搜档网
当前位置:搜档网 › CATIA_V5在船体结构设计中的应用

CATIA_V5在船体结构设计中的应用

CATIA_V5在船体结构设计中的应用
CATIA_V5在船体结构设计中的应用

CATIA V5在船体结构设计中的应用

一、前言

CATIA V5 是Dassault Systemes 公司推出的真三维 CAD/CAM 设计系统,现已成为航空工业、汽车工业重要的设计软件,在船舶工业上也在逐步深入进行应用。目前,该公司推出的软件已能把船舶设计、制造加工、信息管理贯穿起来,形成一个工程设计、加工工艺、管理集为一体的应用软件。

几年来,广州文冲船厂有限责任公司(以下简称文船公司)通过造船转模和不断地学习先进造船技术,由年造 1-2 条船的能力提升现在年造 8-10 条的能力,由原来的一型船设计增加到现在的三型船设计;CATIA V5 在船舶设计中的应用也有了明显的提高,从 2005 年年底到 2006 年 6 月,通过项目的开展,并在达索公司技术人员的积极支持下,CATIA V5 在船体结构设计中的应用有了新的突破,形成了一条较为完整的应用 CATIA V5 进行船体结构生产设计的思路。下面主要就我公司在船体结构设计中对 CATIA V5 的应用进行介绍。

二、应用

1、项目及要求:用 CATIA V5 对 1700TEU(GWS334)船全船船体结构 3D 设计,并对几个典型分段要求能够直接从 3D 模型提取所需要 2D 生产设计图纸、2D 下料零件图及零件报表,突破手工 AUTOCAD 绘图和手工输入零件表。该分段长宽高分别为 11.6m、3.8m、12.7m,总共包括零件的个数 490 个(不包括补板的数量)。

2、设计思路

3、型线光顺及数据处理:文船公司目前采用的是东欣软件公司的 HD-SHM 船体线型光顺系统,光顺以后产生数据文件,为了减少数据的输入量,在导入数据之前,对数据文件进行处理,删除同一平面内多余的数据,但是要留下平边点,并对数据进行排序,见图1。

4、船壳曲面建模:

船壳曲面建模可以分成三步:

1〉在GSD 工作环境下导入数据,生成点,见图2;

2〉连线,包括肋骨线和水线,可根据需要进行选择性的连线,见图3;

3〉通过线生成曲面,见图4。

前面两步可以通过程序来完成,见图2。另外也可以直接打开AUTOCAD2000 版的二维图形文件(*.dwg),然后在CATIA V5 中利用拷贝和粘贴生成所需的肋骨线和水线,最后连成曲面,这样生成曲面效率也是比较高的。文船公司在曲面设计的应用是比较成功的,除了船壳曲面建模以外,曾成功应用于螺旋桨、拉锚试验的辅助设计,见图5、图6。

5、建库:由于一条船有几万个结构零件,其中相同、相似的零件或特征非常多,为了减少重复的工作劳动,在开展一条新船项目3D 设计之前,我们会对全船的结构进行统计,规划出建库的内容,把基础库搭建好。这是一个非常重要的环节,其直接影响到后续的3D 结构设计的质量、效率,可以说CATIA V5 提供了较好的建库功能。型材、开孔、材料、2D 标注模板库的建立及应用比较容易,肘板建库、型材端部形式及型材贯穿孔的建库操作过程相对比较复杂,但是思路还是比较清晰,简单,下面是肘板参数化建库过程,见图7,文船公司在肘板建库这一块非常重视,主要是一条船肘板的数目非常大,经过努力,我们在肘板建库,包括型材端部节点库、型材贯穿孔库已有一条清晰的建库方法。

图7 肘板建库过程

6、船体结构3D 设计:CATIA V5 主要包括三个船体结构设计模块SFD、SDD、SR1,我公司主要应用SFD、SDD 模块进行船体结构3D 设计,利用这两个模块基本上可以建出所有的船体结构零件,在SFD 中我们是建一些总体结构,各层甲板、各个舱壁,纵骨、肋骨、舷侧纵桁、骨材等大构件,在SDD 模块中再建肘板、型材贯穿孔、补板等小构件。在建完所有的构件后,最后一次转入到SR1模块中,在这过程中可选择自动去掉板的干涉部分,生成正确零件形状。这一设计过程可以表示成图10。

图10 船体结构3D 设计流程图

如果船舶比较大,考虑到模型数据量会比较大,最好把船舶分成几部分,例如,船尾、船艏、船舯部分,这样有利于加快建模操作时的运算速度。目前,文船公司在这三个模块上的运用比较成熟,见图11、图12。

7、出2D 结构图及零件报表:CATIA V5R17 对从3D 模型出2D 图较以往已有很大的改进,从3D 到2D 可以产生带自动标注的二维图,3D 模型修改后,相应的可以通过更新来实现,另外其2D 工作平台Drafting 功能是非常强大的,画线标注操作都很方便。目前我公司是从SDD 出2D 出图(如图14),同时从SDD出零件报表,可以方便地存为Excel 文件,如图15。

出2D 结构图步骤如下图13所示,在第一步里面可以对图形中的线型颜色、线型的粗细、字体、字大小、Drafting 的背景颜色、尺寸标注、字体、开孔中心线等进行客户化,对于零件编码可以通过更改零件名来实现;第二步出图(如图14),根据不同的情况可以选择不同的出图方式,例如出横舱壁图可以选择衍生、繁殖出图,在目录树上选择一个body 级别的横舱壁,就能够产生正确的横舱壁图;对于没有实肋板的剖面可以选择第三种出图方式,先出一个投影图,再加一个Clipping Box,减小选择的范围,也可以采用第四种出图方式,出截面图;第三步标注,可以通过GVS 设置对零件名、规格进行自动标注,然后手工调整位置,也可以通过模板库进行半自动标注。

8、出零件图:出零件图在SMP 模块中实现,见图16、图17。这个模块功能强大,不仅能产生平直板、平直型材的零件图,还能产生弯曲板、弯曲型材的零件图;可以添加零件补偿量、坡口信息,还会生成板材、型材的加工信息及胎架信息。在生成零件图以后,再把零件转入到专门的套料系统中进行套料,生成切割指令。

结束语

CATIA V5 船体结构3D 设计模块已有一个与船舶工业实际生产、设计需要相符的基本思路,从整体到局部,从3D 到2D,并能产生信息报表,把设计、制造、加工、管理形成一体化。近两年也感受到达索公司加快了软件开发进度,从刚开始使用的R13 版到现在的R17 版,船体结构模块有了巨大的改善。文船公司在CATIA V5 结构模块3D 出2D 图上有了实质性的进展,建模操作也有了很大的改善,特别是肘板一块。但是我们希望船体结构模块更完善,

比如增加线型光顺、基于3D 模型的强度、应力、静水力计算。我们在期待着这一天的到来。

船舶结构设计基础作业1

1波浪包括哪些要素?并叙述在实际计算时各个波浪要素的选取方法。 答:波浪要素包括波形、波长与波高。 在实际计算时,波形为坦谷波, 取计算波长等于船长,波高随船长变化,并且规定按波峰在船舯和波谷在船舯两种典型状态进行计算。 2试简述浮力曲线的绘制方法 答:浮力曲线是指船舶在某一装载状态下(一般为正常排水量状态),浮力沿船长分布状况的曲线。浮力曲线的纵坐标表示作用在船体梁上单位长度的浮力值,其与纵向坐标轴所围的面积等于作用在船体上的浮力,该面积的形心纵向坐标即为浮心的纵向位置。通常根据邦戎曲线求得浮力曲线。下 . 图为邦戎曲线及获得的浮力曲线 浮态第一次近似计算 根据静水力曲线去确定相应与给定排水量时的平均吃水dm、浮心纵向坐标xb、水线面漂心坐标xf 以及纵稳心半径R。 由于实船的R远大于KC,所以 确定了首尾吃水之后,利用邦戎曲线求出对应于该吃水线时的浮力分布,同时计算出总浮力及浮心纵向坐标。如果求得的这两个数值不满足精度要求,则应作第2次近似计算。 浮态第二次近似计算 1

A-水线面面积 若浮心与重心的纵向坐标之差不超过船长L 的0.1%,排水量与给定的船舶重量之差不超过排水量的0.5%,则认为调整好了,由此产生的误差不超过5%M max ,应根据最后一次确定的首尾吃水求出浮 力分布曲线。 3若被换算构件的剖面积为ai ,其应力为σi ,弹性模量为Ei ;与其等效的基本材料的应力为σ,弹性模量为E ,根据变形相等且承受同样的力P ,则与其等效的基本材料的剖面积为a 为多少? 答:aE P E a P E E i i i i ====εσσε或 所以E E a a i i ?= 4按照纵向构件在传递载荷过程中产生的应力种类和数目,将纵向强力构件可分为哪几类? 答:只承受总纵弯曲的纵向构件,称为第一类构件,如不计甲板横荷重的上甲板纵向构件。同时承受总纵弯曲和板架弯曲的纵向构件,称为第二类构件,如船底纵桁、内底板。同时承受总纵弯曲、板架弯曲及纵骨弯曲的纵向构件,或者同时承受总纵弯曲、板架弯曲及板格弯曲(横骨架式)的纵向构件,称为第三类构件,如纵骨架式中的船底纵骨或横骨架式中的船底板。同时承受总纵弯曲、板架弯曲、纵骨弯曲及板格弯曲的纵向构件,称为第四类构件,如纵骨架式中的船底板。 5已知纵骨架式船底外板的板架弯曲应力为σ2=+-300, 欧拉应力为σE=800 总纵弯曲应力为σ1=-1000, 试计算该板的折减系数φ 答: 1.11000 30080012=+=+=σσσ?E 实取1=? 5.0100030080012=-=-= σσσ?E 实取5.0=?

船舶强度与结构设计_授课教案_第四章应力集中模块

第四章应力集中模块 一、应力集中及应力集中系数 在船体结构中,构件的间断往往是不可避免的。间断构件在其剖面形状与尺寸突变处的应力,在局部范围内会产生急剧增大的现象,这种现象称为应力集中。 由于船体在波浪上的总纵弯曲具有交弯的特性,应力集中又具有三向应力特性,严重的应力集中更易于引起局部裂纹和促进裂纹的逐渐扩展。第二次世界大战中和大战后,由于结构开口引起应力集中从而产生裂缝导致船体折断的事故占整个船体结构海损事故总数中的极大部分。因此,在第二次世界大战后,关于船体结构的应力集中问题,曾引起了造船界的普遍重视,开展了大量的研究工作。现在,对这个问题已经有了比较清楚地了解。 由于应力集中是导致结构损坏的一个重要原因,结构设计工作者在设计中必须始终注意这个问题。再进一步对船体结构中比较突出的几个应力集中问题及该区域的结构设计作一些介绍。 通常,用应力集中系数来表示应力集中的程度。应力集中区的最大应力m ax σ或m ax τ分别与所选基准应务0σ或0τ之比值,即 0max 0max ττσσ==k k 或 (1)

称为应力集中系数。基准应力不同,应力集中系数也不同。所以,给定应力集中系数时,应指明基准应力的取法。 间断构件的应力变化规律以及应力集中系数的大小很大程度上决定于这些构件的形状。目前,已经能够确定各种形状的间断构件的应力集中系数。 二、开口的应力集中及降低角隅处应力集中的措施 在大型船舶上,强力甲板上的货舱口、机舱口等大开口,都严重地破坏了船体结构的连续性。当船舶总纵弯曲时,在甲板开口角隅外的应力梯度急剧升高,引起严重的应力集中,造成船体结构的薄弱环节。关于舱口角隅处应力集中的确定,导致去除方角而采用圆弧形角隅,并在角隅处采用加复板或厚板进行加强,同时要采用IV 级或V 级的材料。 1.开口的应力集中 关于孔边的应力集中,可用具有小椭圆开孔的无限宽板受位抻的情况来说明(见下图)。应用弹性理论可求得A 、B 两点的应力分别为: ?????-=+=σσσσB A p a )21( (2) 式中σ为无限远处的拉伸应力; a b /2=ρ为椭圆孔在A 点的曲率半径;

船体结构规范计算书模板

目录 一、说明 二、外板 1、船底板 2、平板龙骨 3、舭列板 4、舷侧外板 5、舷侧顶列板 三、甲板 1、强力甲板 2、其它甲板 四、单层底 1、实肋板 2、中内龙骨 3、旁内龙骨 4、舭肘板 五、双层底 1、中桁材 2、非水密旁桁材 3、水密旁桁材 4、实肋板 5、水密实肋板 6、内底板 7、货舱区舷侧底部结构 8、双底部分外底纵骨 9、双底部分内底纵骨 10、肘板 六、舷侧骨架 1、货舱区域(#34~#131) 2、机舱部分(#10~#34) 3、首尖舱

4、尾尖舱 七、甲板骨架 1、露天强力甲板计算压头 2、甲板各区域压头值 3、首楼甲板骨架计算 4、尾~#8尾楼甲板骨架 5、#8~#29尾楼甲板骨架 6、尾~#35主甲板骨架 7、#35~#134主甲板骨架 8、#134~首主甲板骨架 9、#35~#134平台骨架 10、机舱平台骨架 11、首尖舱平台骨架 12、主甲板机舱舱口纵桁 13、货舱端横梁 八、水密舱壁 1、舱壁板厚 2、扶强材 3、桁材 4、内舷板纵骨架式骨架 九、首柱 十、机座 十一、支柱 1、支柱负荷计算 2、支柱剖面积计算及支柱壁厚十二、上层建筑及甲板室 1、首楼后壁 2、尾楼前壁 3、首尾楼舷侧 4、甲板室 十三、货舱围板 十四、舷墙

一、说明 本船主要运输矿石及钢材,兼顾煤碳及水泥熟料等货物。航行于长江武汉至宁波中国近海航区及长江A、B级航区。船舶结构首尾为横骨架形式,中部货舱区采用双底双舷、单甲板、纵骨架式形式,所有构件尺寸均按CCS《钢质海船入级与建造规范》(2001)要求计算。 1、主要尺度 设计水线长:L WL107.10米 计算船长:L 104.10米 型宽:B 17.5米 型深:D 7.6米 结构计算吃水:d 5.8米 2、主要尺度比 长深比:L B= 104.1 17.5= 5.95>5 宽深比:B D= 17.5 7.6= 2.30 ≤2.5 舱口宽度比:b B l= 10.4 17.5=0.594 <0.6 舱口长度比:l H l BH= 28 33.6= 0.833 >0.7 3、肋距及中剖面构件布置 尾~#10及#140~首肋距为600mm #10~#140 肋距为700mm 本船规范要求的标准肋距为: S = 0.0016L+0.5 = 0.0016×104.1+0.5 = 0.667 m (以下均同)

船体强度与结构设计复习材料

船体强度与结构设计复习材料 绪论 1.船体强度:是研究船体结构安全性的科学。 2.结构设计的基本任务:选择合适的结构材料和结构型式,决定全部构建的尺寸和连接方式,在保证具有充足的强度和安全性等要求下,使结构具有最佳的技术经济性能。 3.全船设计过程:分为初步设计、详细设计、生产设计三个阶段。 4.结构设计应考虑的方面:①安全性;②营运适合性;③船舶的整体配合性;④耐久性;⑤工艺性;⑥经济性。 5.极限状态:是指在一个或几个载荷的作用下,一个结构或一个构件已失去了它应起的各种作用中任何一种作用的状态。 引起船体梁总纵弯曲的外力计算 船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁。 总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。 总纵强度:船体梁抵抗总纵弯曲的能力。 引起船体梁总纵弯曲的主要外力:重力与浮力。 船体梁所受到的剪力和弯矩的计算步骤: ①计算重量分布曲线平p(x); ②计算静水浮力曲线bs(x); ③计算静水载荷曲线qs(x)=p(x)-bs(x); ④计算静水剪力及弯矩:对③积分、二重积分; ⑤计算静波浪剪力及弯矩: ⑥计算总纵剪力及弯矩:④+⑤。 重量的分类: ①按变动情况来分:不变重量(空船重量)、变动重量(装载重量); ②按分布情况来分:总体性重量(沿船体梁全场分布)、局部性重量(沿船长某一区段分布)。静力等效原则: ①保持重量的大小不变;②保持重心的纵向坐标不变; ③近似分布曲线的范围与该项重量的实际分布范围相同或大体相同。 浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线。 载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。载荷、剪力和弯矩之间的关系: ①零载荷点与剪力的极值相对应、零剪力点与弯矩的极值相对应; ②载荷在船中前后大致相等,故剪力曲线大致是反对成的,零点靠近船中,在首尾端约船长的1/4处具有最大正、负值; ③两端的剪力为零,弯矩曲线在两端的斜率为零(与坐标轴相切)。 计算状态:指在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态,一般包括满载、压载、空载等和按装载方案可能出现的最为不利以及其它正常营运时可能出现的更为不利的装载状态。 挠度及货物分布对静水弯矩的影响: ①挠度:船体挠度对静水弯矩的影响是有利的;

先进船型与船体结构设计技术综述

先进船型与船体结构设计技术 1 概述 1.1船型与船体结构设计技术的概念与内涵 船型,通常指船舶的类型,按不同的分类标准可以划分为许多种不同的船型。例如按载货方式可分为散货船、油船、集装箱船,其中散货船又有灵便型、巴拿马型、超巴拿马型、好望角型等系列;按航行姿态可分为排水量船、滑行艇、水翼船、气垫船、地效翼船等;按推进器型式可分为螺旋桨推进船、喷水推进船、明轮船等;按动力装置种类可分为柴油机推进船、电力推进船、燃气动力装置船、核动力装置船等。 船体结构设计是在满足船舶总体设计的要求下,解决船体结构的形式、构件的尺度与连接等设计问题,保证船体具有恰当的强度和良好的技术经济性能。船体结构设计应考虑以下几方面:1)安全性,结构设计应保证船舶在各种外力作用下,具有一定的强度和防振性能。2)适用性,结构的布置与构件尺度的选用应符合营运的要求。3)整体性,结构设计必须与船舶性能、轮机、没备、电气及通风等设计密切配合,确保船舶在各个方面都具有良好的工作性能。4)工艺性,结构形式与连接形式的选择应便于施工,选用结构材料应适当减少规格,根据船厂的设备情况和生产组织管理等特点,采用先进、高效、经济的工艺措施。5)经济性,考虑上述方面条件下,力求减少结构的重量,材料选用恰当,使船舶具有更好的经济性能。 1.2 重要性 在国防工业领域,采用新的结构形式、新材料、新型推进方式等新技术开发先进船型,是改善海军舰船总体性能、提高作战效率的重要手段。近十几年来,随着科技的进步,海军对舰船的航行性能、隐身性能、负载能力等要求不断提高;在对近海作战能力的不断重视下,舰船在浅水海域作战需要小吃水,为安装模块化装备需要宽大甲板面积,快速航渡需要高航速。常规单体船型虽然推进效率较高、超载能力强、船体结构简单、维修方便、造价低,但已较

船舶原理设计第二次作业

船舶原理设计第二次作业 1、单位重量的货物所占船舱的容积是。 A.载重量系数B,容积折扣系数C,诺曼系数D,积载系数 2、非液体货物的积载因数并不等于货物密度的倒数。 A, 是B, 否 3、亏舱是指货舱某些部位因堆装不便而产生装货时无法利用的空间,。 A, 是B, 否 4、船舱内能用于装货的容积与型容积之比是。 A.载重量系数B,容积折扣系数C,诺曼系数D,积载系数 5、包装容积通常取净容积的90 %~93 %。 A, 是B, 否 6、机舱长度LM 对货船舱容的利用率关系不大。 A, 是B, 否 7、货舱和压载水舱总容积不足时采取的措施是。 A.修改主尺度B,缩短机舱长度C,调整双层底高度D,三者都是 8、增大型深后对发生影响。 A.对纵总强度有利B,重心升高C,受风面积增大D,三者都是 9、客船是指载客人数超过10 人的船舶。 A, 是B, 否 10、客船根据航行时间和国际、非国际航线分为四类。 A, 是B, 否 11、集装箱船是布置地位型船。 A, 是B, 否 12、专用集装箱船舱内通常不设置导轨架。 A, 是B, 否 13、舱内的集装箱只能布置在货舱开口的范围内。 A, 是B, 否 14、每个货舱内一般布置4行2 0ft标准箱。 A, 是B, 否

15、总体设计方案构思的任务是。 A.明确设计任务B,设立新船总体设计方案 C,分析新船技术和经济性指标D,三者都是 16、散货船的布置特点是。 A.尾机型B,有顶边舱和底边舱C,有甲板起重机D,三者都是 17、集装箱船的布置特点是。 A.大开口B,双壳体C,较多压载水舱D,三者都是 18、多用途船的布置特点是。 A.双层甲板B,大开口C,较少货舱D,三者都是 19、考虑主尺度选择范围的方法主要有。 A.母型船方法B,统计方法C,经验方法D,三者都是 20、船舶的使用要求要服从于技术性能。 A, 是B, 否 21、初始选择船长可以从来考虑。 A.浮力B,总布置C,快速性D,三者都是 22、选择船宽时首先考虑的基本因素是。 A.船宽尺度限制B,总布置C,快速性D,浮力 23、在吃水受限制的情况下为了满足浮力的要求,采用较大的船宽。这种船称为宽浅吃水船。A, 是B, 否 24、船舶采用两种吃水后,在执行法规和规范的规定时,应以结构吃水来校核, A.平均吃水B,设计吃水C,结构吃水D,三者都不是 25、型深的选择都要满足最小干舷的要求。 A, 是B, 否 26、满足限制条件和基本性能要求的主尺度方案称为可行方案, A, 是B, 否 27、可行方案只有一个, A, 是B, 否 28、船舶消防法规中,一般以来分档. A.排水量B,载重量C,总吨位D,三者都不是 29、无线电设备的配备标准电与有关

钢制船结构设计课程设计过程

第一章概述 1. 本船结构强度计算书根据中国船级社2009年<<钢质内河船舶建造规范>>制订 2. 结构形式:纵骨架式结构,双底双舷,单甲板。A级内河自航集装箱船 3. 计算尺度: 设计水线长:m 型宽: 型深:m 结构吃水m 实际吃水:m 方形系数: 4. 主尺度比(符合规范之规定): L/D==<25, B/D==<4

第二章 结构计算 外板: 平板龙骨() 船中部平板龙骨厚度应按船中部底板厚度增加1mm 。平板龙骨的宽度应不小于,且应不小于。 B ≥(m) = 实取全船平板龙骨厚δ=11mm,平板龙骨宽度2m 。 船中部底板(及) 船中内大舱口船货舱区域的船底板厚t 应不小于按下列式子计算所得: )(γβα++=S L a t mm =××+×式中:α、β、γ——系数。 由A 级航区和纵骨架式,a=; 0.066 4.50.8αβγ-=;=;= 船底板尚应不小于(): r d s t +=8.4 mm =××= 式中: d ——吃水,m ;d= s ——肋骨或纵骨间距,m ;s= r ——半波高,m,r=(级航区选取) 船底板尚应不小于(): )(γβα++=S L a t mm =×(×+×+)= 式中:α、β、γ——系数。 由A 级航区和纵骨架式,a=; 0.05.9αβγ=;=3;=1.0 实取船底板厚10mm δ=

舭列板() 舭列板厚度应按船中部船底板厚度增加。 即δ=+=(mm) 实取舭列板厚度10mm δ=。 注:本船采用的是圆舭,则舭列板宽度应至少超过舭部圆弧以外100mm ,并应超过实肋板面板表面以上150mm 。 舷侧外板(及) 船中部舷侧外板厚度应不小于船底板厚度的倍。 即δ≥×= (mm) 舷侧外板的厚度应与船底板厚度相同。 实取厚度为10mm 舷侧顶列板(及) 船中部舷侧顶列板的厚度应不小于强力甲板边板厚度的倍或舷侧外板厚度增加1mm ,取其大者。 货舱区域舷侧顶列板在强力甲板以下的宽度应不小于,其厚度不小强力甲板边板厚度的倍或舷侧外板厚度增加1mm ,取其大者。 舷顶列板宽度 b=×= 100.858.5mm δ=?= 10111mm δ=+= 实取舷侧顶列板厚11mm δ=,宽度900 mm 。 内舷板() 内舷板的厚度应与舷侧外板厚度相同,应直接延伸至船底板,实取t=10mm 。 内底板(及) 载货部位内底板厚度t 应不小于按下式计算所得之值:t=×= 式中: s ——肋骨或纵骨间距,m ;s= h ——计算水柱高度,m ,自内底板上缘量至干舷甲板边线(或舱棚顶板与围壁板交线)的距离。 实取内底板厚度t=10mm 。 甲板(及) 船船长大于或等于50m 的船舶,其中部货舱区域内的甲板边板的厚度t 应不小于按下式计算所得之值: t=s mm=× = t 6.3s hmm=6.30.60.5=2.67mm =?? t==×= 式中:L ——船长,m ;

船体结构设计任务书答案

船体结构设计任务书 1.根据“中国船级社”颁布的《钢质海船入级规范(2006)》设计下述船舶的船中剖面结构。 船型:甲板驳 主尺度: 船长L=110.0 m 船宽B=21.0 m 型深D=5.8 m 排水量?=7400吨 方型系数0.84 C B 2.设计相关条件 本甲板驳横剖面草图见下图,本船采用单层底,左右距中5200mm各设有一道纵舱壁,甲板、舷侧、纵舱壁和船底采用纵骨架式,肋距550mm,每三档设一道横框架(Web Frame)。

3.提交作业 (1)船体结构规范设计计算书; 对设计船舶特征做简要概述(包括船型、主尺度和结构基本特征等),设计所根据的规范版本等。按照船底、舷侧、甲板、舱壁的次序,分别写出确定每一构件尺寸的具体计算过程,并明确标出所选用的尺寸。计算书应简明、清晰,便于检查。 (2)绘制设计典型横剖面结构图,包括强框架剖面和非强框架剖面。 结构图应符合船舶制图规定,图上所标构件尺寸应与计算书中所选用构件尺寸 一致。

1.概述 本船为航行于长江A级航区驳船,船舶采用单底、单舷、单甲板纵骨架式结构。结构计算依据CCS颁布的《钢质海船入级规范(2006)》相关规定。 1.1 主要尺度 船型:甲板驳(无自动力)总长Loa :110.0 m 设计水线长Lw :105.0 m 型宽B :21.0 m 型深D : 5.8 m 设计吃水d : 4.2 m (A 级) 结构吃水: 4.3 m (结构计算) 肋距S :0.55 m 排水量? :7400 t 方型系数CB:0.84 1.2尺度比 1.2.1 尺度比(按CCS—3.1.1) 本船本船采用单层底,左右距中5200mm各设有一道纵舱壁,甲板、舷侧、纵舱壁和船底采用纵骨架式,肋距550mm,每三档设一道横框架(Web Frame)。

船体结构规范计算书

目录 1.计算说明 (3) 2.本船主尺度及计算参数 (3) 3.外板 (3) 4.甲板 (4) 5.单层底结构 (5) 6.舷侧骨架 (6) 7.甲板骨架 (7) 8.支柱 (9) 9.平面横舱壁 (10) 10.平面纵舱壁 (12) 11.浮箱结构计算 (13) 12.泵舱结构计算 (16)

1. 计算说明: 本船为无人的非自航的箱形驳船,在甲板上承载新下水船舶。并通过下潜、使新船下水。港内作业,属遮蔽航区。主船体采用纵骨架式结构,滑道部位特殊加强。浮箱采用横骨架式结构。全船结构设计依据中国船级社1996年《钢质海船入级与建造规范》(以下简称“规范”)第2篇之第2章“船体结构”、第5章“油船”及第12章“驳船”部分的要求进行计算。同时,满足中国船级社1992年《浮船坞入级与建造规范》中的有关要求。 2. 本船主尺度及计算参数: 1)船长L=60 m; 2)船宽B=35 m; 3)型深D=6 m; 4)计算吃水d=4 m; 5)方形系数C b= ▽/(L*B*d)≈1; 6)L/D=10, B/D=5.83; 7)纵骨间距S=0.0016L+0.5=0.6m=600mm; 8)肋板、强横梁及强肋骨间距S=2m 。 9)甲板负荷P 及甲板计算压头h: ①一般部位:P1=10t/m2=100kP a ,h1=0.14P1+0.3=14.03m; ②滑道部位:P2=25t/m2=250KP a,h2=0.14P2+0.3=35.3m; 3. 外板 3.1船底板 3.1.1 据规范5.2.1.1,船中部0.4L区域内的船底板厚度应不小于: t1=0.056sf b(L1+170)=0.056×0.6×1×(60+170) =7.728mm t2=6.4sf b d=6.4×0.6×1×6=9.41mm

船体强度与结构设计 复习精选.

绪论 一.填空 1. 作用在船体结构上的载荷,按其对结构的影响可分为:总体性载荷和局部性载荷。 2. 作用在船休结构上的载荷,按载荷随时间变化的性质,可分为;不变载荷、静变载荷、动变载荷和冲击载荷。 二.概念题: 1. 静变载荷等等 三.简答题: 1.船体强度研究的内容有哪些?2.作用在船体结构上的载荷如何进行分类?试说明。3.为什么要对作用在船体结构上的载荷进行分类? 4.结构设计的基本任务和内容是什么? 第一章: 一、填空题 1. 船体重量按分布情况来分可以分为:总体性重量、局部性重量。 2. 对于计算船体总纵强度的计算状态,我国《钢质海船入级和建造规范》中规定,选取满载:出港、到港;压载:出港、到港;以及装载手册中所规定的各种工况作为计算状态。 3. 计算波浪弯矩的传统标准计算方法是以二维坦谷波作为标准波形的,计算波长等于船长。 4. 计算波浪弯矩时,确定船舶在波浪上平衡位置的方法一般有逐步近似法和直接法两种,直接法又称为麦卡尔法。 5. 计及波浪水质点运动所产生的惯性力的影响,即考虑波浪动水压力影响对浮力曲线所作的修正,称为波浪浮力修正,或称史密斯修正。 二、概念题: 1. 船体梁 2. 总纵弯曲 3. 总纵弯曲强度 4. 重量曲线 5. 浮力曲线 6. 荷载曲线 7. 静水浮力曲线8. 静水剪力、弯矩曲线9. 波浪附加浮力10. 波浪剪力11. 波浪弯矩 12. 静波浪剪力13. 静波浪弯矩14. 静置法15. 静力等效原则16. 史密斯修正 二、简答题: 1. 在船体总纵弯曲计算中,计算总纵剪力及弯矩的步骤和基本公式是什么? 2. 在船体总纵弯曲计算中重量的分类及分布原则是什么? 3. 试推导在两个及三个站距内如何分布局部重量。 4. 空船重量曲线有哪几种计算绘制方法?试推导梯形重量分布的计算公式。 5. 教材中,静水剪力、静水弯矩的计算采用的是什么方法?静波浪剪力、静波浪弯矩的计算采用的是什么方法?两种方法可以通用吗(计算方法唯一吗)? 6. 波浪浮力曲线需要史密斯修正吗?为什么? 第二章: 一、填空题 1. 纵向连续并能有效传递总纵弯曲应力的构件称为纵向强力构件。 2. 构成船体梁上冀板的最上层连续甲板通常称为强力甲板。 3. 在确定板的临界应力时,通常不考虑材料不服从虎克定律对稳定性的影响。 4. 在船体构件的稳定性检验和总纵弯曲应力的第二次近似计算中,需要对失稳的船体板进行剖面面积折减,折减时首先需要将纵向强力构件分为刚性构件和柔性构件两类。 5. 外板同时承受总纵弯曲、板架弯曲、纵骨弯曲及板的弯曲的纵向强力构件称为第四类构件。 6. 船体总纵弯曲时的挠度,可分为弯曲挠度和剪切挠度两部分来计算。 7. 为了按极限弯矩检验船体强度,须将所得的极限弯矩Mj与在波谷上和波峰上的相应计算弯矩M进行比较,即应满足Mj/M≥n,n称为强度储备系数。

船体主要构件结构图

船舶各部位名称如图所示。船的前端叫船首(stem);后端叫船尾(stern);船首两侧船壳板弯曲处叫首舷(bow);船尾两侧船壳板弯曲处叫尾舷(quarter);船两边叫船舷(ships side);船舷与船底交接的弯曲部叫舭部(bilge)。 连接船首和船尾的直线叫首尾线(fore and aft line center line,centre line)。首尾线把船体分为左右两半,从船尾向前看,在首尾线右边的叫右舷(starboard side);在首尾线左边的叫左舷(port side)。与首尾线中点相垂直的方向叫正横(abeam),在左舷的叫左正横;在右舷的叫右正横。

船体水平方向布置的钢板称为甲板,船体被甲板分为上下若干层。最上一层船首尾的统长甲板称上甲板(upper deck)。这层甲板如果所有开口都能封密并保证水密,则这层甲板又可称主甲板(main deck),在丈量时又称为量吨甲板。 少数远洋船舶在主甲板上还有一层贯通船首尾的上甲板,由于其开口不能保证水密,所以只能叫遮蔽甲板(shelter deck)。 主甲板把船分为上下两部分,在主甲板以上的部分统称为上层建筑;主甲板以下部分叫主船体。 在主甲板以下的各层统长甲板,从上到下依次叫二层甲板、三层甲板等等。在主甲板以上均为短段甲板,习惯上是按照该层甲板的舱室名称或用途来命名的。如驾驶台甲板(bridge deck)、救生艇甲板(life-boat deck)、等等 。 在主船体内,根据需要用横向舱壁分隔成很多大小不同的舱室,这些舱室都按照各自的用途或所在部位而命名,如图1-18所示,从首到尾分别叫首尖舱、锚链舱、货舱、机舱、尾尖舱和压载舱等。在

船体强度与结构设计 课程标准

武汉船舶职业技术学院 课程标准 课程编号:030045 课程名称:船体强度与结构设计课程性质:专业课程 适用专业:船舶工程技术 课程负责人:刘建全 制订时间:2014.12 专业负责人审核: 教学系部审核: 教务处审核: 审批时间:

课程名称:船体强度与结构设计课程标准 适用专业:船舶工程技术专业 1.课程的性质 船体强度与结构设计是船舶工程技术专业的一门专业课程,也是学生基本职业岗位专业能力的拓展课程。其功能与教学目的是使学生对船体强度计算及船体结构设计有深的认识与理解,使学生具备参与船舶设计的专业技能,它要以高等数学、机械工程基础、船体识图与制图、船舶性能计算、船舶总体设计等课程的学习为基础。 2.课程的设计思路 1、本课程是以“船舶工程技术专业工作任务与职业能力分析表”中的“船舶质量管理及生产组织、现场管理”工作项目设置的。 其总体设计思路是,根据对船舶工程技术专业所对应的岗位群进行任务和职业能力分析,以船舶设计工作过程所需要的岗位职业能力为依据,以船舶结构设计实际工作过程为导向,以船体强度计算与结构设计的专业知识学习领域工作任务为课程主线进行课程设计。 教学内容以应用为目标、以能力为中心来设计。根据学生的认知规律与技能特点,打破以知识传授为主要特征的传统学科课程模式,转变为以工作任务为中心组织课程内容,采用典型案例来展现教学内容,通过学习领域、知识点、技能点典型案例分析与讲解等工作项目来组织教学,让学生在完成具体项目过程中学会完成相应工作任务,并构建相关理论知识,发展职业能力。课程内容设计则突出对学生职业能力的训练,理论知识的选取紧紧围绕工作任务完成的需要来进行,同时又充分考虑了高等职业教育对理论知识学习的需要,坚持以能力为中心、以学生为主体的原则来设计课堂教学,将能力培养贯穿于课程教学之中。 课程建设坚持以专业知识学习领域工作任务为主线,坚持实践为重、理论够用的原则;课程教学中首先坚持理论来自于实践的原则,教学实例来自工程实践,实例项目设计以实际的船体强度计算与结构设计任务为载体来进行,以增强知识点的实践性,激发学生的学习兴趣。教学过程中充分开发学习资源,给学生提供丰富的实践机会。 工作任务确定如下:

船体结构设计方式的分析

船体结构设计方式的分析 发表时间:2018-09-07T11:07:21.143Z 来源:《建筑细部》2018年2月上作者:王瑶 [导读] 船体的设计要依据实际使用要求,设计之初要做好调查工作,建立符合预算、实用性要求的具体方案,以相应的技术手段满足。基于此,本文对船体结构设计方式进行分析。 天津德赛海洋船舶工程技术有限公司天津市 300450 摘要:船体的设计要依据实际使用要求,设计之初要做好调查工作,建立符合预算、实用性要求的具体方案,以相应的技术手段满足。基于此,本文对船体结构设计方式进行分析。 关键词:船体结构;设计;方式 1船体结构设计理念 建立合理的、科学的船体结构设计理念,能够更好地促进船体结构设计工作开展,能够对其整个工作质量的提升和优化起到重要的促进作用。从结构内容分析来看,其主要需要从以下几个方面展开: 首先,需要对船体建造的总工作量予以充分认识。船体结构设计占据整个船只建造总工程量的三分之一,并且融合了更多的综合性工作,所涉及的专业内容也更为广泛。其次,船体结构中的施工内容也必须予以充分而详尽的考虑,需要就其施工条件予以确认,并结合实际情况而制定出最佳的造船方案,同时绘制出相应的图纸。另一方面还需要注重管理人员的沟通和协调,强化整个工作的系统性。总而言之,船体结构设计需要从宏观方面予以综合考虑,让整个设计过程更为顺利。 2船体结构设计中的主要要求 船体结构设计要以使用性能为参考,在保证安全性能的前提下,进一步美化外观。船只的安全航行是一切利益的保证,船体的稳固是设计的核心理念,结构建构要符合力学原理,参考实际的航海条件,充分考虑天气、水文因素的影响,能够应对出航线路中的极端天气,结构承重性要有保证,外形设计也要配合航行的动力要求,设计船体时要综合多方面经验,合理构建、计算,科学设计。 结构稳定的进一步要求是建造技术水平要配合设计要求。建造时要充分考虑设计参考材料的性能,例如,板材的使用要能适应船体设计的弯曲度,过厚或者过薄都不能实现设计预期。不能为节约成本而以次充好影响质量。 实用性是设计角度必须纳入参考体系的问题,船体、船舱、甲板等设计要根据实际的装载要求合理设计,既能容纳预计的人员或货物,同时也要考虑安全舒适度。 船体设计时考虑的关键因素是预算和使用,从安全性能角度,实用性是基本要求;从后期投入使用后的成本结算角度,设计师要根据预算做出相应的技术调整,寻找安全和利益的最佳结合点,以经济的设计原则减少不必要的材料浪费,选择高科技的轻便、安全材料。 3船体结构设计主要内容 3.1初步设计 在船体的初步设计中,需要对其规划方案加以具体化,其中主要包括了对技术标准的分析以及设计框架的构建,在建立的初期主要是运用基本图纸把预想凸显出来,从而形成一个草稿图,然后根据预案以及设计技术进行选择其中的材料、部件型号以及建立预算,最后形成一个预算报告。 3.2详细设计 船体结构设计的初始阶段,就是大致的设想阶段,具有一定的框架性,根据实际的设计要求与规定,根据相关的审批意见与建议,注重开展相关设计的修改工作,对制造建设进程中的详尽细节最大程度地予以考量,对所有构造器件的型号与材料质量,注重开展多次的确定工作,确保与有关设计的要求与规定相符合。关于船体结构设计方案方面,应当注重将设计方案的全面性与整体性予以突出,当绘图工作结束之后,应当与相关设计方案联系起来,并将相关内容向有关审核部门进行汇报。 3.3生产设计 在生产设计船体结构的过程中,应当重视起生产条件、生产材料以及运用过程等问题,关于实际的施工说明图方面,应当与船体结构设计方案相符合,满足船体结构设计方案的相关要求与规定。 4船体结构的设计方法 船舶自身的造价高昂、使用期限长、工作环境十分恶劣。在其使用期间会遇到多种事故,这些事故本身就会对船舶的结构产生各种恶劣的影响,甚至会导致整个船体结构失去工作能力,造成很大的经济损失,降低社会效益,目前船体结构的设计方法主要分为确定性设计法和结构可靠性分析法。 4.1确定性设计法 船体结构的确定性设计法又可以分为两类,第一类是规范设计法,即根据船体主尺度和结构形式,以及各种营运和施工要求,按照船级社制定的船体建造规范的相关规定来决定构件的布置和尺度的,最后再进行总强度和局部强度的审查,同时还要对结构的稳定性和安全性进行检查,一旦发生任何不足植株,则在原设计方案上进行修改之后在进行局部的加强,指导达到相应的目标。第二类是直接计算法,直接计算法是根据船型和构件布置的不同,来通过规范不可能罗列的全部特征来进行设计的,所以要求设计师具有结构力学的知识,可以按照各种构件和受力情况,直接进行强度的计算。使得船体结构本身就具备良好的力学合理性,而且可以预先选择目标函数,进行优化设计。 4.2结构可靠性分析法 在船体结构强度的确定性设计方式中,将有关参数都设置为定值。所采用的安全系数都表现为强度的储备,使得人们对结构已经产生了固定的印象,认为结构是绝对安全不会被破坏的,然后,所有船体结构不论哪种船型或者结构形式,都是通过空间的板梁组合结构来完成的,这样的话,当船体结构中的一个构件失去效果之后,内力重新分配。整个结构还能继续工作,只有当相当数量的构建都失效之后,整个构建才会失去效果。这就促使人们去研究船体中某些构件结构被破坏的原因,和损坏后对船体的影响,这样才能形成某种采用概率法

船舶强度与结构设计的复习题

复习题 第一章(重点复习局部载荷分配、静水剪力弯矩的计算绘制) 1、局部载荷是如何分配的? (2理论站法、3理论站法以及首尾理论站外的局部重力分布计算) P P P =+21 a P L P P ?=?+)(2 121 由此可得: ?? ? ?? ?? ?-=?+=)5.0()5.0(21L a P P L a P P 分布在两个理论站距内的重力 2、浮力曲线是如何绘制的? 浮力曲线通常按邦戎曲线求得,下图表示某计算状态下水线为W-L 时,通常 根据邦戎曲线来绘制浮力曲线。为此,首先应进行静水平衡浮态计算,以确定船舶在静水中的艏、艉吃水。

帮戎曲线确定浮力曲线 3、M、N曲线有何特点? (1) M曲线:由于船体两端是完全自由的,因此艏、艉端点处的弯矩应为零,亦即弯矩曲线在端点处是封闭的。此外,由于两端的剪力为零,即弯矩曲线在两端的斜率为零,所以弯矩曲线在两端与纵坐标轴相切。 (2) N曲线:由于船体两端是完全自由的,因此艏、艉端点处的剪力应为零,亦即剪力曲线在端点处是封闭的。在大多数情况下,载荷在船舯前和舯后大致上是差不多的,所以剪力曲线大致是反对称的,零点在靠近船舯的某处,而在离艏、艉端约船长的1/4处具有最大正值或负值。 5、计算波的参数是如何确定的? 计算波为坦谷波,计算波长等于船长,波峰在船舯和波谷在船舯。 采用的军标GJB64.1A中波高h按下列公式确定: 当λ≥120m时, 当60m≤λ≤120m时,当λ≤60m时, 20 λ = h(m) 2 30 + = λ h(m) 1 20 + = λ h(m) 6、船由静水到波浪中,其状态是如何调整的? 船舶由静水进入波浪,其浮态会发生变化。若以静水线作为坦谷波的轴线,当船舯位于波谷时,由于坦谷波在波轴线以上的剖面积比在轴线以下的剖面积小,同时船体中部又较两端丰满,所以船在此位臵时的浮力要比在静水中小, 因而不能处于平衡,船舶将下沉ξ值;而当船舯在波峰时,一般船舶要上浮一些。 另外,由于船体艏、艉线型不对称,船舶还将发生纵倾变化。 7、麦卡尔假设的含义。 麦卡尔方法是利用邦戎曲线来调整船舶在波浪上的平衡位臵。因此,在计算 时,要求船舶在水线附近为直壁式,同时船舶无横倾发生。根据实践经验,麦 卡尔法适用于大型运输船舶。 第二章 (重点复习计算剖面的惯性矩、最小剖面模数是如何的计算、折减系数、极限弯矩的计算)1、危险剖面的确定。 危险剖面: 可能出现最大弯曲应力的剖面,由总纵弯曲力矩曲线可知,最大弯矩一般在 船中0.4倍船长范围的,所以计算剖面一般应是此范围内的最弱剖面—既有最大

船体强度与结构设计复习教案资料

船体强度与结构设计 复习

绪论 1.总纵强度:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁,简 称船体梁。船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲,称为总纵弯曲。船体梁抵抗总纵弯曲的能力,称为总纵强度。 2.船体总纵强度计算的传统方法:将船舶静置在波浪上,求船体梁横剖面上的剪力和弯 曲力矩以及相应的应力,并将它与许用应力相比较以判断船体强度。 3.评价结构设计的质量标准:安全性,营运合适性,船舶的整体配合性,耐久性,工艺 性,经济性。 4.按照静置法所确定的载荷来校核船体的总纵强度,是否反映船体的真实强度,为什 么?答:按照静置法所确定的载荷来校核船体总强度,不反映船体的真实强度,因为海浪是随机的,载荷是动态的,而且当L较大时载荷被夸大,但具有相互比较的意义。 第一章引起船体梁总纵弯曲的外力计算 5.总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。(中拱:船体梁中 部向上拱起,首、尾两端向下垂。中垂:船中部下垂,首、尾两端向上翘起。) 6.重量曲线:船舶在某一计算状态下,描述全船重量沿船长分布状况的曲线。绘制重量 曲线的方法:静力等效原则。 7.浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线 8.载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲 线。 9.静水剪力:船体梁在静水中所受到的剪力沿船长分布状况的曲线。 10.弯矩曲线:船体梁在静水中所受到的弯矩沿船长分布状况的曲线。 (重量的分类:按变动情况来分:①不变重量,即空船重量,包括:船体结构、舾装设备、机电设备等各项固定重量。②变动重量,即装载重量,包括货物、燃油、淡水、粮食、旅客、压载等各项可变重量。按分布情况来分:①总体性重量,即沿船体梁全长分布的重量,通常包括:主体结构、油漆、锁具等各项重量。②局部性重量,即沿船长某一区段分布的重量。) 11.局部重量的分配原则(P12):重量的分布原则:静力等效原则。①保持重量的大小 不变,这就是说要使近似分布曲线所围成的面积等于该项实际重量。②保持重量重心的纵向坐标不变,即要使近似分布曲线所围的面积的形心纵坐标与该项重量的重心坐标相等。③近似分布曲线的范围(分配到理论站的范围)与该项重量的实际分布范围相同或大体相同。 12.如何获得实际船舶重量分布曲线:答:通常将船舶重量按20个理论站距分布(民船 尾-首,军船首-尾编排),用每段理论站距间的重量作出阶梯形曲线,并以此来代替重量曲线。作梯形重量曲线时,应使每一项重量的重心在船长方向坐标不变,其重量分布范围与实际占据的范围应大致对应,而每一项理论站距内的重量则当做是均匀的。最终,重量曲线下所包含的面积应等于船体重量,该面积的形心纵向坐标应与船体重心的纵向坐标相同。 13.静水力浮力曲线的绘制:浮力曲线的垂向坐标表示作用在船体梁上单位长度的浮力 值,其与纵向坐标轴所围的面积等于作用在船体上的浮力,该面积的形心的纵向坐标即为浮心的纵向位置。浮力曲线通常根据邦戎曲线来求得。 14.用于总纵强度计算的剪力曲线和弯矩曲线的特点:①首尾端点处的剪力和弯矩为零, 亦即剪力和弯矩曲线在端点处封闭②零载荷点与剪力的极值相对应,零剪力点与弯矩的极值相对应③剪力曲线大致是反对称的,零点在靠近船中的某处,在离首尾约船长的1/4处具有最大正值或负值④弯矩曲线在两端的斜率为零,最大弯矩一般在船中 0.4倍船长范围内。 15.波浪剪力:完全由波浪产生的附加浮力引起的附加剪力。

浅议船体结构设计及细节分析

浅议船体结构设计及细节分析 摘要:船舶结构设计的过程实际上是一个科学的研究、论证、优化的过程。在 满足强度的前提下,优化结构设计,尽可能地减少船体自重,提高载重能力。在 选用船体构件材料规格时,主要考虑经济性;在保证船体强度和使用要求下尽量 减少船体结构重量,以提高船舶的载重量。要建造世界领先的船舶,就要在船体 结构的设计和建造中,加强对船体结构细节问题重视程度,尽可能的把细节问题 处理到最优。 关键词:结构设计;船舶船体;分析研究 1前言 1.1工作环境 船舶在营运期间长时间地与海水等腐蚀性介质接触,很容易出现结构腐蚀问题,若保养工作跟不上,腐蚀不断加重,最终可能出现构件锈穿,导致船体强度 大幅下降。与此同时,受不良气候、波浪拍击、货物装卸等方面的影响,船体很 容易出现疲劳性损伤,在腐蚀与疲劳损伤的双重作用下,很可能出现船壳破损进 水等严重事故。同时,船舶航行过程中,不可避免地会受到波浪的冲击,这种冲 击轻则造成船体外板腐蚀、变形,重则引发船体中垂弯曲等问题,使船体应力出 现较大变化。此外,当船舶遭遇大的浪涌冲击时,波浪反复交替作用,会使船体 扭曲、中垂等负面状态进一步恶化,严重时会造成荷载分布的严重失衡,影响整 个船舶的航行安全。 1.2船体载荷 船舶航运期间,同时受到多重荷载影响,如船体自重、海水浮力、风力、惯 性力、物资压力等,此外,个别情况下还可能产生爆炸、撞击等突发性荷载。在 设计船舶主体结构过程中,应充分考虑上述荷载的影响,通过一定的结构设计来 抵消、分散不良荷载的影响,保持船舶整体荷载均衡。 2船体结构设计步骤 2.1初步规划 这一步骤是指按照相关的技术标准以及设计目的对于任务展开架构性的建设,绘制基础的设计图,根据原先的计划以及设计目标对于所需原料的型号、用量等 检查预算方案并产生与之对应的报告,进而对船舶的大小、结构架势展开设计。 2.2详细设计 开始之初最主要的是一个大的框架的构设,之后要适当加入些许细节,在进 行细节的设计时,必须按照有关标准、上级的审批意见作出对应的调整,在完全 考虑到细节的基础上,根据材料的型号以及材质,设计出系统性的方案,经过绘 制之后在交给相关部门审核。 2.3生产设计 这一环节是对于船舶的设计当中所提出的要求,它要求设计过程严格按照制 定的方案进行材料选择、施工建设以及优化完善等。 3船体结构设计中的细节处理 船体结构设计主要是在满足船舶整体设计的基础上,根据设计者的经验,保 证船体能够良好的发挥其功能。衡量船体结构设计是否优质的标准为:①安全性:由于各种作用力的存在,使得船体结构的设计对船体的强韧性有一定的要求,以 保证船舶的安全使用;②适用性:不同的船舶有不同的船体设计需求,因此在船体结构设计时需要按照具体的使用需求设计船体,保证其适用性;③整体性:船

上海交大船舶结构设计第二次作业

《船舶结构设计》作业2 1.论述船体总强度第二次近似计算的过程。 从折减系数的计算中可以看到,折减系数的大小与总纵弯曲压 应力值有关,而总纵弯曲压应力的大小又与构件的折减系数有关,因此总纵弯曲应力的计算必定是个逐步近似的过程。当然,若总纵弯曲压应力均未超过板的临界应力,则不必进行折减计算,可直接按第一次近似总纵弯曲应力值进行强度校核。 在船体板的稳定性检验后,若有构件失稳,则须按前述相应公式计算折减系数,并进行失稳构件的面积折减。接着,进行总纵弯曲应力的第 2 次近似计算。 对折减构件 i 的剖面积的修正值为: 式中 i 需进行折减的剖面积; ? i -按第 1 次近似总纵弯曲应力确定的折减系数。于是所有需折减的构件,其折减面积、折减静矩和折减惯性 矩总和分别为 折减后剖面总面积、总静矩和总惯性矩分别为: 修正后的船体剖面中和轴至参考轴的距离为:

剖面惯性矩为: 任一构件至中和轴的距离为: 任一构件第 2 次近似计算总纵弯矩应力为: 如果第 2 次近似计算的总纵弯曲应力与第 1 次近似计算值相差 不大于 5%,则可用第 2 次近似计算值进行总纵强度校核,否则必须 进行第 3 次近似计算。 此时,可以用第 2 次近似计算的结果、和作为计算的基础;构件 折减系数仍按上述公式确定,但应取第 2 次近似计算所得的应力作为 1A1B1Ciσ;折减构件的面积修正量为 )(iiiA ?? - ′′Δ,其中 i? ′、i?分别为按第 2 次及第 1 次近似计算结果确定的折减系数;其余各项计 算与第 2 次近似计算完全一样。

2.简述闭式剖面剪应力的计算方法。 为了保证型材有足够的强度,必须使翼板的最大正应力和腹板 上的最大剪应力小于许用应力,即: 式中: M ,N 为作用于剖面的弯矩及剪力, W1 为最小剖面模数, I为型材剖面对中和轴的惯性矩, S 为剖面中和轴以上或以下的剖面积对中和轴的静矩,t 为型材腹板的厚度。 为此,首先要建立型材剖面要素与剖面几何尺寸之间的关系式设 参考轴 O’-O’取在小翼板厚度中点的轴线上。利用剖面特性 计算的移轴 定律,剖面中和轴至参考轴的距离为: 剖面对中和轴的惯性矩为: 将式( 3.1)代入上式得

相关主题