃. (3)10时的气温是℃. (4)时气温是4℃. (5)时间内,气温不断上升.

科普阅读:气温的时间变化

气温的时间变化 午热晨凉、冬寒夏暑,这是气温随时间变化的一般规律。随着地球以一日为周期的绕轴自转和以一年为周期的绕太阳公转,某一地区所接受的太阳辐射的数量就出现以日、年为周期的变化,从而导致气温的昼夜(日)和季节(年)变化。 (1)气温昼夜变化 它是指气温以一日为周期的有规律变化。气温日变化的特点是,一天当中有一个最高值和一个最低值,最高值出现在午后两点钟左右,最低值出现在清晨日出前后。一天当中气温的最高值和最低值之差,称为气温日较差。它的大小反映了气温日变化的程度。 日出以后,随着太阳辐射的增强,地面净得热量,温度升高。此时,地面放出的长波辐射也随着温度的升高而增强,大气吸收了地面的长波辐射,气温也上升。到了正午,太阳辐射达到最强,气温也随之上升。此后,太阳辐射强度虽然开始减弱,但地面得到的热量仍比地面长波辐射推动的热量还要多,地面储存的热量仍在增加,所以地温继续升高,气温也随着升高。到午后一定时间,由于太阳辐射的进一步减弱,使地面得到的热量开始少于推动的热量,地温开始下降。地温的最高值就出现在地面热量由储存转为亏损、地温由上升转为下降的时刻。这一时刻通常在午后一小时左右。随后,由于地面热量不断地亏损,气温便逐渐下降,一直下降到清晨日出之前地面储存的热量减至最少为止。所以,最低气温出现在清晨日出前后,而不是在半夜。由此看来,一昼夜间气温的高低不仅取决于接受太阳辐射数量的多少,取决于地面的热量收支,即地面接收的太阳辐射的数量和向外放射的地面有效辐射的数量之差。如收入多于支出,则地面储存的热量增加;反之,则减少。 同时还可以看出,任何一个地方,每一天的气温日变化都有一定的规律性。但由于受众多因素的影响,又不是前一天的简单重复。因此,需要全面考虑各种因素的综合影响。 (2)气温季节变化 它是指气温以一年为周期的有规律的变化。地球上绝大部分地区,一年中有一个最高值和一个最低值。由于气温的高低取决于地面储存热量的多少,地面储存热量最多的时期,就是气温最高值出现的时间;储存热量最少的时期,也就是

气温空间分布和时间变化

气温空间分布与时间变化 主要知识点: 1气温垂直分布 2气温水平分布 3气温日变化与年变化 一、气温垂直分布 ⑴读下表记忆低层大气得主要成分及作用 ⑵读下图比较对流层与平流层得主要特点 答案:对流层气温随高度增加而递减;空气以对流运动为主;天 气现象复杂多变 平流层气温随高度增加而增减;空气以平流运动为主;天气晴朗稳定 重要结论: 1对流层气温垂直递减率:6℃/1000米 低层大气组成 体积(%) 作用 干 洁 空 气 N 2 78 地球生物体内蛋白质得重要组成部分 O 2 21 人类与一切生物维持生命活动所必需得物质 CO 2 0、033 绿色植物进行光合作用得基本原料,并对地面起保温作用 03 很少 能吸收太阳紫外线,对地球上得生物起着保护作用 水汽 很少 产生云、雨、雾、雪等天气现象;影响地面与大气得温度 固体杂质 很少 作为凝结核,就是成云致雨得必要条件

2上冷下热利于空气对流 图2为北半球中纬度某地某日5次观测到得近地面气温垂直分布示意图。当日天气晴朗,日出时间为5时。读图回答3~4题。(10高考山东文综卷) 3、由图中信息可分析出 A、5时、20时大气较稳定 B、12时、15时出现逆温现象 C、大气热量直接来自太阳辐射 D、气温日较差自下而上增大 4、当地该日 A、日落时间为17时 B、与海口相比白昼较长 C、正午地物影子年内最长 D、正午太阳位于正北方向 答案:3.A 4.B 二、气温水平分布

世界气温水平分布规律 ①在南北半球上,无论 7 月或 1 月,气温都就是从低纬向两极递减。 ②南半球得等温线比北半球平直 ③北半球,1月份大陆上得等温线向南(低纬)凸出,海祥上则向北(高纬)凸出;7 月份正好相反。 ④7 月份,世界上最热得地方就是北纬20°-30°大陆上得沙漠地区。1 月份,西伯利亚形成北半球得寒冷中心。世界极端最低气温出现在冰雪覆盖得南极洲大陆上。 中国一、七月气温分布特点? 一月:由南向北降低,南北温差大 七月:除青藏高原与高山外,普遍高温,南北温差小

一维热传导条件下测点温度与加热时间的相关性研究

Advances in Geosciences 地球科学前沿, 2016, 6(2), 72-78 Published Online April 2016 in Hans. https://www.sodocs.net/doc/3d2013710.html,/journal/ag https://www.sodocs.net/doc/3d2013710.html,/10.12677/ag.2016.62009 文章引用: 刘子文, 朴春德, 谢亮, 李斌, 杨大帅, 潘东玥. 一维热传导条件下测点温度与加热时间的相关性研究[J]. Correlation between the Measured Point Temperature and the Heating Time under the Conditions of One-Dimensional Heat Conduction Ziwen Liu *, Chunde Piao #, Liang Xie, Bin Li, Dashuai Yang, Dongyue Pan School of Resources and Earth Science, China University of Mining, Xuzhou Jiangsu Received: Mar. 28th , 2016; accepted: Apr. 18th , 2016; published: Apr. 21st , 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.sodocs.net/doc/3d2013710.html,/licenses/by/4.0/ Abstract In order to study the relationship between the changes of linear heating device testing point temperature and heating time in the heat transfer process, we study the relevance between radiation values E and the power P at the center of the heating device. Based on the nature of the surrounding conductive medium, we derived one-dimensional heat conduction model which considered the time delay parameters. We verify the suitability of the theoretical model through laboratory experiments by heating bar arrangement. The results show that test point tempera-ture slope is gradually reduced and stabilized when the test point temperature difference grad-ually rises in the effect of heat conduction. Through the measured temperature values compared with theoretical calculations, it showed that the maximum relative error reached 20% in early experiments, but the temperature difference decreased and tended to zero with the increase of heating time and source of power, showed that theoretical formula derived realistic in this pa-per. Keywords One-Dimensional Heat Conduction, Temperature Distribution, Temperature Gradient *第一作者。 #通讯作者。

老化时间与温度关系

老炼是一个很重要的步骤,因为它建立了在压缩的时间框架内模拟实际操作的电和热的条件。元器件特别是集成电路有高的早期失效率。这样,若元器件有失效的倾向,它将在几个月内发生失效。老炼缩短了这个时间。在125℃下老炼160h等效于在室温环境下工作一年。半导体器件倾向于有多种失效类型,其中之一是离子迁移,它一般发生在钝化层中或钝化层上,或在金属导体之间。氯化物或纳离子沾污是两种占主流的离子沾污形式。在有沾污的NPN晶体管中,带正电荷的钠离子,在温度和偏压条件下很容易迁移到N惨杂区,引起高的漏电流甚至短路。而氯离子迁移到P掺杂区材料处,引起NPN晶体管发射极-集电极短路。这些缺陷也许在几个月内不能察觉,但是在由老炼提供高温和功率的组合下加速了离子的迁移而又不会影响正常的失效率。衰老是与金属迁移、长期域值漂移和腐蚀箱关联的。Arrhenius方程制约着电子器件的反应失效率: F=Ae(-Ea/kT) 式中 F ——失效率; Ea ——激活能(在0.3 2.3eV间变化,若不知道,MIL-STD-883允许使用Ea=1.0eV); k ——波耳兹曼常数(8.63×10-5eV/K); T ——热力学温度表示的结温(K); 为了比较正常工作时的失效率(F1)与老炼后的失效率(F2)。此方程可做如下修改: F1/F2=(Ae-Ea/KT1)/(Ae-Ea/KT2)=e-(E/k)(1/T1-1/T2) 例如:在结温125℃时老炼168小时,对应于在50℃工作1.1年(9639h)。该计算的基础是Ea=0.6eV。结温有一很小变化,就会在失效率上产生很大的变化,例如,若在上述例子中部件在结温135℃时老炼168小时,等效工作时间将是1.7年(14892h)。 e=2.7182…;K=273.15+t

胶体金制备放大过程与时间、温度的关系

第一话——烧金 (一)基本概念: 1.1、金子大小:常用20、40、60nm的胶体金颗粒(粒径大小); 1.2、另外,在说金子大小的时候,有些人还用λ525、530表示,这个是指胶体金最大吸收峰位置,理论上这个值比说40nm要准确,因为40nm是估的,这个是实实在在测的,但是他与颗粒大小仅仅有“一定的“关系,而且这个”一定的“很不一定。√√√ 1.3、其他要说明的是,颗粒越小,颜色越粉嫩(偏粉红),最终显色越弱,特异性相对越好;相反颗粒越大,颜色越老土(偏紫,但70nm以上就真的土了,有点泥巴色了),显色越强,特异性相对越差。√ 2、金子浓度:万分之一、万分之二、万分之四等等,指烧金时溶液中氯金酸的浓度。由于反应非常迅速,浓度越高,金子质量越不容易控制,标记时的表现也是这样,高浓度金不容易控制。√注意当别人问你用多大浓度的金子时,不要回答人家40nm或λ530的,这会比较尴尬。 3、反应原理: 3.1、氯金酸被柠檬酸三钠还原成胶体金颗粒,其过程为金离子(并非全部)→还原成金原子→迅速形成20面体的金核→其他金原子吸附到晶核上→生长成椭球形的带负电的金颗粒(双电层结构,胶体金表面吸附着负电的AuCl2-离子,相对的H+则分散于胶体之间的溶液中)。√ 3.2、氯金酸一定时,还原剂数量决定了最初的晶核数量,决定了胶体金颗粒的大小。还原剂越多,晶核数量越多,最终的颗粒体积越小,通过控制二者比例,我们可以制备不同大小的胶体金颗粒。 3.3、常用的40nm左右的金,发红色,一般是1:1的关系,由于不同厂家原料也有影响,如果你感觉烧出来的偏紫,又很想要红色,下次烧金就再稍微增加点还原剂即可,√

第四节 大气温度随时间的变化

第四节大气温度随时间的变化 一、气温的周期性变化 (一)气温的日变化 1、大气边界层的温度主要受地表面增温与冷却作用的影响而发生变化。 2、大气中的水平运动与垂直运动都会引起局地气温的变化。 3、近地层气温日变化的特征: (1)在一日内有一个最高值(出现在14时左右)和一个最低值(出现在日出前后)。(2)气温日较差的大小与纬度、季节和其他自然条件有关。 ①日较差最大的地区在副热带,向两极减少。 ②日较差夏季大于冬季。 ③凹地地形的日较差大于凸地地形;干燥地日较差大于潮湿地;晴天日较差大于阴天。(3)气温日变化的极值出现的时间随离地面的高度增大而后延,振幅随离地高度的增大而减小。 (地、气热量交换需要一个过程,垂距越大,耗时越长。所以海拔较高处气温的极大值和极小值出现的时间延后。离地高度越大,地面对大气温度的影响就越小,气温日变化的振幅(即日较差)也就越小。) (二)气温的年变化 1、一年中月平均气温有一个最高值和一个最低值。 2、北半球中、高纬度内陆地区的气温以7月为最高,1月为最低。北半球海洋上的气温8月最高,2月最低。 3、从赤道附近到极地地区,气温年较差变大。 4、同纬度地区,陆地气温年较差大于海洋;内陆气温年较差大于沿海。 气温的年变化按纬度分为四种类型: 1、赤道型 特征: (1)一年有两个最高值(春分和秋分以后)和两个最低值(冬至和夏至以后)。 (2)年较差很小。 2、热带型 特征: (1)一年有一个最高值(夏至以后)和一个最低值(冬至以后)。 (2)年较差不大。 3、温带型 特征: (1)有一个最高值(陆7月海8月)和一个最低值(陆1月海2月)。 (2)年较差较大,且随纬度的增加而增大。 4、极地型 特征: (1)一年有一次最高值和一次最低值。 (2)年较差很大。 二、气温的非周期性变化 1、大气运动引起气温的非周期性变化。 2、通常情况下,气温日变化和年变化的周期性是主要的。

影响气温日变化、年变化的因素

影响气温日变化、年变化的因素 一.气温的时间变化:取决于地面储热量的多少,落后于太阳高度的日变化与年变化。 1.日变化:一天中,若无明显天气过程的干扰,最低气温出现在日出前后,最高气温出现在午后2时(即当地地方时14:00)左右。天气因素也会影响到一天中气温最高值出现的时间。 气温日较差:一天中气温的变化幅度。一般规律:大陆性气候>海洋性气候;晴天>阴天。一天内,最高气温与最低气温的差值,称为气温日较差。它的大小反映了气温日变化的程度。如果某地一天之中,最高气温与最低气温的差值大,即日较差大,说明该地气温的日变化大。较大的气温日较差,白天温度高,有利于植物有机质的制造;夜间温度低,可以减少植物的呼吸损耗,利于植物营养物质的积累,使果实饱满,瓜果含糖量高。气温日较差的大小与地理纬度、季节、地表性质和天气状况等因素都有关系。 ①纬度:低纬度地区日较差大,高纬度地区日较差小。气温的日较差随纬度升高而减小的原因是:纬度较高地区的太阳高度的日变化小。 ②天气状况:一般地,晴天日较差大,阴天日较差小;如柴达木盆地较干燥,多晴少雨,白天日晒,增温急剧,夜间地面辐射强,降温快,其日较差就比较大;而在多阴雨的藏东南地区,白天增温不大,夜间云层低,地面辐射相对较弱,降温少,所以日较差较小。 ③季节:夏季气温日较差大,冬季气温日较差小。原因是:夏季的正午太阳高度角较大,白昼较长。 ④地形地势:凹地日较差大,凸地日较差小。原因是:在凸起地形,如山顶,因与陆地接触面积小,受到地面日间增热、夜间冷却的影响较小,又因风速较大,湍流交换强,再加上夜间冷空气可以沿坡下沉,而交换来自由大气中较暖的空气,因此气温日较差较小;凹陷地形则相反。 ⑤海拔高度:高海拔地形区日较差大,低海拔地形区日较差小。如高原地区气温日较差大的原因是:由于海拔高,空气稀薄,白天大气的削弱作用小,太阳辐射强烈,地面温度急剧升高,加速了近地面空气的升温作用,因此即使是在冬季,在阳光下也会感到温暖如春;到了夜晚,由于空气稀薄、水汽所含杂质少,地面热量大量向空中散失,近地面气温迅速下降,夜晚温度很低。 ⑥下垫面:由于下垫面物理性质的差异(物理热容量的大小)陆地日较差大,海洋日较差小;沙地日较差大,林日较差小。 2.年变化(北半球): 气温在一年之中也有一个最高值和一个最低值,分别被称为年最高气温和年最低气温。一般来说,年气温最高值在北半球大陆出现在7月份,在海洋上出现在8月份;年气温最低值在北半球大陆出现在1月份,在海洋上出现在2月份。 气温年较差:大陆性气候>海洋性气候;高纬度>低纬度 一年中气温的最高值与最低值之差,称为气温的年较差。它是指气温以一年为周期的有规律的变化。如果某地一年之中的最高气温与最低气温的差值大,即气温年较差大,说明该地气温的年变化大。气温的年变化的大小与纬度、地形、地表性质、海陆分布等因素有关。 纬度:高纬度地区气温年较差大,低纬度地区气温年较差小。气温的年较差随纬度的升高而升高的原因是:纬度越高,夏季白昼越长,冬季的正午太阳高度越小,白昼越短,因而气温的年较差越大。也就是说,由于大阳辐射的年变化高纬度地区比低纬度地区大,所以气温的年较差变化随纬度的变化与日较差变化相反,即纬度越高,年较差越大。赤道附近地区,全

冷冻肉品质与时间和温度变化的关系_王丹竹

作者简介:王丹竹(1981-),女,长期从事动物防疫检疫工作。 通讯作者:田科雄(1962-),教授,研究方向:动物营养与饲料科学。 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 以,该场的发病率较低,效益也好。 3.1.4关于繁殖问题 这5家养狐场母狐的怀孕率较低,其主要原因在于养殖户都是凭经验进行种狐的发情鉴定,依靠频繁的试情来进行,缺乏必要的科学手段,有时错过最佳的配种期。对种公狐的利用很少作合理的计划安排,多为每天交配1次,甚至2次,公狐得不到适当休息,精液的品质可能会下降。有部分青年母狐发情较晚,特别在配种后期,母狐虽然发情良好,但找不到能够配种的公狐,故而母狐的怀孕率较低。此外,养狐场还存在高产仔率,低育成率的问题,还可能与以下几点有关,第一,产仔数多于乳头数,有的仔狐吃不上奶。第二,泌乳量跟不上。第三,管理不当,幼狐在出生后17d左右睁眼,并且开始从巢箱爬出,19~20日龄与母狐一起吃食,仔狐开始吃食后,母狐不再舔食幼狐的粪便,这个时期易造成笼箱的污染和狐体的玷污,如管理不当易造成发病死亡。 3.2改进建议 第一,政府有关部门在养狐较集中的地区组织成立养狐服务中心,为养殖户提高技术咨询、定期培训,并实行饲料、疫苗、药品、销售一条龙服务。第二,推广使用人工授精技术。合理使用公狐,并对其配种效果实行监测;使用发情检测器进行发情鉴定。第三,加强管理提高仔狐成活率,也是目前养狐业提高繁殖效率的一个重要方面。 摘要:在冷冻肉的储藏过程中,随着冷藏时间和温度的变化,冷冻肉的品质也势必发生相应的变化,本文就冷冻肉品在冷藏期间发生的相关变化进行论述。 关键词:冷冻肉;贮藏;保鲜;时间;温度;品质;综述 肉中含有丰富的营养成份,在室温下放置过久,由于外界环境、微生物及自身酶等诸多因素的作用,会氧化分解以至腐败变质。低温冷冻贮藏是目前应用最为广泛、最经济、效果最好的一种肉类贮藏方法。冷冻肉是热鲜肉或冷鲜肉在-18℃以下冻结保存的肉[1],与新鲜肉相比具有安全性高的特点。有研究表明:冷冻猪肉与新鲜猪肉进行比较分析得出冷冻后的猪肉比新鲜猪肉食用更安全[2]。冷冻温度和冷冻时间与冷冻肉的品质息息相关。肉品长期在较低的温度下保藏也会出现各种异常的现象,结果降低肉品的食用品质[3]。国家规定,冻猪肉冷藏安全期为7~10个月,冻牛羊肉为8~10个月,冻禽肉为6~8个月。肉温低于-8℃的为冷冻良好;敲击时发音低哑钝浊、肉温高于-8℃的为冷冻不良。 1冷却冷藏与冻结冷藏的定义 冷藏(Refrigeration)分为冷却(Ehilling或Eooling)与冻结(Freezing),食品所含水分未变成冰晶者称为冷却,变成冰晶者称为冻结。但目前我们多不称冷却肉与冻结肉,而称冷藏肉与冷冻肉。冷却冷藏的温度不能充分抑制食肉的自家分解(Autolysis)、微生物的发育及干燥、氧化,因此只有不欲久存的肉品可冷却冷藏;冻结冷藏肉先经-36~-40℃急速冷冻处理,至中心温度达-18℃,再于-20℃以下冻结冷藏,可维持6个月至l年,所以需长期保存的肉品则必须以冻结冷藏,但以-20℃以下的低温冻结冷藏时,虽可长期保持品质,但无法防止升华、蛋白质不可逆变化之发生,因此,解冻后的品质,严格来讲,与冻结前是不同的。 2低温贮藏肉品的目的及基本原理 肌肉组织固有酶的作用和微生物大量生长繁殖可以造成肉品的自溶和腐败,这就需要用低温处理来抑制食肉本身酵 冷冻肉品质与时间和温度变化的关系 王丹竹田科雄(湖南农业大学动物科技学院410128)交流 24 中国畜禽种业2012.8

温度与电池的关系

温度与电池的关系 环境温度过高对蓄电池使用寿命的影响很大。温度升高时,蓄电池的极板腐蚀将加剧,同时将消耗更多的水,从而使电池寿命缩短。蓄电池在25℃的环境下可获得较长的寿命,长期运行温度若升高10℃,使用寿命约降低一半。 蓄电池应放置在通风、干燥、远离热源处和不易产生火花的地方,安全距离为0.5m以上。在环境温度为25℃~0℃内,每下降1℃,其放电容量约下降1%,所以电池宜在25℃~20℃环境中工作。 (1)温度与容量的关系 以GNB电池(阀控式蓄电池)在互联网上给出的大致标准是:25℃时,蓄电池的容量为100%;在25℃以下时,每升高10℃蓄电池的容量会减少一半;而在25℃以下时,温度与容量的关系如美1所示。 从表1不难看出,阀控式蓄电池的容量是随着温度的变化而变化的,维护人员必须认真做到根据实际温度的变化合理地调整蓄电池的放电电流,同时要控制好蓄电池的温度使其保持在22℃~25℃以内。 (2)热失控现象 由于阀控式蓄电池采用贫液设计,电池中灌注的电解液都吸附在玻璃纤维板上,当充电电流增大时,就需要通过安全阀来释放气体,因而造成了蓄电池失水、内阻增大、容量衰减和在充、放电过程中产生大量的热量。这些热量如来不及扩散使温度剧增,就会形成热失控。 热失控产生的原因还有没及时减小浮充电压、安全阀不严或开阀压过低等等,在热失控严惩的情况下如果放电,有可能使蓄电池瞬间电压骤降和蓄电池壳体温度上升至70℃~80℃,因此对热失控的问题必须引起高度的重视。 通过以上分析,对阀控式蓄电池的维护工作有了一些了解,要做好对阀控式蓄电池的维护就必须做到: a.在条件允许的情况下,蓄电池室应安装空调设备并将温度控制在22℃~25℃之间。这不仅可延长蓄电池的寿命,而且可使蓄电池有最佳的容量。 b.不论在任何情况下,蓄电池的浮充电压不应超过厂家给定的浮充值,并且要根据环境温度变化,随时利用电压调节系数±3mV/℃来调整浮充电压的数值。 c.鉴于不均衡性对阀控式蓄电池的影响,应采用浮充电压的下限值进行浮充供电。 d.在蓄电池不均衡性比较大或在较深度地放电以后,以及在蓄电池运行一个季度时,应采用均衡的方式对电池进行补充充电。在均衡充电时要注意环境温度的变化,并随环境温度的升高而将均衡电压设定的值降低。例如,如环境温度升高1℃,那么均衡充电的电压值就需降低3mV

气温的时空变化规律

气温得时空变化规律 1、气温得日变化规律 一天中气温变化规律,主要由大气得到热量(地面辐射)与失去热量(大气辐射)得差值决定。 地面得热量主要来自太阳辐射;大气(对流层)得热量直接来着地面。 (1)太阳辐射:最强时为当地地方时12时。 (2)地面辐射:当地地方时为12点时,地面获得得太阳辐射热量大于地面损失得辐射热量,地面热量盈余,地面温度仍在升高。当地地方时大约午后1点左右,地面热量由盈余转为亏损,地面温度为一天中最高值。 (3)大气温度:当地地方时大约午后2点左右,地面已经通过辐射、对流、湍流等方式把热量传给大气,此时气温达到最高值。随后,太阳辐射继续减弱,地面热量持续亏损,地面温度不断降低,气温随之也不断下降.至日出后,地面热量由亏损转为盈余得时刻,地面温度达到最低值,气温也随后达到最低值。因此气温最低值总就是出现在日出前后。 2、气温得年变化规律 由于地面吸收、储存、传递热量得原因,气温在一年中得最高、最低值,也并不出现在辐射最强、最弱得月份,而就是有所滞后。 3、全球气温水平分布规律 (1)气温从低纬向各纬递减。太阳辐射就是地面热量得根本来源,并由低纬向高纬递减.受太阳辐射、大气运动、地面状况等因素影响,等温线并不完全与纬线平行。 (2)南半球得等温线比北半球平直。南半球物理性质比较均一得海洋比北半球广阔,气温变化与缓。 (3)北半球1月份大陆等温线向南(低纬)凸出,海洋上则向(高纬)凸出;7月份正好相反.在同一纬度上,冬季大陆比海洋冷,夏季大陆比海洋热。同一纬度得陆地与海洋,热得地方等温线向高纬凸出,冷得地方等温线向低纬凸出,即“热高冷低”。 (4)7月份,世界值热得地方就是北纬20-30大陆上得沙漠地区,撒哈拉沙漠就是全球炎热中心,1月份,西伯利亚就是全球得寒冷中心,世界极端最低气温出现在南极洲大陆上。 二、等温差线 1、气温得日变化 (1)气温得日变化 一天中气温随时间得连续变化,称气温得日变化。在一天中空气温度有一个最高值与一个最低值,两者之差为气温日较差。通常最高温度出现在14~15时,最低温度出现在日出前后. 由于季节与天气得影响,出现时间可能提前也可能落后。比如,夏季最高温度大多出现在14~15时;冬季则在13~14时。由于纬度不同日出时间也不同,最低温度出现时间随纬度得不同也会产生差异。气温日较差小于地表面土温日较差,并且气温日较差离地面越远则越小,最高、最低气温出现时间也越滞后。 (2)气温得日变化与农业生产 在农业生产上有时需要较大得气温日较差,这样有利于作物获得高产.因为,日较差大就意味着,白天温度较高,而夜间温度较低,这样白天叶片光合作用强,制造碳水化合物较多,而夜间呼吸消耗少,积累较多,作物产量高,品质好. (3)影响气温日较差得因素有: 气温得日变化规律,主要就是由太阳辐射在地表面上有规律得日变化引起得,同时也受纬度、季节、地形、下垫面性质、天气状况与海拔高度等因素得影响。

相关主题