搜档网
当前位置:搜档网 › 公理、定理、推论区别与联系

公理、定理、推论区别与联系

公理、定理、推论区别与联系

精品文档

. 公理与定理、推断的区别

公理:是不能被证明但确实是正确的结论,是客观规律,比如两点之间线段最短。

定理:是在一定条件下,由公理推导证明出来的正确的结论。

推论:是由公理或定理推出的结论,也可以说是一个定理,但往往推论比定理限制条件多一些。

性质:数学对象某些特征。

还有定律:通过实验数据统计的方法得到的结论,叫做定律。

其中公理、定理、推论、定律都是真命题。

物理中的原理就是公理

所有的数学证明都需要定义与公理、定理、推论

垂径定理推论证明

一、 ③AE=BE ①⌒AC = ⌒BC ④CD ⊥ AB ②⌒AD = ⌒BD ⑤CD 过圆心(即CD 是直径) 证明:∵⌒AC = ⌒BC ,⌒AD = ⌒BD ∴⌒CAD = ⌒CBD = 圆周 ∴ CD 过圆心(即CD 是直径) 连接OA ,OB ∵⌒AD = ⌒BD ∴∠AOD=∠BOD 在△AOE 和△BOE 中 OA=OB ∠AOE=∠BOE OE=OE ∴△AOE ≌△BOE (SAS ) ∴AE=BE ,∠AEO=∠BEO=90° ∴CD ⊥AB 二、 ②⌒AD = ⌒BD ①⌒AC = ⌒BC ④CD ⊥AB ③AE=BE ⑤CD 过圆心(即CD 是直径) 证明:连接OA ,OB 在△AOE 和△BOE 中 OA=OB AE=BE OE=OE ∴△AOE ≌△BOE (SSS ) ∴∠AOE=∠BOE ,∠AEO=∠BEO=90° ∵∠AOE=∠BOE ∴⌒AD = ⌒BD ∵⌒AC = ⌒BC ,⌒AD = ⌒BD ∴⌒CAD = ⌒CBD = 圆周 ∴ CD 过圆心(即CD 是直径) ∵∠AEO=∠BEO=90° ∴CD ⊥AB 21 21

三、①⌒AC = ⌒BC ②⌒AD = ⌒BD ④CD⊥AB ③AE=BE ⑤CD过圆心(即CD是直径)证明过程同上 四、 ②⌒AD = ⌒BD ①⌒AC = ⌒BC③AE=BE ④CD⊥AB⑤CD过圆心(即CD是直径) 证明:连接OA,OB ∵CD⊥AB ∴∠AEO=∠BEO=90° 在Rt△AOE和Rt△BOE中 OA=OB OE=OE ∴Rt△AOE≌Rt△BOE(HL) ∴∠AOE=∠BOE,AE=∠BE ∵∠AOE=∠BOE ∴⌒AD = ⌒BD ∵⌒AC = ⌒BC,⌒AD = ⌒BD ∴⌒ CAD= ⌒ CBD = 圆周 ∴CD过圆心(即CD是直径) 五、①⌒AC = ⌒BC ②⌒AD = ⌒BD③AE=BE ④CD⊥AB⑤CD过圆心(即CD是直径)证明过程同上 六、②⌒AD = ⌒BD ①⌒AC = ⌒BC③AE=BE ⑤CD过圆心(即CD是直径)④CD⊥AB 2 1

立体几何公理及定理

立体几何公理及定理 一、空间点、线、面之间的关系 1、两条直线的位置关系有: 2、两个平面的位置关系有: 公理1、如果一条直线上的两点在一个平面内,那么这条直线在此平面内。 公理2、过不在一条直线上的三点,有且只有一个平面。 推论1、一组平行直线确定唯一一个平面。 推论2、一条直线及直线外一点确定唯一一个平面。 公理3、如果有两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 公理4(平行公理)、平行于同一直线的两直线平行。 二、平行关系 直线与平面平行的判定定理: 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 直线与平面平行的性质定理: 一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行。 平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 平面与平面平行的性质定理: 1、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 2、两平面平行,其中一个平面内的任一直线平行于另一个平面。 3、夹在两个平行平面间的平行线段相等。 4、平行于同一平面的两个平面平行。 三、垂直关系 直线与平面垂直的判定定理: 一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直。 直线与平面垂直的性质定理: 1、垂直于同一个平面的两条直线互相平行。 2、如果一条直线垂直一个平面,那么这条直线垂直于平面内的所有直线。 平面与平面垂直的判定定理: 如果一个平面过另一个平面的垂线,那么这两个平面垂直。 平面与平面垂直的性质定理: 如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 三角公式汇总 一、任意角的三角函数 1. ①与α终边相同的角的集合(角α与角β的终边重合):{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ

垂径定理及其推论

圆部分知识点总结 垂径定理及其推论 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。垂径定理及其推论可概括为: 过圆心 垂直于弦 直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧 弧、弦、弦心距、圆心角之间的关系定理 1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。 2:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们 所对应的其余各组量都分别相等。 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 点和圆的位置关系 设⊙O 的半径是r,点P到圆心O 的距离为d,则有: dr; 圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 切线的性质与判定定理 1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 2、性质定理:切线垂直于过切点的半径 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。 以上三个定理及推论也称二推一定理: 即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。 切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 即:∵PA 、PB 是两条切线 ∴PA PB =;PO 平分BPA ∠

垂径定理

2 1 垂径定理 一、 圆的对称性 圆是轴对称图形,对称轴是 二、 如图是一个圆形纸片把该纸片沿直径AB 折叠,其中点A 和点是一组对称点 (1)思考∵OC=OD, ∴Δ OCE ≌ΔODE, ∠OEC= ∠OED= ∴AB 与CD 的位置关系是 (2)又∵点C 和点D 是一组对称点 ∴CE= 即点E 是CD 的中点 (3)根据折叠可得,弧AC=弧AD, 弧BC=弧BD, 结论:垂径定理及其推论 1、垂直于弦的直径 弦,并且 弦所对的两段弧 2、推论:平分弦(不是直径)的直径 并且 弦所对的两条弧 三、规律总结;垂径定理及其推论与“知二得三” 对于一个圆和一条直线,若具备: (1) 过圆心(2)垂直于弦(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧上述五个 条件中的任何两个条件都可以退出其他三个结论 四、 垂径定理基本图形的四变量、两关系 四变量:弦长a,圆心到弦的距离d,半径r ,弓形高h ,这四个量知道任意两个可求其他两个。 五、垂径定理及其推论的应用 (一)、选择题: 1、已知圆内一条弦与直径相交成300角,且分直径成1CM 和5CM 两部分,则这条弦的弦心距是: A 、 B 、1 C 、2 D 、25 2、AB 、CD 是⊙O 内两条互相垂直的弦,相交于圆内P 点,圆的半径为5,两条弦的长均为8,则OP 的长为: A 、3 B 、3 C 、3 D 、2 3、⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为2,则等边三角形ABC 的边长为( ) A B C . D .4、如图2,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )A .5 B .4 C .3 D .2 5、高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O 为圆心的圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( ) A .5 B .7 C . 375 D .377 6、如图,圆弧形桥拱的跨度AB =12米,拱高CD =4米,则拱桥的半径为( ) A .6.5米 B .9米 C .13米 D .15米 7、如图,O ⊙是ABC △的外接圆,AB 是直径.若80BOC ∠=°,则A ∠等于( ) A .60° B .50° C .40° D .30°

立体几何公理、定理推论汇总74915

立体几何公理、定理推论汇总 一、公理及其推论 公理 1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈?? 作用: ① 用来验证直线在平面内; ② 用来说明平面是无限延展的。 公理 2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。(那么它们有且只有一条通过这个公共点的公共直线) 符号语言:P l P l αβαβ∈?=∈I I 且 作用:① 用来证明两个平面是相交关系; ② 用来证明多点共线,多线共点。 公理3 经过不在同一条直线上的三点,有且只有一个平面。 符号语言:,,,,A B C A B C ?不共线确定一个平面 推论1 经过一条直线和这条直线外的一点,有且只有一个平面。 符号语言:A a A a a αα??∈?有且只有一个平面,使, 推论2 经过两条相交直线,有且只有一个平面。 符号语言:a b P a b ααα?=???有且只有一个平面,使, 推论3 经过两条平行直线,有且只有一个平面。 符号语言://a b a b ααα???有且只有一个平面,使, 公理3及其推论的作用:用来证明多点共面,多线共面。 公理4 平行于同一条直线的两条直线平行(平行公理)。 符号语言://////a b a c c b ???? 图形语言: 作用:用来证明线线平行。 二、平行关系 公理4 平行于同一条直线的两条直线平行(平行公理)。(1) 符号语言://////a b a c c b ???? 图形语言: 线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么 这条直线和这个平面平行。(2) 符号语言:////a b a a b ααα?? ? ????? 图形语言: 线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和 这个平面相交,那么这条直线和交线平行。(3) 符号语言:////a b a a b βαβα ? ? ????=? I 图形语言: 面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面, 那么这两个平面平行.(4)

垂径定理及推论(各省市中考题)

E A B C O 1. (2013 浙江省舟山市) 如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连 结EC .若AB =8,CD =2,则EC 的长为( ▲ ) (A )215 (B )8 (C )210 (D )213 答案:D 4.2 垂径定理及推论 选择题 基础知识 2013-09-29 2. (2013 浙江省温州市) 如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是 (A ) 3 (B ) 5 (C )15 (D ) 17 答案:B 4.2 垂径定理及推论 选择题 基础知识 2013-09-24 3. (2013 湖北省宜昌市) 如图,DC 是O ⊙的直径,弦AB CD ⊥于F ,连接BC DB ,.则 下列结论错误.. 的是( ). (A )? ?AD BD = (B )AF BF = (C )OF CF = (D )90DBC ∠=°

答案:C 4.2 垂径定理及推论 选择题 基本技能 2013-09-22 4. (2013 湖北省襄阳市) 如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为 m. 答案:0.2 4.2 垂径定理及推论 填空题 基本技能 2013-09-22 5. (2013 湖北省黄石市) 如右图,在Rt ABC V 中,90ACB ∠=o ,3AC =,4BC =,以点 C 为圆心,CA 为半径的圆与AB 交于点 D ,则AD 的长为 A. 95 B. 245 C. 185 D. 52 C A D B

圆周角定理及其推论.pdf

通海路中学九年级数学教案课题:圆周角及其推论(1) 教学目标1、掌握圆周角定理,并会熟练运用这些知识进行有关的计算; 2、培养观察、分析及解决问题的能力及逻辑推理能力; 3、培养添加辅助线的能力和思维的广阔性 教学重点:圆周角定理及其推论的应用. 教学难点:熟练应用圆周角定理及其推论以及辅助线的添加. 个性设计一、自主学习 1、学习内容:教材p49--52页. 2、自学时间:5--10分钟. 3、自学检测:自学中遇到的问题做标记,完成教材p52页练习. 二、合作交流 1、知识点一:圆周角的定义 定义:顶点在______,并且两边都和圆______的角叫圆周角. 2、知识点二:圆周角定理 圆周角定理: 几何语言: 练习: 1.如图,已知A,B,C三点都在⊙O上,∠AOB=60°,则∠ACB=_______. 2.如图,点A,B,C在⊙O上,∠ACB=30°,则cos∠ABO的值是_______. 3.如图,A,B,C是半径为6的⊙O上三个点,若∠BAC=45°,则弦BC=_______. 3、知识点三:圆周角定理的推论(1) 在同圆(或等圆)中,同弧或等弧所对的圆周角____,相等的圆周角所对的弧也____练习: 4.如图,A、B、C三点在⊙O上,且△ABC是等边三角形,动点P在圆周的劣弧AB上,且不与A、B重合,则∠BPC等于() A、30° B、60° C、90° D、45° 5.如图,在⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B=____. 6.如图,A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD,若∠BAC=25°,则∠ADC=______.

垂径定理及推论教学设计

24.1.2垂径定理及其推论教学设计 【教材分析】 本节是《圆》这一章的重要容,也是本章的基础。它揭示了垂直于弦的直径和这条弦及这条弦所对的弧之间的在关系,是圆的轴对称性的具体化;也是今后证明线段相等、角相等、弧相等、垂直关系的重要依据;同时也为进行圆的有关计算和作图提供了方法和依据;由垂径定理的得出,使学生的认识从感性到理性,从具体到抽象,有助于培养学生思维的严谨性。同时,通过本节课的教学,对学生渗透类比、转化、数形结合、方程、建模等数学思想和方法,培养学生实验、观察、猜想、抽象、概括、推理等逻辑思维能力和识图能力。所以它在教材中处于非常重要的位置。 【教学目标】 根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。因此,我把本节课的教学目标确定为以下三个方面: 知识目标: 使学生理解圆的轴对称性;掌握垂径定理;学会运用垂径定理解决有关的证明、计算和作图问题。培养学生观察能力、分析能力及联想能力。 方法与过程目标: 经历探索发现圆的对称性,证明垂径定理及推论的过程,锻炼学生的思维品质,学习证明的方法。 情感态度与价值观目标: 在学生通过观察、操作、变换和研究的过程中进一步培养学生的思维能力,创新意识和良好的运用数学的习惯和意识。 【重点与难点】 重点:垂径定理及其推论的发现、记忆与证明。 难点:对垂径定理及其推论的探索和证明,并能应用垂径定理及推论进行简单计算或证明。 【学生分析】 九年级学生已了解圆的有关概念;但根据皮亚杰的认知发展理论:这个阶段的学生思维正处于具体思维向抽象思维发展、逻辑思维向形式思维发展、部心理上逐步朝着自我反省的思维发展。虽然他们具有一定的数学活动经验、生活经验和操作技能,会进行简单的说理,但他们的逻辑思维能力和抽象思维能力还比较薄弱。对如何从实际问题中抽象出数学问题,建立数学模型的能力较差。 【教学方法】 鉴于教材特点及九年级学生的知识基础,根据教学目标和学生的认知水平,让学生在课堂上多活动、多观察、多合作、多交流,主动参与到整个教学活动中来,组织学生参与“实验---观察---猜想---证明”的活动,最后得出定理,这符合新课程理念下的“要把学生学习知识当作认识事物的过程来进行教学”的观点,也符合教师的主导作用与学生的主体地位相统一的原则。同时,在教学中,我充分利用教具和课件,提高教学效果,在实验、演示、操作、观察、练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力,这符合新课程理念下的直观性与可接受性原则。

圆周角定理及推论

一、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半已知在⊙O中,∠BOC与圆周角∠BAC对同弧BC,求证:∠BOC=2∠BAC。 以下分五种情况证明 【证明】情况1:当圆心O在∠BAC的内部时: 图1 连接AO,并延长AO交⊙O于D 解:OA=OB=OC(OA、OB、OC是半径) ∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等) ∴∠BOD=∠BAD+∠ABO=2∠BAD ∠COD=∠CAD+∠ACO=2∠CAD (∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角 和) ∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC 【证明】情况2:当圆心O在∠BAC的外部时: 图2 连接AO,并延长AO交⊙O于D,连接OB、OC。解:OA=OB=OC(OA、OB、OC是半径) ∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等) ∴∠BOD=∠BAD+∠ABO=2∠BAD ∠COD=∠CAD+∠ACO=2∠CAD (∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角 和)

∴∠BOC=∠COD-∠BOD=2(∠CAD-∠BAD)=2∠BAC 【证明】情况3:当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时: 图3 ∵OA、OC是半径 解:∴OA=OC ∴∠BAC=∠OCA() ∴∠BOC=∠BAC+∠OCA=2∠BAC (三角形的一个外角等于与它不相邻的两个内角和,由AB为平角180°、三角形△AOC内角和为180°得到。) 【证明】情况4:圆心角等于180°: 圆心角∠AOB=180°,圆周角是∠ACB,∵∠OCA=∠OAC= 2 1∠BOC(BC弧) ∠OCB=∠OBC= 2 1 ∠AOC(AC弧) ∴∠OCA+∠OCB=(∠BOC+∠AOC)/2=90度∴∠AO B2=∠ACB 【证明】情况5:圆心角大于180°: 图5 圆心角是(360°-∠AOB),圆周角是∠ACB,延长CO交园于点E, ∠CAE=∠CBE=90°(圆心角等于180°) ∴∠ACB+∠AEB=180°,即∠ACB=180°-∠AEB ∵∠AOB=2∠AEB ∴360°-∠AOB=2(180°-∠AEB)=2∠ACB 二、圆周角定理的推论: 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。其他推论? ①圆周角度数定理,圆周角的度数等于它所对的弧的度数的一半?。 E

垂径定理及其推论

圆部分知识点总结 令狐采学 垂径定理及其推论 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 推论2:圆的两条平行弦所夹的弧相等。垂径定理及其推论可概括为: 过圆心 垂直于弦 直径平分弦知二推三 平分弦所对的优弧 平分弦所对的劣弧 弧、弦、弦心距、圆心角之间的关系定理 1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。 2:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 点和圆的位置关系 设⊙O的半径是r,点P到圆心O的距离为d,则有:d

P在⊙O内; d=r?点P在⊙O上; d>r?点P在⊙O外。 过三点的圆 1、不在同一直线上的三个点确定一个圆。 2、经过三角形的三个顶点的圆叫做三角形的外接圆。 3、三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。 直线与圆的位置关系 直线和圆有三种位置关系,具体如下: (1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, (3)相离:直线和圆没有公共点时,叫做直线和圆相离。 如果⊙O的半径为r,圆心O到直线L的距离为d,那么:直线L 与⊙O相交?dr; 圆的内接四边形定理:圆的内接四边形的对角互补,外角等于 它的内对角。 切线的性质与判定定理 径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 2、性质定理:切线垂直于过切点的半径 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。

最新初一数学中的公理定理

(一)学过的公理: 1、直线公理:两点确定一条直线。 2、线段公理:两点之间,线段最短。 3、垂线公理:过一点有且只有一条直线与已知直线垂直。 4、平行公理:过直线外一点,有且只有一条直线与已知直线平行。 5、平行线判定公理:同位角相等,两直线平行。 6、平行线性质公理:两直线平行,同位角相等。 7、全等三角形性质公理:全等三角形对应边相等,对应角相等 (二)学过的定理及推论 1、三角形内角和定理:三角形内角和等于180° ?推论1:直角三角形两锐角互余 ?推论2:三角形的一个外角等于与它不相邻的两个内角的和。 ?推论3:三角形的外角大于任何一个与它不相邻的内角。 2、公理:两点之间,线段最短。 ?定理:三角形两边之和大于第三边 ?推论:三角形两边之差小于第三边。 3、补角的性质:同角或等角的补角相等 4、余角的性质:同角或等角的补角相等 5、对顶角的性质:对顶角相等 6、垂线的性质:直线外一点与直线上各点的连线中,垂线段最短。 7、平行线公理推论:如果两条直线都和第三条直线平行,那么这两条直线互相 平行。 8、平行线判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两 条直线平行,简记为:同位角相等,两直线平行。 ?定理1:内错角相等,两直线平行。 ?定理2:同旁内角互补,两直线平行 9、平行线性质公理:两直线平行,同位角相等。 ?定理1:两直线平行,内错角相等。 ?定理2:两直线平行,同旁内角互补。 推论:垂直于同一直线的两直线的互相平行。

澳洋医院办公楼及综合楼 网络方案 目录 第一章.概述 ................................................................................................... 错误!未定义书签。 1.1建筑群网络建设背景.................................................................... 错误!未定义书签。 1.2建网需求分析................................................................................ 错误!未定义书签。 1.2.1 一般建网需求.......................................................................... 错误!未定义书签。 1.2.2 网络安全需求分析和对策...................................................... 错误!未定义书签。第二章.总体网络设计和网络特点................................................................ 错误!未定义书签。 2.1 网络设计的原则................................................................................ 错误!未定义书签。 2.2 网络拓扑 ........................................................................................... 错误!未定义书签。 2.3 方案说明 ........................................................................................... 错误!未定义书签。 2.4方案特色技术简介............................................................................. 错误!未定义书签。 2.4.1 路由规划.................................................................................. 错误!未定义书签。 2.4.2 IP地址规划.............................................................................. 错误!未定义书签。 2.5无线方案 ....................................................................................... 错误!未定义书签。 2.5.1无线网络优势........................................................................... 错误!未定义书签。 2.5.2无线局域网总体架构选择....................................................... 错误!未定义书签。 2.5.3供电问题................................................................................... 错误!未定义书签。 2.5.4频率规划................................................................................... 错误!未定义书签。 2.5.5频率复用................................................................................... 错误!未定义书签。 2.5.6信号覆盖范围控制................................................................... 错误!未定义书签。 2.5.7 AP防盗设计............................................................................. 错误!未定义书签。 ?

垂径定理及其推论

垂径定理及其推论 一、 复习旧知 复习前面学习的圆的基本元素,重点复习圆心角、弧、弦之间的关系;强调圆是旋转对称图形、轴对称图形和中心对称图形。 二、 情境导入(出示赵州桥图片) 问题:你知道赵州桥吗? 它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦的距离)为7.2m ,你能求出赵州桥主桥拱的半径吗?现在同学们不会求,但是学了这节课你们就能把主桥拱的半径求出来了。 三、 出示学习目标 1、 利用圆的轴对称性探究垂径定理 2、 理清垂径定理及其推论的题设和结论。 3、 运用垂径定理及其推论进行有关的计算和证明。 4、 学会与垂径定理有关的添加辅助线的方法 四、 自学探究 1、如图,在纸上画⊙O ,AB 是⊙O 的一条弦, 作直径CD ⊥AB, 垂足为E.沿CD 折叠,你能发现图中有那些相等的线段和弧? 你能发现什么结论? 线段: AE=BE 弧: AC=BC, AD=BD 2、得出猜想 垂直于弦的直径平分弦,并且平分弦所对的两条弧 D

即如果CD⊥AB,那么AE=BE,弧AC=弧BC,弧AD=弧BD 3、请根据猜想写出命题的已知、求证,并写出证明过程 4、得出结论经过证明,以上命题是真命题。即垂直于弦的直径平分弦,并且平分弦所对的两条弧是成立的,我们把这个真命题叫做垂径定理 四、检测 1、(出示图形)检查下列图形是否具备应用垂径定理的条件? 五、例题讲解 已知:如图在⊙O中,弦AB的长是8cm,圆心O到AB的距离为3cm,求⊙半径 技巧总结:从例题看出圆的半径OA,弦心距OE及半弦长AE构成Rt△AOE.把垂径定理和勾股定理结合起来,解决问题。 六、练习 如图,OE⊥AB于E,若⊙O的半径为10cm,OE=6cm,则AB= cm。 七、思考 将垂径定理的题设和结论调换,命题还成立吗? 1、如果圆的一条直径平分弦(不是直径),那么它垂直于弦,并且平分弦所对的 两条弧 写出此命题的已知求证,并进行证明。 2、经验证,命题是正确的,由此得出垂径定理的推论1:平分弦(不是直径)的 直径垂直于弦,并且平分弦所对的两条弧。

圆周角定理及推论

1 / 6 24.1.4圆周角 第1课时圆周角定理及推论 教学内容 1.圆周角的概念. 2.圆周角定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弦所对的圆心角的一半. 推论: 半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用. 教学目标 1.了解圆周角的概念. 2.理解圆周角的定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弧所对的圆心角的一半. 3.理解圆周角定理的推论: 半圆(或直径)所对的圆周角是直角,90?°的圆周角所对的弦是直径. 4.熟练掌握圆周角的定理及其推理的灵活运用. 设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证

明定理推论的正确性,最后运用定理及其推导解决一些实际问题.重难点、关键 2 / 6 1.重点: 圆周角的定理、圆周角的定理的推导及运用它们解题. 2.难点: 运用数学分类思想证明圆周角的定理. 3.关键: 探究圆周角的定理的存在. 教学过程 一、复习引入 (学生活动)请同学们口答下面两个问题. 1.什么叫圆心角? 2.圆心角、弦、弧之间有什么内在联系呢? 老师点评: (1)我们把顶点在圆心的角叫圆心角. (2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有 一组量相等,?那么它们所对的其余各组量都分别相等. 刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探索新知

问题: 如图所示的⊙O,我们在射门游戏中,设 E、F是球门,?设球员们只能在所在的⊙O其它位置射门,如图所示的 3 / 6 A、B、C点.通过观察,我们可以发现像∠ EAF、∠ EBF、∠ECF这样的角,它们的顶点在圆上,?并且两边都与圆相交的角叫做圆周角. 现在通过圆周角的概念和度量的方法回答下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系? (学生分组讨论)提问二、三位同学代表发言. 老师点评: 1.一个弧上所对的圆周角的个数有无数多个. 2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的.3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,?并且它的度数恰好等于这条弧所对的圆心角的度数的一半.” (1)设圆周角∠ABC的一边BC是⊙O的直径,如图所示

垂径定理—知识讲解(提高).docx

垂径定理一知识讲解(提高) 【学习目标】 1. 理解圆的对称性; 2 .掌握垂径定理及其推论; 3 ?学会运用垂径定理及其推论解决有关的计算、证明和作图问题. 【要点梳理】知识点一、垂径定理 1. 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧? 2. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 要点诠释: (1) 垂径定理是由两个条件推岀两个结论,即 直径1 J平分弦 垂直于弦j n j平分弦所对的弧 (2) 这里的直径也可以是半径,也可以是过圆心的直线或线段. 知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论: (1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 (4)圆的两条平行弦所夹的弧相等? 要点诠释: 在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论?(注意:“过圆心、平分弦”作为题设时,平分 的弦不能是直径) 【典型例题】 类型一、应用垂径定理进行计算与证明 的半径是______________________ O=如图,。O的两条弦AB、CD互相垂直,垂足为 E,且AB=CD ,已知CE=1,ED=3 ,则Θ O

【答案】 【解析】 【点评】 举一反三: .5. 作OM 丄AB 于M 、ON 丄CD 于N ,连结 OA , T AB=CD , CE=1 , ED=3, ??? OM=EN=I , AM=2 , ? OA= . 22+12=,5. Y B 对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算 题? (配合勾股定理)问 【变式1】如图所示,Θ O 两弦AB CD 垂直相交于 H AH= 4, BH= 6, 【答案】如图所示,过点 MO=HN O 分别作OML AB 于M ONL CD 于 N,则四边形 1 =CN -CH CD -CH 2 1 1 (CH DH ) -CH (3 8) -3 = 2.5 , 2 2 1 1 1 BM AB (BH AH ) (4 6) =5 , 2 2 2 在 Rt △ BOM 中 OB =? BM 2 OM 2 = 55 . 2 【高清ID 号: 356965 关联的位置名称(播放点名称) 【变式2】如图,AB 为Θ O 的弦,M 是AB 上一点, C :例2-例3】 OM= 10Cm 求Θ O 的半径.

九年级数学公理与定理

2.3公理和定理 一、教学目标: 1、了解公理、定理的含义,初步体会公理化思想,并了解本教科书所使用的定理。 2、通过介绍欧几里得的原本,使学生感受公理化方法对数学发展和促进人类文明进步的价值。 二、教学重点、难点: 公理和定理的区别和联系 三、教法:引导发现法 四、教具准备:投影仪 五、教学过程: 一.创设情景 想一想 如何通过推理的方法证实一个命题是真命题呢? 在数学发展史上,数学家们也遇到过类似的问题。 公元前3世纪,古希腊数学家欧几里得将前人积累下来的几何学成果整理在系统的逻辑体系之中。他挑选了一部分不定义的数学名词(称为原名)和一部分公认的真命题(称为公理)作为证实其他命题的起始依据,定义出其他有关的概念,并运用推理的方法,证实了数百个有关的命题,使几何学成为一门具有公理化体系的科学。 二.回顾总结 通过长期实践总结出来,并且被人们公认的真命题叫做公理。例如,欧几里得将“两点确定一条直线”,“直角都相等”等五条基本几何事实作为公理。通过推理得到证实的真命题叫做定理。 本教科书选用如下命题作为公理:

此外,等式的有关性质和不等式的有关性质都可以看作公理。例如“在等式或不等式中,一个量可以用它的等量来代替”,简称为“等量代换”。 三.应用举例 由上面给出的公理,可以证明如下命题的正确性:等角的补角相等。 已知:∠1=∠2,∠1+∠3=180,∠2+∠4=180。 求证:∠3=∠4 证明:∵∠1+∠3=180,∠2+∠4=180(已知), ∴∠3=180-∠1,∠4=180-∠2 (等式的性质) ∵∠1=∠2 (已知), ∴∠3=∠4 (等式的性质)。 这样,我们便可以把上面这个经过证实的命题称作定理了。已经证明的定理可以作为以后推理的依据。 证明一个命题的正确性,要按照“已知”、“求证”、“证明”的顺序和格式写出。其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程。四、巩固练习: 课本随堂练习2、习题1、2

垂径定理及其推论练习题

垂径定理及其推论练习题 1.下面四个命题中正确的一个是() A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必过这条弦所在圆的圆心 D.在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是(). A.过弦的中点的直线平分弦所对的弧B.过弦的中点的直线必过圆心C.弦所对的两条弧的中点连线垂直平分弦,且过圆心D.弦的垂线平分弦所对的弧3、⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长 的取值范围是()(A)5 OM 3≤ ≤(B)5 OM 4≤ ≤ (C)5 OM 3< <(D)5 OM 4< < 4、已知:如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=8m,OC=5m, 则DC的长为()A、3cm B、2.5cm C、2cm D、1cm 5过⊙O内一点P的最长弦为10cm,最短的弦为6cm,则OP的长为 . 6、如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为__________ . 7、如图,∠PAC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点,则线段EF的长是_________ cm. 8、如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O 作OC⊥AP于点C,OD⊥PB于点D,则CD的长为_____________ . 9、如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为____________. 10、如图所示,若⊙O 的半径为13cm,点P是弦AB上一动点,且到圆心的最短距离5cm,则弦AB的长为______________ . 11、已知圆的半径为5cm,一弦长为8cm,则弦的中点到弦所对弧的中点的距离为__ _____。 12、在弓形ABC中,弦AB=24,弓形高CD=6,则弓形所在圆的半径等于。 13、在半径为5cm的⊙O中,有一点P满足OP=3 cm,则过P的整数弦有条。 14、如图,⊙O中弦AB⊥CD于E,AE=2,EB=6,ED=3,则⊙O的半径为。 15.如图,在直角坐标系中,以点P为圆心的圆弧与轴交于A、B两点,已知P(4,2) 和A(2,0),则点B的坐标是 16.如图,AB是⊙O的直径,OD⊥AC于点D,BC=6cm,则OD= cm 17.如图,矩形ABCD与圆心在AB上的圆O交于点G、B、F、E,GB=10,EF=8,那? E O D C B A

圆的垂径定理及推论知识点与练习

圆的垂径定理及其推论知识点与练习 (1)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧。若直径AB ⊥弦CD 于点E ,则CE=DE ,⌒ AC =⌒ AD ;⌒ BC =⌒ BD (2)推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。 若CE=DE ,AB 是直径,则⌒ AC =⌒ AD ;⌒ BC =⌒ BD ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 若AB ⊥CD ,CE=DE ,则CD 是直径,⌒ AC =⌒ AD ;⌒ BC =⌒ BD ③平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 若⌒ AC =⌒ AD ,AB 是直径,则AB ⊥CD ,CE=DE ,⌒ BC =⌒ BD ④圆的两条平行弦所夹的弧相等。 若CD ∥FG ,CD 、FG 为弦,则⌒ FC =⌒ GD 特别提示:①垂径定理及其推论可概括为: 过圆心 垂直于弦 直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧 ②垂径定理可改写为:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧.其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧.它的三个推论可看作“如果四个条件中有两个成立,那么另外两个也成立”. (3)垂径定理及推论的应用: 它是证明圆内线段相等、角相等、垂直关系及利用勾股定理计算有关线段的长度提供了依据,也为圆中的计算、证明和作图提供了依据、思路和方法。 ①垂径定理中的垂径可以是直径、半径或过圆心的直线、线段,其本质是“过圆心”; ②在圆的有关计算中常用圆心到弦垂线段、弦的一半、半径构造出垂径定理的条件和直角三角形,从而应用勾股定理解决问题; 例:如图,在⊙O 中,弦AB 所对的劣弧为圆的31, 圆的半径为2cm ,求AB 的长。 解:如图,连接OB ,过点O 作OD ⊥AB 交AB 于点C ,由 题意得,∵⌒ AB = 3 1×360o=120o ∴∠AOB=120o,∴∠AOC=60o,在Rt △AOC 中,∵∠AOC=60o,OA=2,∴OC = 21OA=1,∴AB=2AC=222OC AO =23 故AB 的长为23 练习 一、选择题 1、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是( ) A 、CM=DM B 、∠ACB=∠ADB C 、AD=2B D D 、∠BCD=∠BDC G A A

相关主题