搜档网
当前位置:搜档网 › TL494中文资料及应用电路 2

TL494中文资料及应用电路 2

TL494中文资料及应用电路 2
TL494中文资料及应用电路 2

TL494中文资料及应用电路

来源:PCB资源网作者:佚名发布时间:2007-11-09 发表评论

TL494常应用于电源电路当中,在本站的文章中,除了本文TL494中文资料及应用电路,还有一个电路是应用了TL494资料的,具体的电路图,请参考本站文章:200W的ATX电源线路图,对于TL494的PDF数据手册,我还没有找到,哪位朋友有的,可以提供一下给我们PCB资源网,不过,有了本文参考,也可以了吧,因为本文已经提供了比较丰富的TL494中文资料了

TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。其主要特性如下:

TL494主要特征

集成了全部的脉宽调制电路。

片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。

内置误差放大器。

内止5V参考基准电压源。

可调整死区时间。

内置功率晶体管可提供500mA的驱动能力。

推或拉两种输出方式。

TL494外形图

TL494引脚图

TL494工作原理简述

TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:

输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。参见图2。

TL494脉冲控制波形图

控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。

脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。

当比较器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1和Q2的工作。若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管Q1或Q2取得。输出变压器一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更高的驱动电流输出,亦可将Q1和Q2并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。这种状态下,输出的脉冲频率将等于振荡器的频率。

TL494内置一个5.0V的基准电压源,使用外置偏置电路时,可提供高达10mA的负载电流,在典型的0—70℃温度范围50mV温漂条件下,该基准电压源能提供±5%的精确度。

TL494内部电路方框图

TL494脉宽调制控制电路应用

TL494单端连接输出和推、拉(电流)结构

电容降压原理

来源:PCBTE 作者:xhymsg 发布时间:2005-11-16 发表评论

电容降压原理综述:

电容降压的工作原理并不复杂。他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。

例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。当220V的交流电压加在电容器的两端,则流过电容的最大电流约为 70mA。虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。

根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。因为 110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。

同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。因为5W/65V的灯泡的工作电流也约为70mA。因此,电容降压实际上是利用容抗限流。而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。

采用电容降压时应注意以下几点:

1 根据负载的电流大小和交流电的工作频率选取适当的电容,而不是依据负载的

电压和功率。

2 限流电容必须采用无极性电容,绝对不能采用电解电容。而且电容的耐压须在400V以上。最理想的电容为铁壳油浸电容。

3 电容降压不能用于大功率条件,因为不安全。

4 电容降压不适合动态负载条件。

5 同样,电容降压不适合容性和感性负载。

6 当需要直流工作时,尽量采用半波整流。不建议采用桥式整流。而且要满足恒定负载的条件

中文资料TL494CN

TL494常应用于电源电路当中,在本站的文章中,除了本文TL494中文资料及应用电路,还有一个电路是应用了TL494资料的,具体的电路图,请参考本站文 章:200W的ATX电源线路图,本文已经提供了比较丰富的TL494中文资料了 TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。其主要特性如下: TL494主要特征 集成了全部的脉宽调制电路。 片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。 内置误差放大器。 内止5V参考基准电压源。 可调整死区时间。 内置功率晶体管可提供500mA的驱动能力。 推或拉两种输出方式。 TL494外形图 TL494引脚图

TL494工作原理简述 TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下: 输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。参见图2。

TL494脉冲控制波形图 控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。 脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。 当比较器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1和Q2的工作。若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管Q1或Q2取得。输出变压器一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更高的驱动电流输出,亦可将Q1和Q2并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。这种状态下,输出的脉冲频率将等于振荡器的频率。 TL494内置一个5.0V的基准电压源,使用外置偏置电路时,可提供高达10mA的负载电流,在典型的0—70℃温度范围50mV温漂条件下,该基准电压源能提供±5%的精确度。 TL494内部电路方框图

TL494中文资料及应用电路Microsoft Word 文档

TL494中文资料及应用电路Microsoft Word 文档TL494中文资料及应用电路 TL494常应用于电源电路当中,在本站的文章中,除了 TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。其主要特性如下: TL494主要特征 集成了全部的脉宽调制电路。 片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。 内置误差放大器。 内止5V参考基准电压源。 可调整死区时间。 内置功率晶体管可提供500mA的驱动能力。 推或拉两种输出方式。 TL494外形图 TL494引脚图 TL494工作原理简述 TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下: 输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。参见图2。

TL494脉冲控制波形图 控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。 脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。 当比较器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1和Q2的工作。若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管Q1或Q2取得。输出变压器一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更高的驱动电流输出,亦可将Q1和Q2并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。这种状态下,输出的脉冲频率将等于振荡器的频率。 TL494内置一个5.0V的基准电压源,使用外置偏置电路时,可提供高达10mA 的负载电流,在典型的0—70?温度范围50mV温漂条件下,该基准电压源能提 供?5%的精确度。 TL494内部电路方框图

TL494CN中文资料原理及应用技巧

TL494主要特征 集成了全部的脉宽调制电路。片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)内置误差放大器。 内止5V 参考基准电压源。 可调整死区时间。 内置功率晶体管可提供500mA的驱动能力。 推或拉两种输出方式。 TL494外形图 TL494引脚图 TL494工作原理简述 TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下: 输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的 宽度将减小。参见图2。 TL494脉冲控制波形图

控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV勺输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。当把死区时间控制输入端接上固定的电压(范围在0—之间)即能在输出脉冲上产生附加的死区时间。 脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从变化到时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。两个误差放大器具有从到()的共模输入范围,这可能从电源的输出电压和电流察觉得到。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。 当比较器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1和Q2的工作。若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管Q1或Q2取得。输出变压器一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更高的驱动电流输出,亦可将Q1和Q2并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。 这种状态下,输出的脉冲频率将等于振荡器的频率。

TL494工作原理与应用

TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。其主要特性如下: TL494主要特征 集成了全部的脉宽调制电路。 片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。 内置误差放大器。 内止5V参考基准电压源。 可调整死区时间。 内置功率晶体管可提供500mA的驱动能力。 推或拉两种输出方式。 TL494外形图 TL494引脚图

TL494工作原理简述 TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下: 输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。参见图2。

TL494脉冲控制波形图 控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。 脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。 当比较器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1和Q2的工作。若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管Q1或Q2取得。输出变压器一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更高的驱动电流输出,亦可将Q1和Q2并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。这种状态下,输出的脉冲频率将等于振荡器的频率。 TL494内置一个5.0V的基准电压源,使用外置偏置电路时,可提供高达10mA的负载电流,在典型的0—70℃温度范围50mV温漂条件下,该基准电压源能提供±5%的精确度。 TL494内部电路方框图

TL494介绍及其应用

TL494介绍及其应用 TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中。本文介绍它与相应的输入、输出电路等一起构成一个单回路控制器。 1、TL494管脚配置及其功能 TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II 的反相和同相输入端。

2、回路控制器工作原理 回路控制器的方框图如图2所示。被控制量(如压力、流量、温度等)通过传感器交换为0~5V的电信号,作为闭环回路的反馈信号,通过有源简单二阶低通滤波电路进行平滑、去除杂波干扰后送给TL494的误差放大器I的IN+同相输入端。设定输入信号是由TL494的5V基准电压源经一精密多圈电位器分压,由电位器动端通过有源简单二阶低通滤波电路接入TL494的误差放大器I的IN-反相输入端。反馈信号和设定信号通过TL494的误差放大器I进行比较放大,进而控制脉冲宽度,这个脉冲空度变化的输出又经过整流滤波电路及由集成运算放大器构成的隔离放大电路进行平滑和放大处理,输出一个与脉冲宽度成正比的、变化范围为0~10V的直流电压。这个电压就是所需要的输出控制电压,用它去控制执行电路,及时调整被控制量,使被控制量始终与设定值保持一致,形成闭环单回路控制。 用TL494实现的单回路控制器的电路原理图如图3所示。 2.1 输入电路 两个运算放大器IC1A、IC1B都接成有源简单二阶低通滤电路,分别作为反馈信号输入和设定信号输入的处理电路。在电路设计上,两个输入电路采取完全对称的形式。将有源简单二阶低通滤波电路的截止频率fp设计为4Hz,根据有

透彻分析利用TL494组成的逆变器电路

透彻分析利用TL494组成的逆变器电路 现在利用TL494组成400W大功率稳压逆变器电路,它的激式变换部分是采用TL494和VT1、VT2、VD3、VD4一起构成灌电流驱动电路,驱动两路各配两只60V/30A的MOSFET开关管。需提高输出功率时,每路可采用3~4只开关管并联使用,整体电路也不变。TL494在逆变器中的应用方法如下: ?第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。反相输入端2脚输入5V基准电压(由14脚输出)。当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。正常时1脚电压值为5.4V,2脚电压值为 5V,3脚电压值为0.06V。此时输出AC电压为235V(方波电压)。第4脚外接R6、R4、C2设定死区时间。正常电压值为0.01V。第5、6脚外接 CT、RT设定振荡器三角波频率为100Hz。正常时5脚电压值为1.75V,6脚电压值为3.73V。第7脚为共地。第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。当S1关断时,TL494无输出脉冲,因此开关管 VT4~VT6无任何电流。S1接通时,此三脚电压值为蓄电池的正极电压。第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。正常时电压值为1.8V。第13、14、15脚其中14脚输出5V基准电压,使13脚有 5V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。第15脚外接5V电压,构成误差放大器反相输入基准电压,以使同相输入端16脚构成高电平保护输入端。此接法中,当第16脚输入大于5V的高电平时,

TL494及MOS管驱动电路图集

由NCP1014构成的10瓦隔离式空调控制器开关电源,其电路采用常 见的反激式拓扑结构,如图2所示。FR1为熔断电阻器,D1-4为输 入级整流管,C1及C2为输入级滤波电容,L1为输入级EMI差模抑制 电感。 D5、C3和R1分别为吸收电路超快恢复二极管、高压陶瓷电容和功率 电阻。T1为EE22铁氧体磁芯高频功率开关变压器。U1为NCP1014 单片开关电源IC,D6、R2和C4分别为辅助电源整流二极管、限流电 阻和电解滤波电容。U2、R3和ZD1分别为次级电压反馈高压隔离光 耦、限流电阻和电压参考稳压二极管。D7和C6分别为12伏输出电源 超快恢复整流二极管和电解滤波电容。U3和C7分别为5伏输出电源 稳压IC和电解滤波电容。C5为安规Y2电容。 ■ 电路设计要点 以图2为例,介绍用NCP1014设计空调控制器开关电源电路的基本要点。 ● 高频功率开关变压器T1 高频开关变压器是开关电源核心器件之一,其参数的设计直接影响到开关电源的许多性能。设计时须全面综合考虑开关电源各个方面因素。采用不连续模式时,开关变压器的电感量应选择少一些,反之,采用连续模式时,变压器电感量应选择大一些。变压器匝比的选择应结合需要的最大占空比、功率开关管和次级整流二极管的反向耐压值来考虑。一般来讲,功率小的开关电源采用不连续的工作模式。 ● 初级输入滤波电容C1和C2 C1和C2可选用普通的电解电容,主要作用是对输入电压平滑滤波,滤除100赫兹纹波电压,为开关电源提供相对稳定的直流电压。宽电压输入范围时,C1和C2至少要保证开关电源每瓦有2微法以上的电容量。 ● 差模抑制电感L1 L1与输入电容C1和C2一起构成Л型滤波电路,起到抑制开关电源EMI的作用。推荐L1采用带铁氧体磁芯的电感,L1的电感量应大于或等于设计值,所能承受的有效值电流也要留出一定余量。https://www.sodocs.net/doc/312616559.html,/2007/10/20071019121121109563.html

tl494应用电路讲解

tl494应用电路讲解 TL494是功能非常完善的PWM驱动电路,对于一般的应用已经绰绰有余了.本文将简单的说说两种应用电路.大家可以对照电路自己选简单应用或带保护功能的应用方案. TL494应用电路 这个算是最简单的应用了:屏蔽了两个误差放大器的功能,但缓启动,死区功能还是保留的.一般应用效率最高,非常稳定. 1:按手册要求两个误差放大器屏蔽的话要求误差放大器输入端正极要求接地(图中1脚和16脚通过1K的电阻接地了),误差放大器输入端负极要求接高电位(2脚和15脚是接入了14脚的5V基准端了).注意下TL494的14脚是个5V输出的精密稳压电源,好多应用都是从这个基准端取样的. 这样TL494的1脚2脚15脚16脚再加上3脚(3脚是两个误差放大器的输出汇总端,因为屏蔽了两个误差放大器就不去考虑3脚了)的功能就不去用它了. 2:TL494的4脚是死区控制端,电压输入0-4V的话可使占空比从最大到关闭是为止(45%-0%).4脚直接接地的话占空比是最大了(不过放心厂家已经在集成电路内部做好了合适的死区电路,4脚就是直接接地也留有死区).在上图种就是利用4脚接入C1和R1的中间,电容正极接14脚的5V基准电位,通过R1给电容充电,这样开机后4脚开始是5V的电位到电容充满电后4脚变0V(真好完成占空比从0%到最大)整个缓启动的时间长短就C1和R1的时间常数决定(加大电阻或电容缓启动时间变长反之就短了). 3:5脚6脚是决定振荡频率的,公式是F=1.1/(R*C)注意下整个频率算出来是单端应用的频

率,如果推挽应用的话还要除以二.这里一起把TL494单端应用和推挽应用的方式也讲 下:TL494的13脚决定了工作方式,13脚接地的话是单端应用如果接14脚5V输出端就是推挽应用了.上图接的是14脚就是推挽应用. 4:TL494的7脚是电源地,12脚是正极电源输入端接7-40V均可. 5:TL494的8脚,9脚,10脚,11脚是内部的三极管输出脚,因为TL494的输出电流比较大,驱动场管的话直接加外接释放管后就可以驱动比较大电流的场管了,所以像上图那样做几百到上千瓦功率均可. 这样TL494的最简单的应用电路就讲完了,搭这个电路才几个元件.但主要的功能已经都涵盖了.明天接着说TL494两个误差放大器的应用使TL494能完成限流,稳压和防反接功能. 接着看下面的图: TL494应用电路 这是个带稳压和限流的图纸,只是在第一幅图上增加了两个两个误差放大器的应用(一个限流保护用,一个稳压用).TL494两个误差放大器允许独立使用,但独立使用时要和tl494的3脚接好RC网络,上图中的c6和c7就起这个作用. 1:上图中稳压功能的实现是利用其中一个误差放大器的1脚和2脚实现的(两个误差放大器可以互换使用).因为误差放大器的2脚是通过R3接入TL494的14脚(5V基准电压端)那么2脚电位就固定在5V了,那么1脚电位也必须要5V保持稳定状态.上图中WR1就是根据设定高压输出电压的需要,电阻分压后微调分压使TL494的1脚保持5V电位.这样输出电压出现变化时必然使TL494的1脚电位发生变化,1脚的电位微小变化就使误差放大器控制

TL494中文资料及应用电路

TL494内部电路方框图

1、2脚分别为误差比较放大器的同相输入端和反相输入端。 3脚为控制比较放大器和误差比较放大器的公共输出端,输出时表现为或输出控制特性,也就是就在两个放大器中,输出幅度大者起作用。当3脚的电平变高时,TL494送出的驱动脉冲宽度变窄,当3脚电平低时,驱动脉冲宽度变宽。 4脚为死区电平控制端,从4脚加入死区控制电压可对驱动脉冲的最大宽度进行控制,使其不超过180度,这样可以保护开关电源电路中的三极管。 5、6脚分别用于外接振荡电阻和电容。 7脚为接地端。 8、9脚和11、12脚分别为TL494内容末级两个输出三极管的集电极和发射极。 12脚为电源供电端。 13脚为功能控制端。 14脚为内部5V基准电压输出端。 15、16脚分别为控制比较放大器的反相输入端和同相输入端。 电脑ATX电源维修: 打开电源的上半盒子,观察电源内部。 A,元件有没炸裂的现象,如果保险管已烧黑,说明初级电路有短路现象,重点检查整流二极管,待机电源管,半桥双三极管,有没击穿。 B,元件没炸裂的现象,通电,用表测量20针中的绿线,紫线,有没+5V电压,如果没有,就要检查待机电路,重点测开机电阻,一般开机电阻取值几百K,容易出现阻值变大,开路现象。检查与待机电源管相连的小三极管有没短路,开路。 C,20针中的绿线,紫线,有+5V电压,再用导线短路绿线与黑线强行开机,看能不能开机,如果不能,看TL494(7500B)的电源脚有没电压(12脚是电源),如果没有,查与待机电路次级相连的线路。TL49 4

(7500B)的电源脚有电压,不能开机,要查死区控制脚(4)是5V,还是0V,如果是5V,一般是电路保护 了,查看三个双二极管整流器有没短路。 通过以上三项,可以修好70%有故障的电源。在修理中发现极少有IC损坏的现象,坏的是TL494的多, LM339还没见损坏过。 ATX工作原理 ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路。参照实物绘出整机电路图,如图3所示。 1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制电路提供工作电压。如图4所示,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。R2和R3为隔离平衡电阻,在电路中对C5和C6起平均分配电压作用,且在关机后,与地形成回路,快速泄放C5、C6上储存的电荷,从而避免电击。 2、高压尖峰吸收电路 如图5所示,D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 3、辅助电源电路 如图6所示,整流器输出的+300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50、C04整流滤波后,一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势开始下降,最终使T3③~④反馈绕组感应电动势反相(上负下正),并与C02电压叠加后送往Q03的b极,使b极电位变负,此时开关管Q03因b极无启动电流而迅速截止。 开关管Q03截止时,T3③~④反馈绕组、D7、R01、R02、R03、R04、R05、C09、IC3、IC4组成再起振支路。当Q03导通的过程中,T3初级绕组将磁能转化为电能为电路中各元器件提供电压,同时T3反馈绕组的④端感应出负电压,D7导通、Q1截止;当Q03截止后,T3反馈绕组的④端感应出正电压,D7截止,T3次级绕组两个输出端的感应电动势为正,T3储存的磁能转化为电能经D50、C04整流滤波后为IC4提供一个变化的电压,使IC3的①、②脚导通,IC3内发光二极管流过的电流增大,使光敏三极管发光,从而使Q1导通,给开关管Q03的b极提供启动电流,使开关管Q03由截止转为导通。同时,正反馈支路C02的充电电压经T3反馈绕组、R003、Q03的be极等效电阻、R06形成放电回路。随着C41充电电流逐渐减小,开关管

TL494在开关电源中的应用

本文档内容来自于网络,但是本人忘了从哪个论坛上拷贝过来的。在这里先感谢这位前辈。 首先声明下:自己也是个新手,对那些刚接触的玩家可能有点帮助.老鸟对有错误的地方请及时指正. TL494是功能非常完善的PWM驱动电路,对于一般的应用已经绰绰有余了.我现在简单的说说两种应用电路.新手可以对照电路自己选简单应用或带保护功能的应用方案. 看下面图: 这个算是最简单的应用了:屏蔽了两个误差放大器的功能,但缓启动,死区功能还是保留的.一般应用效率最高,非常稳定. 1:按手册要求两个误差放大器屏蔽的话要求误差放大器输入端正极要求接地(图中1脚和16脚通过1K的电阻接地了),误差放大器输入端负极要求接高电位(2脚和15脚是接入了14脚的5V基准端了).注意下TL494的14脚是个5V输出的精密稳压电源,好多应用都是从这个基准端取样的. 这样TL494的1脚2脚15脚16脚再加上3脚(3脚是两个误差放大器的输出汇总端,因为屏蔽了两个误差放大器就不去考虑3脚了)的功能就不去用它了. 2:TL494的4脚是死区控制端,电压输入0-4V的话可使占空比从最大到关闭是为止(45%-0%).4脚直接接地的话占空比是最大了(不过放心厂家已经在集成电路内部做好了合适的死区电路,4脚就是直接接地也留有死区).在上图种就是利用4脚接入C1和R1的中间,电容正极接14脚的5V基准电位,通过R1给电容充电,这样开机后4脚开始是5V的电位到电容充满电后4脚变0V(真好完成占空比从0%到最大)整个缓启动的时间长短就C1和R1的时间常数决定(加大电阻或电容缓启动时间变长反之就短了). 3:5脚6脚是决定振荡频率的,公式是F=1.1/(R*C)注意下整个频率算出来是单端应用的频率,如果推挽应用的话还要除以二.这里一起把TL494单端应用和推挽应用的方式也讲

开关集成电路TL494引脚图

开关集成电路TL494引脚图 TL494是美国德州仪器公司生产的一种电压驱动型 脉宽调制控制集成电路,主要应用在各种开关电源中。本文介绍它与相应的输入、输出电路等一起构成一个单回路控制器。 开关集成电路TL494内部原理图: 1、TL494管脚配置及其功能 TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推

挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。 2、回路控制器工作原理 回路控制器的方框图如图2所示。被控制量(如压力、流量、温度等)通过传感器交换为0~5V的电信号,作为闭环回路的反馈信号,通过有源简单二阶低通滤波电路进行平滑、去除杂波干扰后送给TL494的误差放大器I的IN+同相输入端。设定输入信号是由TL494的5V基准电压源经一精密多圈电位器分压,由电位器动端通过有源简单二阶低通滤波电路接入TL494的误差放大器I的IN-反相输入端。反馈信号和设定信号通过TL494的误差放大器I进行比较放大,进而控制脉冲宽度,这个脉冲空度变化的输出又经过整流滤波电路及由集成运算放大器构成的隔离放大电路进行平滑和放大处理,输出一个与脉冲宽度成正比的、变化范围为0~10V的直流电压。这个电压就是所需要的输出控制电压,用它去控制执行电路,及时调整被控制量,使被控制量始终与设定值保持一致,形成闭环单回路控制。

用TL494做400W大功率稳压逆变器电路图

用TL494做400W大功率稳压逆变器电路图 目前所有的双端输出驱动IC中,可以说美国德克萨斯仪器公司开发的TL494功能最完善、驱动能力最强,其两路时序不同的输出总电流为SG3525的两倍,达到400mA。仅此一点,使输出功率千瓦级及以上的开关电源、DC/DC变换器、逆变器,几乎无一例外地采用TL494。虽然TL494设计用于驱动双极型开关管,然而目前绝大部分采用MOS FET开关管的设备,利用外设灌流电路,也广泛采用TL494。为此,本节中将详细介绍其功能及应用电路。其内部方框图如图3所示。其内部电路功能、特点及应用方法如下: A.内置RC定时电路设定频率的独立锯齿波振荡器,其振荡频率fo(kHz)=1.2/R(kΩ)·C(μF),其最高振荡频率可达300kHz,既能驱动双极性开关管,增设灌电流通路后,还能驱动MOS FET开关管。 B.内部设有比较器组成的死区时间控制电路,用外加电压控制比较器的输出电平,通过其输出电平使触发器翻转,控制两路输出之间的死区时间。当第4脚电平升高时,死区时间增大。 C.触发器的两路输出设有控制电路,使Q1、Q2既可输出双端时序不同的驱动脉冲,驱动推挽开关电路和半桥开关电

路,同时也可输出同相序的单端驱动脉冲,驱动单端开关电路。 D.内部两组完全相同的误差放大器,其同相输入端均被引出芯片外,因此可以自由设定其基准电压,以方便用于稳压取样,或利用其中一种作为过压、过流超阈值保护。 E.输出驱动电流单端达到400mA,能直接驱动峰值电流达5A的开关电路。双端输出脉冲峰值为2×200mA,加入驱动级即能驱动近千瓦的推挽式和桥式电路。

TL494典型应用电路

TL494脉宽调制控制电路 TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。其主要特性如下: 主要特征 集成了全部的脉宽调制电路。 片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。 内置误差放大器。 内止5V参考基准电压源。 可调整死区时间。 内置功率晶体管可提供500mA的驱动能力。 推或拉两种输出方式。 TL494外形图 TL494引脚图

工作原理简述 TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下: 输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。参见图2。

TL494脉冲控制波形图 控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。当把死区时间控制输入端接上固定的电压(范围在0—3.3V 之间)即能在输出脉冲上产生附加的死区时间。 脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。 当比较器CT放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1和Q2的工作。若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管Q1或Q2取得。输出变压器一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更高的驱动电流输出,亦可将Q1和Q2并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。这种状态下,输出的脉冲频率将等于振荡器的频率。 TL494内置一个5.0V的基准电压源,使用外置偏置电路时,可提供高达10mA的负载电流,在典型的0—70℃温度范围50mV温漂条件下,该基准电压源能提供±5%的精确度。

TL494降压开关电源的设计

TL494降压开关电源的设计 一、设计任务及要求: 1、掌握TL494主要性能参数、端子功能、工作原理及典型应用 2、掌握DC—DC降压型开关电源原理,掌握电路布线及焊接。 主要技术指标: 设计要求: 1直流输入:0—30v,电压变化范围为+15%~-20%; 2输出电压:5v—30v连续可调,最大输出电流1.5A 二、DC—DC变换器 buck线路(降压电路)的原理图如图1所示,降压线路的基本特征为:输出电压低于输入电压,输出电流为连续的,输入电流是脉动的。 图1 S为开关管,D为续流二极管,当给S一个高电平使得开关管导通,输入电源对电感,电容充电, 同时向负载供电。当给S一个低电平时使得开关管关断,负载电流经二极管续流。改变开关管的占空比即能改变输出的平均电压。 三、TL494中文资料及应用电路 TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管式、半桥式、全桥式开关电源。 TL494主要特征 集成了全部的脉宽调制电路。 片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。 内置误差放大器。 内止5V参考基准电压源。 可调整死区时间。 内置功率晶体管可提供500mA的驱动能力。 推或拉两种输出方式。 TL494引脚图

TL494工作原理简述 TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下: 输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。

四、电路设计 输出为5V的电源电路: 电路分析: 50u/50v是滤波电容对输入电源滤波,47欧的电阻主要是当8和11引脚输出高电平时不足以驱动大功率三极管,通过47欧电阻来上拉高电平,将高电平拉高驱动三极管,当三极管导通以后就铅位到三极管基极

TL494引脚,参数,特点及脉宽调制控制电路图

TL494引脚,参数,特点及脉宽调制控制电路图 广泛应用于单端正激双管式、半桥式、全桥式开关 电源。TL494有SO-16和PDIP-16两种封装形式,以适应不同场合的要求。其主要特性如下: 主要特征 集成了全部的脉宽调制电路。 片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。 内置误差放大器。 内止5V参考基准电压源。 可调整死区时间。 内置功率晶体管可提供500mA的驱动能力。 推或拉两种输出方式。 工作原理简述 TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振

荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下: 输出脉冲的宽度是通过电容CT上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。参见图2。 控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。 脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。

TL494中文资料-tl494应用电路图纸-ka7500b芯片原理-集成电路-引脚功能-引脚图-参数

TL494中文资料-tl494应用电路图纸-ka7500b芯片原理-集成电路-引脚功能-引脚图-参数 TL494中文资料 时间:2009-01-22 14:55:24 来源:资料室 作者:集成电路 编号:30803 更新日期20161118 022029 ↓本文不许可它人转载,只许可引用链接. 复制网址 复制文本网址 TL494(ka7500b)是专用双端脉冲调制器件,TL494为固定频率的PWM控制电路,它结合了全部方块图所需之功能,在切换式电源供给器里可单端式或双坡道式的输出控制。如图1所示为TL494控制器的内部结构与方块图其内部的线性锯齿波振荡器乃为频率可规划式(frequency programmable),在脚5与脚6连接两个外部元件RT与CT,既可获得所需之频率其频率可由下式计算得知

图1 TL494(ka7500b)控制器的内部结构与方块图片 输出脉波宽度调变之达成可借着在电容器CT端的正锯齿波形与两个控制信号中的任一个做比较而得之。电路中的NOR闸可用来驱动输出三极管Q1与Q2,而且仅当正反器的时钟输入信号是在低准位时,此闸才会在有效状态,此种情况的发生也是仅当锯齿波电压大于控制信号电压的期间里。当控制信号的振幅增加时,此时也会一致引起输出脉波宽度的线性减少。如图2所示的波形图。

图2 TL494控制器时序波形图 外部输入端的控制信号可输入至脚4的截止时间控制端,与脚1、2、15、16误差放大器的输入端,其输入端点的抵补电压为120mV,其可限制输出截止时间至最小值,大约为最初锯齿波周期时间的4%。当13脚的输出模控制端接地时,可获得96%最大工作周期,而当13脚接制参考电压时,可获得48%最大工作周期。如果我们在第4脚截止时间控制输入端设定一个固定电压,其范围由0V至3.3V之间,则附加的截止时间一定出现在输出上。 PWM比较器提供一个方法给误差放大器,乃由最大百分比的导通时间来做输出脉波宽度的调整,此乃借着设定截止时间控制输入端降至零电位,而此时再回授输入脚的电压变化可由0.5V至3.5V之间,此二个误差放大器有其模态(common-mode)输入范围由-0.3V至(Vcc-2)V,而且可用来检知电源供给器的输出电

TL494制作的400W大功率稳压逆变器电路图

TL494制作的400W大功率稳压逆变器电路图 目前所有的双端输出驱动IC中,可以说美国德克萨斯仪器公司开发的TL494功能最完善、驱动能力最强,其两路时序不同的输出总电流为SG3525的两倍,达到400mA。仅此一点,使输出功率千瓦级及以上的开关电源、DC/DC变换器、逆变器,几乎无一例外地采用TL494。虽然TL494设计用于驱动双极型开关管,然而目前绝大部分采用MOS FET 开关管的设备,利用外设灌流电路,也广泛采用TL494。为此,本节中将详细介绍其功能及应用电路。其内部方框图如图3所示。其内部电路功能、特点及应用方法如下: A.内置RC定时电路设定频率的独立锯齿波振荡器,其振荡频率 fo(kHz)=1.2/R(kΩ)·C(μF),其最高振荡频率可达300kHz,既能驱动双极性开关管,增设灌电流通路后,还能驱动MOS FET开关管。 B.内部设有比较器组成的死区时间控制电路,用外加电压控制比较器的输出电平,通过其输出电平使触发器翻转,控制两路输出之间的死区时间。当第4脚电平升高时,死区时间增大。 C.触发器的两路输出设有控制电路,使Q1、Q2既可输出双端时序不同的驱动脉冲,驱动推挽开关电路和半桥开关电路,同时也可输出同相序的单端驱动脉冲,驱动单端开关电路。 D.内部两组完全相同的误差放大器,其同相输入端均被引出芯片外,因此可以自由设定其基准电压,以方便用于稳压取样,或利用其中一种作为过压、过流超阈值保护。 E.输出驱动电流单端达到400mA,能直接驱动峰值电流达5A的开关电路。双端输出脉冲峰值为2×200mA,加入驱动级即能驱动近千瓦的推挽式和桥式电路。

TL494的各脚功能及参数如下:第1、16脚为误差放大器A1、A2的同相输入端。最高输入电压不超过Vcc+0.3V。第2、15脚为误差放大器A1、A2的反相输入端。可接入误差检出的基准电压。第3脚为误差放大器A1、A2的输出端。集成电路内部用于控制PWM 比较器的同相输入端,当A1、A2任一输出电压升高时,控制PWM比较器的输出脉宽减小。同时,该输出端还引出端外,以便与第2、15脚间接入RC频率校正电路和直接负反馈电路,一则稳定误差放大器的增益,二则防止其高频自激。另外,第3脚电压反比于输出脉宽,也可利用该端功能实现高电平保护。第4脚为死区时间控制端。当外加1V以下的电压时,死区时间与外加电压成正比。如果电压超过1V,内部比较器将关断触发器的输出脉冲。第5脚为锯齿波振荡器外接定时电容端,第6脚为锯齿波振荡器外接定时电阻端,一般用于驱动双极性三极管时需限制振荡频率小于40kHz。第7脚为接地端。第8、11脚为两路驱动放大器NPN管的集电极开路输出端。当第8、11脚接Vcc,第9、10脚接入发射极负载电阻到地时,两路为正极***腾柱式输出,用以驱动各种推挽开关电路。当第8、11脚接地时,两路为同相位驱动脉冲输出。第8、11脚和9、10脚可直接并联,双端输出时最大驱动电流为2×200mA,并联运用时最大驱动电流为400mA。第14脚为内部基准电压精密

相关主题