搜档网
当前位置:搜档网 › 一次函数知识点总结与常见题型

一次函数知识点总结与常见题型

一次函数知识点总结与常见题型
一次函数知识点总结与常见题型

三乐教育名师点拔中心 学生姓名: 家长签名

基本概念

1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。

例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。在圆的周长公式C =2πr 中,变量是________,常量是_________.

2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其

对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应

例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1

x (4)y =21-3x (5)y =x 2-1中,是一次函数的有( )

(A )4个 (B )3个 (C )2个 (D )1个

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:

(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 例题:下列函数中,自变量x 的取值范围是x ≥2的是( )

A .y

B .y

C .y

D .y

函数y =

x 的取值范围是___________. 已知函数22

1

+-=x y ,当11≤<-x 时,y 的取值范围是 ( )

A .2325≤<-y

B .2523<

C .2523<≤y

D .2

523≤

5、函数的图像

一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

7、描点法画函数图形的一般步骤

第一步:列表(表中给出一些自变量的值及其对应的函数值);

第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 9、正比例函数及性质

一般地,形如y =kx (k 是常数,k ≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y =kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零

当k >0时,直线y =kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k <0时,?直线y =kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y =kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )

(3) 走向:k >0时,图像经过一、三象限;k <0时,?图像经过二、四象限 (4) 增减性:k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小 (5) 倾斜度:|k |越大,越接近y 轴;|k |越小,越接近x 轴

例题:(1).正比例函数(35)y m x =+,当m 时,y 随x 的增大而增大. (2)若23y x b =+-是正比例函数,则b 的值是 ( ) A .0 B .

23 C .23- D .32

- .(3)函数y =(k -1)x ,y 随x 增大而减小,则k 的范围是 ( )

A .0

B .1>k

C .1≤k

D .1

(4)东方超市鲜鸡蛋每个0.4元,那么所付款y 元与买鲜鸡蛋个数x (个)之间的函数关系式是_______________.

的函数关系式是__________.10、一次函数及性质

一般地,形如y =kx +b (k ,b 是常数,k ≠0),那么y 叫做x 的一次函数.当b =0时,y =kx +b 即y =kx ,所以说正比例函数是一种特殊的一次函数.

注:一次函数一般形式 y =kx +b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数

一次函数y =kx +b 的图象是经过(0,b )和(-

k

b

,0)两点的一条直线,我们称它为直线y =kx +b ,它可以看作由直线y =kx 平移|b |个单位长度得到.(当b >0时,向上平移;当b <0时,向下平移) (1)解析式:y =kx +b (k 、b 是常数,k ≠0 (2)必过点:(0,b )和(-

k

b

,0) (3)走向: k >0,图象经过第一、三象限;k <0,图象经过第二、四象限 b >0,图象经过第一、二象限;b <0,图象经过第三、四象限

????>>00b k 直线经过第一、二、三象限 ???

?<>00

b k 直线经过第一、三、四象限 ????><00b k 直线经过第一、二、四象限 ??

?

?<<00

b k 直线经过第二、三、四象限 (4)增减性: k >0,y 随x 的增大而增大;k <0,y 随x 增大而减小.

(5)倾斜度:|k | 越大,图象越接近于y 轴;|k | 越小,图象越接近于x 轴.

(6)图像的平移: 当b

>0时,将直线y =kx 的图象向上平移b 个单位; (上加下减,左加右减) 当b <0时,将直线y =kx 的图象向下平移b 个单位. 例题:若关于x 的函数1

(1)m y n x -=+是一次函数,则m = ,n . .函数y =ax +b 与y =bx +a 的图象在同一坐标系内的大致位置正确的是( )

将直线y =3x 向下平移5个单位,得到直线 ;将直线y =-x -5向上平移5个单位,得到直线 . 若直线a x y +-=和直线b x y +=的交点坐标为(8,m ),则=+b a ____________. 已知函数y =3x +1,当自变量增加m 时,相应的函数值增加( ) A.3m +1 B.3m C.m D.3m -1 11、一次函数y =kx +b 的图象的画法.

根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:与y 轴的交点(0,b ),与x 轴的交点(k

b

-

,0).即横坐标或纵坐标为0的点.

☆k 、b 的符号对直线位置的影响☆

图像过一、二、三象限 图像过一、三、四象限 图像过一、二、四象限 图像过二、三、四象限 (大大不过四) (大小不过二) (小大不过三) (小小不过一) 思考:若m <0, n >0, 则一次函数y=mx+n 的图象不经过 ( )

A .第一象限

B . 第二象限

C .第三象限

D .第四象限 12、正比例函数与一次函数图象之间的关系

一次函数y =kx +b 的图象是一条直线,它可以看作是由直线y =kx 平移|b |个单位长度而得到(当b >0时,向上平移;当b <0时,向下平移).

13、直线y =k 1x +b 1与y =k 2x +b 2的位置关系

(1)两直线平行:k 1=k 2且b 1 ≠b 2 (2)两直线相交:k 1≠k 2 (3)两直线重合:k 1=k 2且b 1=b 2 (4)两直线垂直:k 1·k 2= –1 14、用待定系数法确定函数解析式的一般步骤:

(1)根据已知条件写出含有待定系数的函数关系式;

(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式. 15、一元一次方程与一次函数的关系

任何一元一次方程到可以转化为ax +b =0(a ,b 为常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y =ax +b 确定它与x 轴的交点的横坐标的值. 16、一次函数与一元一次不等式的关系

任何一个一元一次不等式都可以转化为ax +b >0或ax +b <0(a ,b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 17、一次函数与二元一次方程组

(1)以二元一次方程ax +by =c 的解为坐标的点组成的图象与一次函数y =b

c

x b a +-的图象相同. (2)二元一次方程组???=+=+2

22111c y b x a c y b x a 的解可以看作是两个一次函数y =1111b c x b a +-和y =2222b c

x b a +-的图象交点.

18、一次函数的图像与两坐标轴所围成三角形的面积

一次函数y =kx +b 的图象与两条坐标轴的交点:与y 轴的交点(0,b ),与x 轴的交点(k

b

-,0). 直线

(b ≠0)与两坐标轴围成的三角形面积为s =k

b b k b 2212

=

??

常见题型

一、考察一次函数定义 1、若函数

()2

13m y m x

=-+是y 关于x 的一次函数,则m 的值为 ;解析式为 .

2、要使y =(m -2)x n -1

+n 是关于x 的一次函数,n ,m 应满足 , . 二、考查图像性质

1、已知一次函数y =(m -2)x +m -3的图像经过第一,第三,第四象限,则m 的取值范围是________.

2、若一次函数y =(2-m )x +m 的图像经过第一、?二、?四象限,?则m ?的取值范围是______

3、已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .

4、直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图4中的( )

5、直线0px qy r ++=(0)pq ≠如图5,则下列条件正确的是( )

.,1A p q r == .,0B p q r == .,1C p q r =-= .,0D p q r =-=

6、如果0ab >,0a c <,则直线a c

y x b b

=-+不通过( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

7、如图6,两直线1y kx b =+和2y bx k =+在同一坐标系内图象的位置可能是( )

8、如果0ab >,

0a c <,则直线a c

y x b b

=-+不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限

9、b 为 时,直线2y x b =+与直线34y x =-的交点在x 轴上. 10、要得到y =-

32x -4的图像,可把直线y =-3

2

x ( ). (A )向左平移4个单位(B )向右平移4个单位 (C )向上平移4个单位 (D )向下平移4个单位

11、已知一次函数y =-kx +5,如果点P 1(x 1,y 1),P 2(x 2,y 2)都在函数的图像上,且当x 1

系数k 的取值范围是________.

12、已知点(-4,y 1),(2,y 2)都在直线y =- 1

2

x +2上,则y 1 、y 2大小关系是( )

(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1

1、若直线y =3x -1与y =x -k 的交点在第四象限,则k 的取值范围是( ).

(A )k <

13 (B )131 (D )k >1或k <13

2、若直线y x a =-+和直线y x b =+的交点坐标为(,8)m ,则a b += .

3、一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值范围是 .

4、直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( )

A . 0,0k b >> .0,0

B k b >< .0,0

C k b

<> .0,0D k b << 5、如图所示,已知正比例函数x y 2

1-=和一次函数b x y +=,它们的图像都经过点P (a ,1),且一次函数图像与y 轴交于Q 点。 (1)求a 、b 的值;(2)求△PQO 的面积。

1、若直线y =3x +6与坐标轴围成的三角形的面积为S ,则S 等于( ). A .6 B .12 C .3 D .24

2、若一次函数y =2x +b 的图像与坐标轴围成的三角形的面积是9,则b =_______.

3、已知一次函数2y x a =+与y x b =-+的图像都经过(2,0)A -,且与y 轴分别交于点B ,c ,则ABC ?的面积为( )

A .4

B .5

C .6

D .7 4、已知一次函数y =kx +b 的图像经过点(-1,-5),且与正比例函数1

y=x 2

的图像相交于点(2,a ), 求(1)a 的值;(2)k 、b 的值;(3)这两个函数图像与x 轴所围成的三角形面积。

五、一次函数解析式的求法

(1) 定义型 例1. 已知函数y m x m =-+-()332

8是一次函数,求其解析式。

(2)点斜型 例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。

(3)两点型 例3.已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。

(4)图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

(5)斜截型 例5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的截距为2,则直线的解析式为 。

(6)平移型 例6.①把直线y x =+21向上平移2个单位得到的图像解析式为 。 ②把直线y x =+21向下平移2个单位得到的图像解析式为 。 ③把直线y x =+21向左平移2个单位得到的图像解析式为 。

④把直线y x =+21向右平移2个单位得到的图像解析式为 。

规律: (7) 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t (分钟)的函数关系式为 。

(8)面积型 例8. 已知直线y kx =-4与两坐标轴所围成的三角形面积等于4,则直线解析式为 。

(9)对称型 例9. 若直线l 与直线y x =-21关于y 轴对称,则直线l 的解析式为____________。 知识归纳: 若直线l 与直线y kx b =+关于

(1)x 轴对称,则直线l 的解析式为y kx b =-- (2)y 轴对称,则直线l 的解析式为y kx b =-+

(3)直线y =x 对称,则直线l 的解析式为y k x b k =

-1 (4)直线y x =-对称,则直线l 的解析式为y k x b

k

=+1

(5)原点对称,则直线l 的解析式为y kx b =-

(10)开放型 例10.一次函数的图像经过(-1,2)且函数y 的值随x 的增大而增大,请你写出一个符合上述条件的函数关系式 .

(11)比例型 例11..已知y 与x +2成正比例,且x =1时y =-6.求y 与x 之间的函数关系式 练习题:

1. 已知直线y =3x -2, 当x =1时,y =

2. 已知直线经过点A (2,3),B (-1,-3),则直线解析式为________________

3. 点(-

1,2)在直线y =2x +4上吗? (填在或不在)

4. 当m 时,函数y =(m -2)3

-m

x

+5是一次函数,此时函数解析式为 。

5. 已知直线y =3x +b 与两坐标轴所围成的三角形的面积为6,则函数的解析式为 .

6. 已知变量y 和x 成正比例,且x =2时,y =-

2

1

,则y 和x 的函数关系式为 。 7. 点(2,5)关于原点的对称点的坐标为 ;关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 。 8. 直线y =kx +2与x 轴交于点(-1,0),则k = 。

9. 直线y =2x -1与x 轴的交点坐标为 与y 轴的交点坐标 。 10. 若直线y =kx +b 平行直线y =3x +4,且过点(1,-2),则k = .

11. 已知A (-1,2), B (1,-1), C (5,1), D (2,4), E (2,2),其中在直线y =-x +6上的点有_________,在直线y =3x -4上的点

有_______

12. 某人用充值50元的IC 卡从A 地向B 地打长途电话,按通话时间收费,3分钟内收费2.4元,以后每超过1分钟加收

1元,若此人第一次通话t 分钟(3≤t ≤45),则IC 卡上所余的费用y (元)与t (分)之间的关系式是 . 13.

14. 已知:一次函数的图象与正比例函数Y =-

3

2

X 平行,且通过点(0,4), (1)求一次函数的解析式.(2)若点M (-8,m )和N (n ,5)在一次函数的图象上,求m ,n 的值

15. 已知一次函数y =kx +b 的图象经过点(-1, -5),且与正比例函数y = 1

2

x 的图象相交于点(2,a ),

求(1)a 的值 (2)k ,b 的值 (3)这两个函数图象与x 轴所围成的三角形面积.

16. 有两条直线b ax y +=1,c cx y 52+=,学生甲解出它们的交点坐标为(3,-2),学生乙因把c 抄错了而解出它们的交点坐标为)4

1,43(,求这两条直线解析式

17. 已知正比例函数x k y 1=的图象与一次函数92-=x k y 的图象交于点P (3,-6)

(1)求21,k k 的值。(2)如果一次函数92-=x k y 与x 轴交于点A ,求A 点坐标

18. 某种拖拉机的油箱可储油40L ,加满油并开始工作后,?油箱中的余油量y (L )与工作时间x (h )之间为一次函数关系,如图所示.

(1)求y 与x 的函数解析式.

(2)一箱油可供拖位机工作几小时?

1、某自来水公司为鼓励居民节约用水,采取按月用水量收费办法,若某户居民应交水费y (元)与用水量x (吨)的

函数关系如图所示。

(1)写出y 与x

的函数关系式;

(2)若某户该月用水21吨,则应交水费多少元?

2、果农黄大伯进城卖菠萝,他先按某一价格卖出了一部分菠萝后,把剩下的菠萝全

部降价卖完,卖出的菠萝的吨数x 和他收入的钱数y

(万元)的关系如图所示,结

合图象回答下列问题:

(1)降价前每千克菠萝的价格是多少元?

(2)若降价后每千克菠萝的价格是1.6元,他这次卖菠萝的总收入是2万元,问他一共卖了多少吨菠萝?

3、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度0.50元计费.

(1)设用电x 度时,应交电费y 元,当x ≤100和x >100时,分别写出y 关于x 的函数关系式.

(2

4、某校需要刻录一批电脑光盘,若电脑公司刻录,每张需要8

元(含空白光盘费);若学校自刻,除租用刻录机需120元外每张还需成本费4元(含空白光盘费),问刻录这批电脑光盘,到电脑公司刻录费用少?还是自刻费用少?说明你的理由

七、一次函数应用

1

、甲、乙二人在如图所示的斜坡AB 上作往返跑训练.已知:甲上山的速度是a 米/分,下山的速度是b 米/分,(a

1

2

a 米/分,下山的速度是2

b 米/分.如果甲、乙二人同时从点A 出发,时间为t (分),离开点A 的路程为S (米),?那么下面图象中,大致表示甲、乙二人从点A 出发后的时间t (分)与离开点A 的路程S (米)?之间的函数关系的是( )

x

2、如图7,A 、B 两站相距42千米,甲骑自行车匀速行驶,由A 站经P 处去B 站,上午8时,甲位于距A 站18千米处的P 处,若再向前行驶15分钟,使可到达距A 站22千米处.设甲从P 处出发x 小时,距A 站y 千米,则y 与x 之间的关系可用图象表示为( )

3、汽车由重庆驶往相距400千米的成都,如果汽车的平均

速度是100千米/时,那么汽车距成都的路程s (千米)与行驶时间t (小时)的函数关系用图象表示为( )

4、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后将进油管和出油管同时打开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直到将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.

(1)试分别写出这一段时间内油的储油量Q (吨)与进出油的时间t (分)的函数关系式. (2)在同一坐标系中,画出这三个函数的图象.

5、甲乙两个仓库要向A 、B 两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A 地需70吨水泥,B 地需110吨水泥,两库到A ,B 两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)

.

(2)当甲、乙两库各运往A 、B 两地多少吨水泥时,总运费最省?最省的总运费是多少?

调运一台机器到D市、E市的运费为200元和800元;从B?市调运一台机器到D市、E市的运费为300元和700元;从C 市调运一台机器到D市、E市的运费为400元和500元.

(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.

(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W 的最大值和最小值.

7、某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门。乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元。

(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果质量x(千克)之间的函数关系式,并写出自变量x的取值范围。

(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由。

8、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:

注:利润=售价-成本

(1)该公司对这两种户型住房有哪几种建房方案?

(2)该公司如何建房获得利润最大?

(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?

八一次函数与方案设计问题

一次函数是最基本的函数,它与一次方程、一次不等式有密切联系,在实际生活中有广泛的应用。例如,利用一次函数等有关知识可以在某些经济活动中作出具体的方案决策。近几年来一些省市的中考或竞赛试题中出现了这方面的应用题,这些试题新颖灵活,具有较强的时代气息和很强的选拔功能。

1.生产方案的设计

例1某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。

(1)要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;

(2)生产A、B两种产品获总利润是y(元),其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案获总利润最大?最大利润是多少?

2.调运方案设计

例2北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。如果从北京运往汉口、重庆的运费分别是4百元/台、8百元/台,从上海运往汉口、重庆的运费分别是3百元/台、5百元/台。求:

(1)若总运费为8400元,上海运往汉口应是多少台?

(2)若要求总运费不超过8200元,共有几种调运方案?

(3)求出总运费最低的调运方案,最低总运费是多少元?

例3 某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品所收到的总金额)为60万元。由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润情况如表2。

商场将计划日营业额分配给三个经营部,设分配给百货部、服装部和家电部的营业额分别为x(万元)、y(万元)、z(万元)(x,y,z都是整数)。

(1) 请用含x的代数式分别表示y和z;

(2) 若商场预计每日的总利润为C(万元),且C满足19≤C≤19.7,问这个商场应怎样分配日营业额给三个经营部?各部应分别安排多少名售货员?

3.优惠方案的设计

例4某校校长暑假将带领该校市级“三好生”去北京旅游。甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优待。”乙旅行社说:“包括校长在内,全部按全票价的6折(即按全票价的60%收费)优惠。”若全票价为240元。

(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙,分别计算两家旅行社的收费(建立表达式);

(2)当学生数是多少时,两家旅行社的收费一样;

(3)就学生数x讨论哪家旅行社更优惠。

练习

1.某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利润30元。设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获利润为y(元)。

(1)写出y(元)关于x(套)的函数解析式;并求出自变量x的取值范围;

(2)该厂在生产这批童装中,当L型号的童装为多少套时,能使该厂所获的利润最大?最大利润为多少?

2.A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城运往C、D两地运费分别是20元/吨与25元/吨,从B城运往C、D两地运费分别是15元/吨与22元/吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请帮他算一算,怎样调运花钱最小?

3.下表所示为装运甲、乙、丙三种蔬菜的重量及利润。某汽车运输公司计划装运甲、乙、丙三种蔬菜到外地销售(每

(1)若用8辆汽车装运乙、丙两种蔬菜11吨到A地销售,问装运乙、丙两种蔬菜的汽车各多少辆?

(2)公司计划用20辆汽车装运甲、乙、丙三种蔬菜36吨到B地销售(每种蔬菜不少于一车),如何安排装运,可使公司获得最大利润?最大利润是多少?

4.有批货物,若年初出售可获利2000元,然后将本利一起存入银行。银行利息为10%,若年末出售,可获利2620元,但要支付120元仓库保管费,问这批货物是年初还是年末出售为好?

八 一次函数与方案设计问题

答案1解 (1)设安排生产A 种产品x 件,则生产B 种产品是(50-x)件。由题意得

?

??≤-+≤-+290)50(103360

)50(49x x x x )2()1(

解不等式组得 30≤x ≤32。

因为x 是整数,所以x 只取30、31、32,相应的(50-x)的值是20、19、18。

所以,生产的方案有三种,即第一种生产方案:生产A 种产品30件,B 种产品20件;第二种生产方案:生产A 种产品31件,B 种产品19件;第三种生产方案:生产A 种产品32件,B 种产品18件。

(2)设生产A 种产品的件数是x ,则生产B 种产品的件数是50-x 。由题意得

y=700x+1200(50-x)=-500x+6000。(其中x 只能取30,31,32。)

因为 -500<0, 所以 此一次函数y 随x 的增大而减小, 所以 当x=30时,y 的值最大。

因此,按第一种生产方案安排生产,获总利润最大,最大利润是:-500·3+6000=4500(元)。

本题是利用不等式组的知识,得到几种生产方案的设计,再利用一次函数性质得出最佳设计方案问题。

2解 设上海厂运往汉口x 台,那么上海运往重庆有(4-x)台,北京厂运往汉口(6-x)台,北京厂运往重庆(4+x)台,则总运费W 关于x 的一次函数关系式:

W=3x+4(6-x)+5(4-x)+8(4+x)=76+2x 。

(1) 当W=84(百元)时,则有76+2x=84,解得x=4。 若总运费为8400元,上海厂应运往汉口4台。

(2) 当W ≤82(元),则?

??≤+≤≤822764

0x x

解得0≤x ≤3,因为x 只能取整数,所以x 只有四种可的能值:0、1、2、3。

答:若要求总运费不超过8200元,共有4种调运方案。

(3) 因为一次函数W=76+2x 随着x 的增大而增大,又因为0≤x ≤3,所以当x=0时,函数W=76+2x 有最小值,最小值是W=76(百元),即最低总运费是7600元。

此时的调运方案是:上海厂的4台全部运往重庆;北京厂运往汉口6台,运往重庆4台。

本题运用了函数思想得出了总运费W 与变量x 的一般关系,再根据要求运用方程思想、不等式等知识解决了调运方案的设计问题。并求出了最低运费价。

例3 解 (1)由题意得???=++=++190

24560z y x z y x ,解得 .225,2335x

z x y +=-=

(2) C=0.3x+0.5y+0.2z=-0.35x+22.5。

因为 19≤C ≤19.7, 所以 9≤-0.35x+22.5≤19.7,解得 8≤x ≤10。 因为 x,y,z 是正整,且x 为偶数,所以 x=8或10。

当x=8时,y=23,z=29,售货员分别为40人,92人,58人; 当x=10时,y=20,z=30,售货员分别为50人,80人,60人。

本题是运用方程组的知识,求出了用x 的代数式表示y 、z ,再运用不等式和一次函数等知识解决经营调配方案设计问题。

3.销方案的设计

解 (1)y 甲=120x+240, y 乙=240·60%(x+1)=144x+144。 (2)根据题意,得120x+240=144x+144, 解得 x=4。 答:当学生人数为4人时,两家旅行社的收费一样多。 (3)当y 甲>y 乙,120x+240>144x+144, 解得 x<4。

当y 甲4。

答:当学生人数少于4人时,乙旅行社更优惠;当学生人数多于4人时,甲旅行社更优惠;本题运用了一次函数、方程、不等式等知识,解决了优惠方案的设计问题。

综上所述,利用一次函数的图象、性质及不等式的整数解与方程的有关知识解决了实际生活中许多的方案设计问题,

如果学生能切实理解和掌握这方面的知识与应用,对解决方案问题的数学题是很有效的。

练习答案:

1. (1) y=15x+1500;自变量x的取值范围是18、19、20。

(2) 当x=20时,y的最大值是1800元。

2. 设A城化肥运往C地x吨,总运费为y元,则y=2x+10060 (0≤x≤200),

当x=0时,y的最小值为10060元。

3. (1) 应安排2辆汽车装运乙种蔬菜,6辆汽车装运丙种蔬菜。

(2) 设安排y辆汽车装运甲种蔬菜,z辆汽车装运乙种蔬菜,则用[20-(y+z)]辆汽车装运丙种蔬菜。得 2y+z+1.5[20-(y+z)]=36,化简,得 z=y-12,所以 y-12=32-2y。

因为 y≥1, z≥1, 20-(y+z)≥1,所以 y≥1, y-12≥1, 32-2y≥1,

所以 13≤y≤15.5。

设获利润S百元,则S=5y+108,

当y=15时,S的最大值是183,z=y-12=3, 20-(y+z)=2。

4. (1) 当成本大于3000元时,年初出售好;

(2) 当成本等于3000元时,年初、年末出售都一样;

(3) 当成本小于3000元时,年末出售好。

一、选择题

1.已知一次函数y kx k =-,若y 随着x 的增大而减小,则该函数图象经过( ) (A )第一、二、三象限 (B )第一、二、四象限 (C )第二、三、四象限 (D )第一、三、四象限 2.若正比例函数y =kx 的图象经过点(1,2),则k 的值为 A .12- B .-2 C .

1

2

D .2 31(x 1,y 1),点P 2(2y 2)是一次函数y =-4x + 3 图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )

(A )y 1>y 2 (B )y 1>y 2>0 (C )y 1<y 2 (D )y 1=y 2

4.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m 、n 为常数,且mn ≠0)的图象的是( )

5.某棵果树前x 年的总产量y 与x 之间的关系如图所示,从目前记录的结果看,前x 年的年平均产量最高,则x 的值为( )

A .3

B .5

C .7

D .9

6.根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )

x -2

0 1 y

3

p

7.如果一个正比例函数的图象经过不同..象限的两点A (2,m ),B (n ,3),那么一定有( )A .m >0,n >0 B .m >0,n <0 C .m <0,n >0 D .m <0,n <0

8.已知一次函数y =x ﹣2,当函数值y >0时,自变量x 的取值范围在数轴上表示正确的是( ) A .

B .

C .

D .

9.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y )恰好是两条直线的交点坐标,则这两条直线的解析式是( )

进球数 0

1 2 3 4 5 人数

1 y A .y =x +9与y x 22233=

+ B .y =﹣x +9与y x 222

33

=+ C .y =﹣x 与y x 22233=-+ D .y =x +9与y x 222

33

=-+

10.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y 2

x 1

=-图象上的两点,下列判断中,正确的是( )

A .y 1>y 2

B .y 1<y 2

C .当x 1<x 2时,y 1<y 2

D .当x 1<x 2时,y 1>y 2 11.对于函数y =﹣3x +1,下列结论正确的是( )

A .它的图象必经过点(﹣1,3)

B .它的图象经过第一、二、三象限

C .当x >1时,y <0

D .y 的值随x 值的增大而增大

12.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案( )

13.函数y =3x ﹣4与函数y =2x +3的交点的坐标是( ) A . (5,6) B . (7,﹣7) C . (﹣7,﹣17) D . (7,17)

14.如图表示某加工厂今年前5个月每月生产某种产品的产量c (件)与时间t (月)之间的关系,则对这种产品来说,该厂( )

A .1月至3月每月产量逐月增加,4、5两月产量逐月减小

B .1月至3月每月产量逐月增加,4、5两月产量与3月持平

C .1月至3月每月产量逐月增加,4、5两月产量均停止生产

D .1月至3月每月产量不变, 4、5两月均停止生产 15.若反比例函数k

y x

=

的图象过点(﹣2,1),则一次函数y =kx ﹣k 的图象过( ) A B .第一、三、四象限 C .第二、三、四象限 D .第一、二、三象限

16.方程2x 3x 10+-=的根可视为函数y x 3=+的图象与函数1

y x

=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0 A .010

32 D .01

17”50元钱取购买甲、乙两种笔记本作为奖

品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有( ) A .3种 B .4种 C .5种 D .6种

18.已知正比例函数()y kx k 0=≠的图象经过点(1,-2),则正比例函数的解析式为( )

A .y 2x =

B .y 2x =-

C .1y x 2=

D .1y x 2

=- 19速前行.他们的路程差s (米)与小文出发时间t (分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a =24;④b =480.其中正确的是( )

A .①②③

B .①②④

C .①③④

D .①②③④

20.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:()()1212A B x x y y ⊕=+++.例如,A (-5,4),B (2,﹣3),

()()A B 52432⊕=-++-=-.若互不重合的四点C ,D ,E ,F ,满足C D D E E F F D ⊕=⊕=⊕=⊕,则C ,D ,E ,F

四点( )

A .在同一条直线上

B .在同一条抛物线上

C .在同一反比例函数图象上

D .是同一个正方形的四个顶点 二、填空题

21.函数y =kx 的图象经过点P (3,-1),则k 的值为 . 22.请写出一个图形经过一、三象限的正比例函数的解析式 .

23.写出一个过点(0,3),且函数值y 随自变量x 的增大而减小的一次函数关系式: .(填上一个答案即可)

24.已知点P (x ,一3)在一次函数y =2x +9的图象上,则x = .

25.如果直线m x y +=2不经过第二象限,那么实数m 的取值范围是_________.

26.已知,函数y =3x 的图象经过点A (﹣1,y 1),点B (﹣2,y 2),则y 1 y 2(填“>”“<”或“=”)

27.已知点(3,5)在直线y =ax +b (a ,b 为常数,且a ≠0)上,则a

b 5

-的值为 .

28.已知一次函数y =kx +b (k 、b 为常数且k ≠0)的图象经过点A (0,﹣2)和点B (1,0),则k = ,b = . 29.如图,一个正比例函数图像与一次函数y =x 1-+的图像相交于点P ,则这个正比例函数的表达式是 .

30.把直线y =2x ﹣1向上平移2个单位,所得直线的解析式是 .

31.直线y 2x 1=-沿y 轴平移3个单位,则平移后直线与y 轴的交点坐标为 .

32.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y (单位:元)与购书数量x (单位:本)之间的函数关系 .

33.如图,在平面直角坐标中,直线l 经过原点,且与y 轴正半轴所夹的锐角为60°,过点A (0,1)作y 轴的垂线l 于点B ,过点B 1作作直线l 的垂线交y 轴于点A 1,以A 1B .BA 为邻边作ABA 1C 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2,以A 2B 1.B 1A 1为邻边作A 1B 1A 2C 2;…;按此作法继续下去,则C n 的坐标是 .

34.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:

①“龟兔再次赛跑”的路程为1000米; ②兔子和乌龟同时从起点出发; ③乌龟在途中休息了10分钟; ④兔子在途中750米处追上乌龟.

其中正确的说法是 .(把你认为正确说法的序号都填上) 35.已知直线2n 2

y x n 1n 1

=-

+

++(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+┅+S 2012= . 三、计算题

36.小张骑车往返于甲、乙两地,距甲地的路程y (千米)与时间x (小时)的函数图象如图所示.

(1)小张在路上停留 小时,他从乙地返回时骑车的速度为 千米/时. (2)小王与小张同时出发,按相同路线前往乙地,距甲地的路程y (千米)与时间x (小时)的函数关系式为1210y x =+.小 37.已知一次函数y kx k =+的图象与反比例函数 P (4,n )。 (1)求P 点坐标

(2)求一次函数的解析式

(3)若点A (a ,b ),B (c ,d )在上述一次函数的图象上,且a c >,试比较b 、d 的大小,并说明理由。

38.如图,直线1l 的解析式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A 、B ,直线1l 、2l 交于点C .

(1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;

(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.

39,试判断直线y kx k =+一定经过哪些象限,并说明理由。

40.已知直线3y x =-与双曲线P (1n -,). (1)求m 的值;

(2)若点11()

A x y ,、22()

B x y ,在双曲线上.且120x x <<,试比较12y y 、的大小.

41.国家推行“节能减排,低碳经济”的政策后,某企业推出一种叫“CNG ”的改烧汽油为天然气的装置,每辆车改装费为b 元.据市场调查知:每辆车改装前、后的燃料费(含改装费)0y 、

1y (单位:元)与正常运营时间x (单位:天)之间分别满足关系式:0y ax =、1y b 50x =+,

如图所示.

试根据图像解决下列问题:

(1)每辆车改装前每天的燃料费a = 元,每辆车的改装费b = 元.正常运营 天后,就可以从节省燃料费中收回改装成本.

(2)某出租汽车公司一次性改装了100辆车,因而,正常运营多少天后共节省燃料费40万元?

42.(12分)汽车油箱中的余油量Q (升)是它行驶的时间t (小时)的一次函数.某天该汽车外出时,油箱中余油量与行驶时间的变化关系如图:

(1)根据图象,求油箱中的余油Q 与行驶时间t 的函数关系.(7分)

(2)从开始算起,如果汽车每小时行驶40千米,当油箱中余油 20升时,该汽车行驶了多少千米?(5分)

43.如图,在平面直角坐标中,OABC 的边OC 、OA 分别在x 轴、y 轴上,AB ∥OC ,

∠AOC =900,∠BCO =450,BC C 的坐标为(-18,0). (1)求点B 的坐标;

(2)若直线DE 交梯形对角线BO 于点D ,交y 轴于点E ,且OE =4,OD =2BD ,求直线DE 的解析式.

44.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.

x50 60 90 120

y40 38 32 26

(1)求y关于x的函数解析式;

(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.

2.1万元.

(毛利润=(售价﹣进价)×销售量)

(1)该商场计划购进甲、乙两种手机各多少部?

(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.

46.我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过6吨时,水价为每吨2元,超过6吨时,超过的部分按每吨3元收费.该市某户居民5月份用水x吨,应交水费y元.

(1)若0<x≤6,请写出y与x的函数关系式.(3分)

(2)若x>6,请写出y与x的函数关系式.(3分)

(3)在同一坐标系下,画出以上两个函数的图象.(4分)

(4)如果该户居民这个月交水费27元,那么这个月该户用了多少吨水?(4分)

高考复习函数知识点总结

高考复习 函数知识点总结 一.函数概念的理解以及函数的三要素 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则(函数关系式)也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ; 满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做 [,)a b ,(,]a b ; 满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b < . (3)求函数的定义域时,一般遵循以下原则: ① 分式的分母不为0; ② 偶次根式下被开方数大于0; ③ 0y x = ,则有0x ≠ ; ④ 对数函数的真数大于0,底数大于0切不等于1 注意:①解析式为整式的函数定义域为R ; ②若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则

其定义域一般是各基本初等函数的定义域的交集; ③对于求复合函数定义域问题,一般步骤是:若已知() f x的定义域 为[,] a g x b ≤≤解出. f g x的定义域应由不等式() a b,其复合函数[()] (4)求函数的值域或最值 常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量 的取值范围确定函数的值域或最值. ③判别式法:若函数() =可以化成一个系数含有y的关于x的二次方程 y f x 2 ++=,则在()0 a y x b y x c y ()()()0 a y≠时,由于,x y为实数,故必须有 2()4()()0 ?=-?≥,从而确定函数的值域或最值. b y a y c y ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代 数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的 值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数解析式 ①换元法;(用于求复合函数的解析式) ②配凑法;(用于求复合函数的解析式)

初三数学反比例函数知识点归纳

反比例函数知识点归纳 (一)反比例函数的概念 1.()可以写成()的形式,注意自变量x的指数为, 在解决有关自变量指数问题时应特别注意系数这一限制条件; 2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解 析式中的k,从而得到反比例函数的解析式; 3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象 在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (三)反比例函数及其图象的性质 1.函数解析式:() 2.自变量的取值范围: 3.图象: (1)图象的形状:双曲线. 越大,图象的弯曲度越小,曲线越平直. 越小,图象的弯曲度越大. (2)图象的位置和性质: 与坐标轴没有交点,称两条坐标轴是双曲线的渐近线. 当时,图象的两支分别位于一、三象限; 在每个象限内,y随x的增大而减小; 当时,图象的两支分别位于二、四象限; 在每个象限内,y随x的增大而增大. (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上, 则(,)在双曲线的另一支上. 图象关于直线对称,即若(a,b)在双曲线的一支上, 则(,)和(,)在双曲线的另一支上.

4.k的几何意义 如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面 积都是). 如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为. 图1 图2 5.说明: (1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论. (2)直线与双曲线的关系: 当时,两图象没有交点; 当时,两图象必有两个交点,且这两个交点关于原点成中心对称. (3)反比例函数与一次函数的联系. (四)实际问题与反比例函数 1.求函数解析式的方法: (1)待定系数法;(2)根据实际意 义列函数解析式. (五)充分利用数形结合的思想解决问 题.

导数及其应用(知识点总结)

导数及其应用 知识点总结 1、函数()f x 从1x 到2x 的平均变化率:()()2121 f x f x x x -- 2、导数定义:()f x 在点0x 处的导数记作x x f x x f x f y x x x ?-?+='='→?=)()(lim )(00000;. 3、函数()y f x =在点0x 处的导数的几何意义是曲线 ()y f x =在点()()00,x f x P 处的切线的斜率. 4、常见函数的导数公式: ①'C 0=; ②1')(-=n n nx x ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧x x 1)(ln '= 5、导数运算法则: ()1 ()()()()f x g x f x g x '''±=±????; ()2 ()()()()()()f x g x f x g x f x g x '''?=+????; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '??''-=≠????????. 6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增; 若()0f x '<,则函数()y f x =在这个区间内单调递减. 7、求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数'' ()y f x =; (3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 8、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: ()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 9、求解函数极值的一般步骤: (1)确定函数的定义域 (2)求函数的导数f ’(x) (3)求方程f ’(x)=0的根 (4)用方程f ’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格 (5)由f ’(x)在方程f ’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况 10、求函数()y f x =在[],a b 上的最大值与最小值的步骤是: ()1求函数()y f x =在(),a b 内的极值; ()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

人教版高一数学必修一第一章 集合与函数概念知识点

高一数学必修1各章知识点总结 第一章集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西 洋,印度洋,北冰洋} (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 ◆注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……} 2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:{x|x2=-5} 二、集合间的基本关系 1.“包含”关系—子集 A?有两种可能(1)A是B的一部分,;(2)A与B是注意:B 同一集合。 ?/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A ?/A 或B 2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集。 ◆有n个元素的集合,含有2n个子集,2n-1个真子集

反比例函数知识点总结(供参考)

反比例函数知识点总结 李苗 知识点1 反比例函数的定义 一般地,形如x k y =(k 为常数,0k ≠)的函数称为反比 例函数,它可以从以下几个方面来理解: ⑴x 是自变量,y 是x 的反比例函数; ⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①x k y =(0k ≠), ②1kx y -=(0k ≠), ③k y x =?(定值)(0k ≠); ⑸函数x k y =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。 (k 为常数,0k ≠)是反比例函数的一部分,当k=0时, x k y =,就不是反比例函数了,由于反比例函数x k y =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。 知识点2用待定系数法求反比例函数的解析式 由于反比例函数x k y =(0k ≠)中,只有一个待定系 数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。

知识点3反比例函数的图像及画法 反比例函数的图像是双曲线,它有两个分支,这两个分支分 别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。 反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。 再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取; ②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用 光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐 标轴相交。 知识点4反比例函数的性质 ☆关于反比例函数的性质,主要研究它的图像的位置及函数 值的增减情况,如下表: 反比例 函数 x k y =(0k ≠) k 的 符号 0k > 0k < 图像 性质 ① x 的取值范围是0x ≠,y 的取值范围是①x 的取值范围是0x ≠,y 的取值范围是0y ≠ ②当0k <时,函数图像

指数函数知识点总结

指数函数知识总结 (一)指数与指数幂的运算 1.根式的概念: 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ①负数没有偶次方根;②0的任何次方根都是0,记作00=n 。 ③当n 是奇数时,a a n n =, 当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0()1(*>∈>=n N n m a a a n m n m )1,,,0(1 1)2(*>∈>= = - n N n m a a a a n m n m n m (3)0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 题型一、计算 1.44 等于( ) A 、16a B 、8a C 、4a D 、2 a 2.⑴ 33 )2(-= ⑵ 44 )2(-= ⑶ 66)3(π-= ⑷ 2 22y xy x ++= 3.① 625625++- ② 335252-++ 4.计算(1 + 2048 21)(1 + 1024 21)…(1 + 421)(1 + 2 21)(1 + 21 ). 5. 计算(0.0081)4 1-- [3×(87)0]1-·[8125 .0-+(38 3)31-]21 -.

题型二、化简 1. 3 2 13 2b a b a ?- ÷3 2 11- --??? ? ? ?a b b a 2. 322a a a ?(a >0). 3.化简: 3 32 b a a b b a (a >0,b >0). 题型三、带附加条件的求值问题 1. 已知a 2 1+ a 2 1-= 3,求下列各式的值: ⑴ a + a 1 - ⑵ a 2+ a 2 - ⑶ 2 12 1232 3- - --a a a a 2. 已知2a x x =+-2(常数),求8x x -+8的值。 3. 已知x + y = 12, xy = 9,且x <y ,求 2 12 1 212 1y x y x +-的值。 4.已知a 、b 是方程x 2 - 6x + 4 = 0的两根,且a >b >0,求b a b a +-的值。

集合与函数知识点归纳

集合与函数板块公式 1.集合的运算: (1)交集:A x x B A ∈=|{ 且}B x ∈,即集合B A ,的所有公共元素构成的集合. (2)并集:A x x B A ∈=|{ 或}B x ∈,即集合B A ,的所有元素构成的集合. (3)补集:?U ∈=x x A |{U 且}A x ?,即除A 中元素需补充的所有元素的集合. 2.集合中的关系: (1)元素与集合的关系:属于或不属于关系.(∈或?) (2)集合与集合关系:A 是B 的子集记为B A ?.(开口朝范围大的集合) (3)含有n 个元素的子集有n 2个,真子集有12-n 个,非空真子集有22-n 个. 3.集合表示法:列举法、描述法、区间法、特殊字母(Venn 图象法、数轴表示) 4.常用函数定义域的求法(结果用集合的表示方法表示) (1))(x f y =,0)(≥x f (2))(log x f y a =,0)(>x f (3))()(x g x f y = ,0)(≠x g (4))(tan x f y =,∈+≠k k x f (,2 )(π π)Z 5.函数的单调性 (1)定义法: ①增函数:任意D x x ∈21,且21x x <,都有)()(21x f x f < ②减函数:任意D x x ∈21,且21x x <,都有)()(21x f x f > (2)定义法变形: ①)(x f 增函数? 0)]()()[(0) ()(2121212 1>--?>--x f x f x x x f x f x x ②)(x f 减函数? 0)]()()[(0) ()(2121212 1<--?<--x f x f x x x f x f x x (3)图象法: ①增函数图象上升; ②减函数图象下降 (4)导数法: ①增函数(增区间):令0)('>x f 解得x 的范围为增区间 ②减函数(减区间):令0)('a 为增函数; ②0

反比例函数知识点总结

反比例函数知识点总结 知识点1 反比例函数的定义 一般地,形如x k y = (k 为常数,0k ≠)的函数称为反比例函数,它可以从以下几个方面来理解: ⑴x 是自变量,y 是x 的反比例函数; ⑵自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠; ⑶比例系数0k ≠是反比例函数定义的一个重要组成部分; ⑷反比例函数有三种表达式: ①x k y = (0k ≠), ②1 kx y -=(0k ≠), ③k y x =?(定值)(0k ≠); ⑸函数x k y = (0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。 (k 为常数,0k ≠)是反比例函数的一部分,当k=0时,x k y =,就不是反比例函数了,由于反比例函数x k y = (0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。 知识点2用待定系数法求反比例函数的解析式 由于反比例函数x k y = (0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式。 知识点3反比例函数的图像及画法 反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值 0y ≠,所以它的图像与x轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永 远达不到坐标轴。 反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。 再作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取; ②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。 知识点4反比例函数的性质 ☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:

指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习 一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()44 3π- (4) 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. (二)分数指数幂

高中数学第一章集合与函数概念知识点

高中数学第一章集合与函数概念知识点 〖1.1〗集合 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 表示正整数集,Z表示整数集,Q表示有理数集,N表示自然数集,N*或N + R表示实数集. (3)集合与元素间的关系 ?,两者必居其一. ∈,或者a M 对象a与集合M的关系是a M (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 (6)子集、真子集、集合相等

(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有 21n -个非空子集,它有22n -非空真子集. (8)交集、并集、补集 【1.1.3】集合的基本运算

【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法 (2)一元二次不等式的解法 0) 〖1.2〗函数及其表示 【1.2.1】函数的概念 (1)函数的概念

①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足 ,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域

高中数学集合与函数的概念知识点归纳与常考题型专题练习(附解析)

高中数学集合与函数的概念 知识点归纳与常考题型专题练习(附解析) 知识点: 第一章集合与函数概念 1.1 集合 1.1.1集合的含义与表示 【知识要点】 1、集合的含义 一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。 2、集合的中元素的三个特性 (1)元素的确定性;(2)元素的互异性;(3)元素的无序性 2、“属于”的概念 我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素如:如果a是集合A的元素,就说a属于集合A 记作a∈A,如果a不属于集合A 记作a?A 3、常用数集及其记法 非负整数集(即自然数集)记作:N;正整数集记作:N*或N+ ;整数集记作:Z;有理数集记作:Q;实数集记作:R 4、集合的表示法 (1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 (2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2} (3)图示法(Venn图) 1.1.2 集合间的基本关系 【知识要点】 1、“包含”关系——子集 一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说 这两个集合有包含关系,称集合A为集合B的子集,记作A?B 2、“相等”关系 如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A 的元素,我们就说集合A等于集合B,即:A=B A B B A 且 ??? 3、真子集 如果A?B,且A≠B那就说集合A是集合B的真子集,记作A?B(或B?A) 4、空集 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集,空集是任何非空集合的真子集. 1.1.3 集合的基本运算

反比例函数知识点汇总

平面直角坐标系 1、定义: 1、定义: 平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。 2、各个象限内点的特征: 2、各个象限内点的特征: 第一象限:(+,+),点P(x,y),则x>0,y>0; 第二象限:(-,+),点P(x,y),则x<0,y>0; 第三象限:(-,- ),点P(x,y),则x<0,y<0; 第四象限:(+,-), 点P(x,y),则x>0,y<0; 3、坐标轴上点的坐标特征: 3、坐标轴上点的坐标特征: x轴上的点,纵坐标为零; y轴上的点,横坐标为零; 原点的坐标为(0,0)。 两坐标轴的点不属于任何象限。 4、点的对称特征: 4、点的对称特征: 已知点P(m, n), 关于x轴的对称点坐标是(m,-n),横坐标相同,纵坐标相反; 关于y轴的对称点坐标是(-m, n),纵坐标相同,横坐标相反; 关于原点的对称点坐标是(-m, -n),横、纵坐标都相反。 5、平行于坐标轴的直线上的点的坐标特征: 5、平行于坐标轴的直线上的点的坐标特征: 平行于x轴的直线上的任意两点:纵坐标相等; 平行于y轴的直线上的任意两点:横坐标相等。 6、各象限角平分线上的点的坐标特征: 6、各象限角平分线上的点的坐标特征: 第一、三象限角平分线上的点横、纵坐标相等。 第二、四象限角平分线上的点横、纵坐标互为相反数。 7、点P(x,y)的几何意义: 7、点P(x,y)的几何意义: 点P(x,y)到 x 轴的距离为 |y| , 点P(x,y)到 y 轴的距离为 |x|。 点P(x,y)到坐标原点的距离为 8、两点之间的距离: 8、两点之间的距离:

复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数1.(定理柯西留数定理): 2.(定理):设a为f(z)的m阶极点, 其中在点a解析,,则 3.(推论):设a为f(z)的一阶极点, 则 4.(推论):设a为f(z)的二阶极点 则 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数:

即,等于f(z)在点的洛朗展式中这一项系数的反号 7.(定理)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有,但是,如果点为f(z)的可去奇点(或解析点),则可以不为零。 8.计算留数的另一公式: §2.用留数定理计算实积分 一.→引入 注:注意偶函数 二.型积分 1.(引理大弧引理):上 则 2.(定理)设

为互质多项式,且符合条件: (1)n-m≥2; (2)Q(z)没有实零点 于是有 注:可记为 三.型积分 3.(引理若尔当引理):设函数g(z)沿半圆周 上连续,且 在上一致成立。则 4.(定理):设,其中P(z)及Q(z)为互质多项式,且符合条件:(1)Q的次数比P高; (2)Q无实数解; (3)m>0 则有 特别的,上式可拆分成:

及 四.计算积分路径上有奇点的积分 5.(引理小弧引理): 于上一致成立,则有 五.杂例 六.应用多值函数的积分 §3.辐角原理及其应用 即为:求解析函数零点个数 1.对数留数: 2.(引理):(1)设a为f(z)的n阶零点,则a必为函数的一阶极点,并且 (2)设b为f(z)的m阶极点,则b必为函数的一阶极点,并且 3.(定理对数留数定理):设C是一条周线,f(z)满足条件: (1)f(z)在C的内部是亚纯的;

指数函数知识点汇总

指数函数知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时, a a n n =,当n 是偶数时, ? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m ) 1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数 )1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a >1 0

反比例函数知识点归纳重点(供参考)

反比例函数知识点归纳和典型例题 (一)知识结构 (二) (三)(二)学习目标 (四)1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数. (五)2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点. (六)3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题. (七)4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型. (八)5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法. (九)(三)重点难点 (十)1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用. (十一)2.难点是反比例函数及其图象的性质的理解和掌握.

(十二)二、基础知识 (十三)(一)反比例函数的概念 (十四)1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件; (十五)2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式; (十六)3.反比例函数的自变量,故函数图象与x轴、y轴无交点. (十七)(二)反比例函数的图象 (十八)在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称). (十九)(三)反比例函数及其图象的性质 (二十)1.函数解析式:() (二十一)2.自变量的取值范围: (二十二)3.图象: (二十三)(1)图象的形状:双曲线. (二十四)越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大. (二十五)(2)图象的位置和性质:

基本初等函数和函数的应用知识点总结

基本初等函数和函数的应用知识点总结 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根, 其中n >1,且n ∈N * . ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a +=),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)(),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 因为负数对一些分数次方无意义,0的负数次方无意义。 2、指数函数的图象和性质 a>1 0

指数函数知识点总结

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m ? 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 《 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出:

(1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [ (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; ' 指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321x x 、 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 ? 练习:(1)4 12-=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d | B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),

整理全面《高中数学知识点归纳总结》

整理全面《高中数学知识点归纳总结》

教师版高中数学必修+选修知识点归纳 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数 选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。 选修3—6:三等分角与数域扩充。系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向 量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、 和、差、倍、半公式、求值、化 简、证明、三角函数的图象与性 质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、 数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式 的证明、不等式的解法、绝对值不 等式、不等式的应用 ⑺直线和圆的方程:直线的方程、两直线的位 置关系、线性规划、圆、 直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直 线与圆锥曲线的位置关系、 轨迹问题、圆锥曲线的应用