搜档网
当前位置:搜档网 › 太阳能槽式热发电系统在金昌的开发前景(吕仲奎、王健)

太阳能槽式热发电系统在金昌的开发前景(吕仲奎、王健)

太阳能槽式热发电系统在金昌的开发前景(吕仲奎、王健)
太阳能槽式热发电系统在金昌的开发前景(吕仲奎、王健)

酒泉职业技术学院

太阳热能发电技术

课程设计

11 级太阳能应用技术专业

目录

一、槽式太阳能热发电系统 (3)

(一)、槽式太阳能热发电系统的特点 (3)

(二)、槽式太阳能热发电原理及结构 (3)

二、国内外的发展水平 (5)

(一)国外的发展情况 (5)

(二)国内的发展情况 (6)

三、关键技术 (6)

(一)聚光器 (6)

(二)吸收器 (7)

(三)跟踪技术 (7)

(四)热能储存 (8)

四、金昌市太阳能资源分析 (8)

(一)金昌地理位置 (8)

(二)金昌太阳能辐射条件 (9)

(三)太阳能资源评价 (11)

五、结论与展望 (11)

太阳能槽式热发电系统在金昌的开发前景

一、槽式太阳能热发电系统

(一)、槽式太阳能热发电系统的特点

槽式太阳能热发电系统结构紧凑,其太阳能热辐射收集装置占地面积比塔式和碟式系统的要小30%~50%;且槽形抛物面集热装置的制造所需的构件形式不多,容易实现标准化,适合批量生产。用于聚焦太阳光的抛物面聚光器加工简单,制造成本较低,抛物面场每平方米阳光通径面积仅需18 kg钢和11 kg玻璃,耗材最少0 J。表1列出了3种太阳能热发电系统的性能比较情况。

表1 几种太阳能发电系统的性能对比

由表1可知:槽式太阳能热发电系统的装容规模最大、效率较高,已具商业化规模且技术要求相对较低,是一种比较理想的发电技术。LUZ公司1980年开始开发此类热发电系统,5年后实现了商业化运行。美国加利福尼亚从1991年开始运行的由9个槽式系统组成的太阳能热发电站总装机容量达354 Mw ,年发电l0 Twh,收入1.5亿美元。随着制造工艺的不断改进,槽式系统的发电效率已由11.5%提高到13.6%;建造费用由5976美元/kW 降低到30l1美元/kW ,发电成本由26.3美分/kwh降低到了l2美分/kWh。有专家预测,当发电成本降到8美分/kwh 时,太阳能热发电将可与常规矿物能源发电相媲美。

(二)、槽式太阳能热发电原理及结构

槽式太阳能热发电主要是借助槽形抛物面聚光器将太阳光聚焦反射到接收

聚热管上,通过管内热载体将水加热成蒸汽,推动汽轮机发电。基于槽式系统的太阳能热电站主要包括:大面积槽形抛物面聚光器、跟踪装置、热载体、蒸汽产生器、蓄热系统和常规Rankine循环蒸气发电系统。在太阳能热电系统中配置高温蓄热装置是为解决太阳能的间歇不稳定性而设计的,它可以在太阳光充裕的时候把热能存储下来,当太阳光不足时再放出热能,实现电厂的持续发电。吸收器、聚光器以及跟踪系统构成槽式太阳能热发电系统的集热装置,其结构如图1所示。

图1 槽式抛物面太阳能热发电系统的集热装置吸收器一般采用双层管结构,被置于抛物面聚光器焦线上,内侧为热载体,外侧为真空,以防热流失。热载体可以是水蒸气、热油或熔盐。温度一般在400 ℃左右,属于太阳热能的中低温利用。聚光镜是一种表面上涂有聚光材料的抛物镜面,它的作用是将分散的低密度太阳光聚焦到吸收器上以产生高温,聚光镜性能的好坏除了与自身的制造精度有关外,还与跟踪装置的好坏有关。一般的太阳能发电站都采用单轴跟踪方式使抛物面对称平面围绕南北方向的纵轴转动。与太阳照射方向始终保持0.04。夹角。以便在任何情况下都能有效的反射太阳光。然而,近年来人们正在研制一种由多个小型平面反射镜组成的环带太阳能集热器系统,这种技术可以大大降低反射镜的制造难度,但其可靠性和经济性还需作进一步验证。图2所示为一个大规模的槽式太阳能热发电系统的系统图。

图2 槽式太阳能热发电站系统图

由多个抛物面聚光器组成的太阳能场将太阳光聚焦到吸收器将冷管中的熔盐热载体加热到385℃并储存到蓄热器中,当系统发热完毕后,热的熔盐载体被送往传热液体加热器,与来自动力系统热管的熔盐热载体进行换热。热管中的热载体一般为水,水被加热至300℃二以上后再送回动力系统,同时冷管中的熔盐也再次被送回太阳场以吸收热能。

二、国内外的发展水平

(一)国外的发展情况

国外的发展情况太阳能热发电工业经历了几次起落,原因是多方面的。早在20世纪初就有关于太阳能热发电的研究,可由于2次世界大战的爆发和近东地区石油的发现,使得太阳能的利用发展缓慢。其中,由于太阳能热电自身的技术落后、效率低以及生产成本高也是阻碍其发展的重要原因。直到20世纪70年代的石油危机,太阳能热电工业又重新被激起。随着太阳能热力发电技术和规模的发展,太阳能热发电将具有与常规能源发电竞争的潜在优势。只是目前这种技术还不是很完备,在经济上还不具备竞争力。因此,要推广这种技术,就必须进一步降低发电成本,提高系统效率,实现电站运行自动化,将运行费用由目前的3~ /kWh降低到0.8美分/kwh才行。因此,槽式太阳能发电技术今后的研究重点为:①加强项目地点太阳能资源的调研;②发展直接汽化系统的热能储存技术;③

提高热载体的工作温度;④开发高效的吸热管镀层技术,使集热表面的温度进一步提高到550~600℃。

(二)国内的发展情况

我国对太阳能热发电技术的研究起步较晚,直到20世纪70年代才开始一些基础研究,在“七五”期间,湘潭电机厂与美国空间电子公司合作,研制了2组5 kW 的抛物面聚焦型太阳热发电机,但由于价格过高,加上工艺、材料、部件及相关技术等没有得到根本解决,而未能得到推广使用。国家“八五”计划安排了小型部件和材料的攻关项目,于中国科学院电工研究所内建成了小型抛物面槽式真空管高温集热装置。美国加州LUZ槽式太阳能热发电站的成功运行引起了我国的广泛关注,并计划引进该类机组在西藏拉萨建立一座35 Mw 的LUZ槽式太阳能热发电站。当时经可行性评估,预计该电站的电能成本约为1.1 kWh,运行成本为0.1 kWh,与拉萨地区燃煤电站的电能成本0.8 kWh相比还是有一定优势的。总体来说,我国在太阳能热动力方面的研究还是比较落后的,20世纪80年代的研究水平只相当于国外60年代的水平。尽管近年来我国对太阳能热电技术的研究给予了相当大的重视,并且也得到了一定的发展,如南京江宁区2005年建设的国内第一座太阳能热发电示范电站(容量7 kW),但与国际发展水平的差距较大。为此,国家在“十一五”计划中安排了数十亿资金以开发太阳能热发电技术。考虑到我国目前的技术现状,可以优先开发槽式太阳能热发电系统,或将太阳能发电与小水电联合、太阳能发电与风力发电联合,组成各种联合系统,也可以采用一些储能设备以减少对气候条件的依赖。

三、关键技术

(一)聚光器

太阳能是一种低密度能源,收集太阳能对聚光器的精度要求很高。按照聚光原理区分,聚光集热器基本可分为反射聚光和折射聚光2大类。槽形抛物面镜聚光集热器是反射式聚光器中应用较多的一种。它只需要用一维跟踪就可以获取中温。

目前,开发的重点是提高聚光器的效率,如提高反射面加工精度、研制高反射材料。与此对应,降低制造成本也是研究的重点。近年来,国内一些高等院校

与企事业单位对槽式抛物面聚光器做了不少单元性试验研究,并成功研制出采光口宽度为2.5 m,长12 m 的槽式聚光器。通过对单向抛物反射器反射面的研究,采用复合蜂窝技术,研制出了超轻型结构的反射面,解决了使用平面玻璃制作曲面镜的问题,降低了制造难度。

(二)吸收器

槽式系统太阳能吸收器的主要发展趋势为真空集热管和腔体吸收器。真空集热管是一种高效太阳集热元件,从真空太阳能集热管的材料来看,又可分为二类:一类为全玻璃真空太阳能集热管;另一类为玻璃.金属真空太阳能集热管。真空集热管的优点为:选择性涂层可以提高阳光的吸收率减少其发射率;真空夹层使两管间的对流热损失为零;玻璃管外径较小,并且透明,既可减少对阳光的遮影,也可降低外表面的对流热损。我国自80年代中期开始研制真空集热管,攻克了热压封等许多技术难关,建立了拥有全部知识产权的真空集热管生产基地,产品质量达到世界先进水平,生产能力也居世界首位。

玻璃一金属太阳能集热管是一种新型的集热管,目前在我国还处于开发阶段,它比全玻璃真空集热管的效率高若干倍,热循环要好,不会发生管的冻裂,坚固耐用,可做成大、中、小各种太阳能集热管,是一种理想的器材。腔体式吸收器其结构为一槽形腔体,外表面覆隔热材料,利用腔体的黑体效用,可充分吸收聚焦后的阳光。与真空集热管相比,腔体吸收器具有较低的直射能流密度,且腔体壁温较均匀,热性能稳定,集热效率高,无需光学选择性涂层,只需传统的材料和加工工艺,成本低且便于维护。但光学效用不如真空集热管好,在太阳能的中、低温利用中,二者的效率有一相交值,在选择时要根据具体情况选择不同类型的集热装置。

(三)跟踪技术

抛物面聚焦集热器只能收集直射光线,利用跟踪装置可以使系统截获更多的太阳辐射。用于太阳能发电的跟踪方式按照入射光和主光轴的位置关系可分为两轴跟踪和单轴跟踪。两轴跟踪是根据太阳高度和赤纬角的变化情况而设计的,它具有最理想的光学性能,是最好的跟踪方式,能够使入射光与主光轴方向一致,获得最多的太阳能。但此种设备结构复杂,制造和维修成本高,性价比不如单轴跟踪好。单轴跟踪型只要求人射光线位于含有主光轴和焦线的平面就行,且结构

简单,实际生产中在跟踪精度要求不高或阳光充裕的地方一般优先考虑单轴跟踪。按

焦线位置的不同,单轴跟踪分为三类:南北地轴式、南北水平式和东西水平式。总之,采用何种方式,是一个性价比问题,要根据实际应用来选择不同跟踪方式。

近年来,我国太阳能检测中心开发出太阳能集热器性能测试系统,其中就包括了太阳跟踪器。该跟踪器采用地平坐标系跟踪方式,主要由水平回转转台、垂直回转转台、2台步进电机以及集热器台架组成。集热装置固定在台架平面上,水平转台相当于集热装置的方位轴,由一台步进电机驱动,绕垂直于当地水平面的轴旋转,对太阳进行实时跟踪。从这种太阳跟踪器的运行情况来看,它的运行状况良好,跟踪误差也不是很大。但总体来说,我国的太阳能开发利用的水平还不是很高,国产太阳跟踪器的精度也不是很好,还有待提高。

(四)热能储存

太阳能不能直接贮存,必须转换成其他形式的能量才能贮存。目前用于太阳能热电的能量储存技术主要有:显热储能技术、潜热储能技术、化学反应热储能技术和塑晶储能技术。其中,潜热储能随温度不同而应选择不同储热材料。

我国对化学储能研究较多,该储能方式被认为是最具发展前途的一种储热方式,与其他方式相比,其突出的优点为:①热化学正一逆反应可在高温下进行,可得到高品位热能;②温度与速率在热能储/释过程中均可控制;③在常温下可长期无热损储存且储能密度远高于显热或相变蓄热。但这种技术目前还不是很成熟,尚需进行深入研究,一时难以实用。(注:以上部分由王健完成)

四、金昌市太阳能资源分析

(一)金昌地理位置

金昌地理位置及其地金形地貌较为复杂,南北海拔差达3000多米,气候差异较大。北部地势平坦,干旱少雨,炎热干燥,日照丰富;南部山峦叠加,海拔高而潮湿多雨,气候寒冷,终年无夏。呈现以大陆性沙漠干旱气候为主和南部祁连山高寒气候为辅的特征。金昌自然降水由东北向西南递增。北部市区平均降水

量为119.5mm,浅山区年平均降水量为210.4mm,南部高山区年平均降水为300mm以上,降水量时空分布极不均匀,造成年度和时段干旱常有发生。一年中降水多集中在6~8月,占全年的65%,5月占8.5%,9月占11%,10月至次年4月只占14%。金昌年均气温随着海拔增高而递减。金昌市区平均气温9.3℃,最高年份10.4℃,最低年份8.5℃;永昌县年平均气温5.3℃。市区最高气温42.4℃,永昌县35.1℃;市区最低气温-28.3℃,永昌县-28.3℃。无霜期市区为175天,永昌县为135天。

(二)金昌太阳能辐射条件

金昌市无太阳辐射观测站,距离最近的辐射观测站为民勤气象站,该气象站与规划场地纬度相近,均为荒漠化土地。民勤县气象站现址在城关镇北门外“郊区”(E103°5′,N38°38′,H:1367.5m),建于 1953 年,属国家基准气象站,检测要素齐全,且建站以来气象要素记录完整。民勤县气象站是距离规划光伏发电场最近的具有辐射监测的国家基准站。因此选取民勤气象站作为进场槽式热发电站规划的参证站。

1. 太阳总辐射量

太阳总辐射是太阳直接辐射和散射辐射之和,在 1 年内的总辐射量累计值为年太阳总辐射,图(1)给出了民勤站年太阳总辐射年际变化。

图(1)太阳总辐射年际变化直方图(1981~2008年)可以看出在近 28 年内,太阳总辐射量变化总体呈增加趋势,其中在上个

世纪 90 年代,太阳总辐射年际变化振幅偏大,近 10 年变化振幅偏小。计算多年平均太阳总辐射量为 6181.45MJ/(M2.a),其中 1997 年太阳总辐射量最大,为 6613.26 MJ/(M2.a),1998 年太阳总辐射量最小,为 5570.61 MJ/(M2.a)。

图(2)太阳总辐射年变化直方图(1981~2008年)图(2)给出了民勤气象站总辐射年变化直方图,统计近 28 年的总辐射,可以看出在春、夏季辐射量偏大,5 月总辐射 716.21MJ/m2,春季、秋季次之,冬季辐射量偏小,12 月太阳总辐射最小为 287.89MJ/m2。

2. 日照时数

日照时数为全天可日照的小时数,计算近 30 年(1984~2010 年)的日照小

时数如图(3)。

图(3)日照时数年际变化直方图(1981~2010年)可以看出,在 1997 年以前,日照时数呈总体上升趋势,在 1999 年以后日照时数总体呈下降趋势,近 30 年的日照时数有明显的年代际变化特征。日照时数最大值为 1997 年的 3418.2 小时,最小值为 1984 年的 2862.1 小时。多年平均日照时数为 3138.2 小时。

图(4)日照时数年变化直方图(1981~2010年)图(4)显示日照时数年变化在夏季偏高,依次是春季、秋季,冬季偏低,2 月份最小为 222.9 小时。

(三)太阳能资源评价

规划槽式热发电场地区月平均太阳辐射量为 515.12 MJ/(M2.d),折合年平均太阳总辐射量为 6181.45MJ/(M2.a),主要集中在 3~10 月,占总辐射量的78.6%,春、夏季辐射量最大,冬季辐射量最小。在近 28 年内,总辐射量变化总体呈增加趋势,其中在上个世纪 90 年代,总辐射年际变化振幅较大,近 10 年变化振幅较小。年均日照时数 3138.2 小时,主要集中在 3~10 月份,占全年总日照时数的 70.4%。

五、结论与展望

与其他比较成熟的可再生能源利用技术相比较,目前太阳能热发电还不具备竞争力,这是因为太阳能的发电成本要比常规能源发电高,现阶段研究的重点就

是要改进技术、开发新材料及扩大建设规模以降低发电成本。2002年6月,在联合国发展署召开的一个太阳能国际会议上,有人估计在太阳能热电站装机容量达到400 Mw 时,发电成本将降低20%,容量达到5 GW 时,将完全具有竞争的能力。就我国的实际情况而言,中国是一个能源消耗的大国,而可用的人均一次能源并不多,有些还依赖进口。所以,发展和利用太阳能是关系我国经济持续发展的一项重要项目。我国的太阳能热发电起步比较晚,但国外对太阳能槽式热力发电技术的各大部件在材料、设计、工艺及理论方面进行了长达2O多年的研究,并取得了较大的进展。在技术上最为成熟而且在国际上又初具商业化的是槽式太阳能热发电系统,基于此,建议我国应优先开发槽式太阳能热发电技术,这不仅可以借鉴国外先进的技术和成功的经验,同时也可以将中国的太阳能事业由理论研究阶段推向实际应用,进而解决中国的能源问题。

建议应确定槽式太阳能热力发电技术的近期、中期及远期开发内容和目标;明确研究期限和阶段成果;着重确定与研究所涉及的关键技术,确定研究难点,进行相关攻关研究;研制出符合工作性能和可靠性要求的样机,并进行千瓦级样机可行性论证与试验,获得热力发电系统关键技术的解决途径与经验,为今后大功率系统的研制创造条件。近期应集中力量,着重解决槽式热力发电技术中二大关键技术之一的热化学法高温太阳能蓄热,并从以下3个方面研究所涉及的关键技术和相关问题:(1)在基础一技术一工程应用3个层面上,结合能量利用系统创新集成优化理论,研究系统中太阳热能转换储存一传输一再生电能过程中的动力学、热经济学、热传递现象理论,以及储能系统中的应用基础问题。(2)建立相应能量流转换的理论和模型。包括建立设计、运行、控制3个层次一体化模型、目标函数、决策变量和约束集。拓展现代分析研究方法及有效健壮的数值方法,开发相应的计算软件和控制软件。(3)实现能量流转换、传递过程高效化和能量储输技术的创新,并完成相关高效储输和转换系统中关键技术的研发与优化工作,力求达到可工程应用的实用水平,为促进纯太阳能热力发电高技术和产业的发展。(注:四至五由吕仲奎完成)

塔式太阳能热发电站工作原理

2塔式太阳能热发电系统就是在空旷得地面上建立一高大得中央吸收塔,塔顶上安装固定一个吸收器,塔得周围安装一定数量得定日镜,通过定日镜将太阳光聚集到塔顶得接收器得腔体内产生高温,再将通过吸收器得工质加热并产生高温蒸汽,推动汽轮机进行发电。 3图示可以说为塔式太阳能热发电系统工作流程示意图。 对各个部件进行说明。 冷凝器:发电厂要用许多冷凝器使汽轮机排出得蒸汽得到冷凝,变成水,重新参加循环。 不同颜色得线条表示不同温度得工质。 4在大面积聚光方法中,与槽式聚光方式相比,塔式聚光有以下优点: 1)槽式得聚光比小,一般在50左右,为维持高温时得运行效率,必须使用真空管作为吸热器件。而塔式得聚光比大,一般可以达300到1500,因此可以使用非真空得吸热器进行光热转换,热转换部分寿命优于依赖于真空技术得槽式聚光技术。 2) 由于有大焦比,塔得吸热器可以在500℃到1500℃得温度范围内运行,对提高发电效率有很大得潜力。而槽式得工作温度一般在400℃以内,限制了发电透平部分得热电转换效率。接收器散热面积相对较小,因而可得到较高得光热转换效率。 5.塔式太阳能热发电系统得组成按照供能得不同主要由定日镜系统、吸热与热能传递系统(热交换系统) 、发电系统3部分组成。 定日镜场系统实现对太阳得实时跟踪,并将太阳光反射到吸热器。 位于高塔上得吸热器吸收由定日镜系统反射来得高热流密度辐射能,并将其转化为工作流体得高温热能。 高温工作流体通过管道传递到位于地面得蒸汽发生器,产生高压过热蒸汽,推动常规汽轮机发电。 由于太阳能得间隙性,必须由蓄热器提供足够得热能来补充乌云遮挡及夜晚时太阳能得不足,否则发电系统将无法正常工作。 6大汉兆瓦级太阳能塔式热发电站由集热岛、热能储存岛与常规岛构成。集热岛包括定日镜场、吸热器系统与吸热塔。 吸热器为过热型腔式吸热器,吸热塔高118 m,过热型腔式吸热器安装在吸热塔92m 标高处。热能储存岛由高温子系统、低温子系统组成,高温蓄热工质为导热油。低温子系统就是1 个100 m3得饱与蒸汽蓄热器,工质为饱与水蒸气。常规岛由1 台8、4 t/h 得燃油辅助锅炉与1、5 兆瓦得汽轮发电机组构成。 ?热力循环过程包括两个方面:

光热发电的前景和弊端

光热发电的前景和弊端 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能。这种技术的关键元件是太阳能电池,经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 一、光热发电 光热发电是指将太阳能聚集,通过换热装置提供蒸汽,进而驱动汽轮机发电。 1.原理不同:光伏--高纯硅可以利用太阳光照产生直流电,光伏发电; 光热--收集太阳热加热工质成汽态,推动汽轮机,发电机发交流电,光热发电;原理与传统发电的一样; 2.蓄能方式不同:光伏-蓄电池,使用期限是几年,需更换,更换的电池会造成大量污染; 光热-蓄热罐; 使用热熔盐,不需更换,只需添加; 3.使用方向不同:光伏--适合分散式、小规模、高档城市;小局域供电 光热--适合集中式、大规模、一般性地区;整个地区、省、甚至全国大范围供电,仅仅利用新疆沙漠100平方公里 的太阳热能,就够我们整个中国的用电;新疆沙漠是42.48万平方公里; 4.相关产业链不同:光伏--硅矿生产、提纯、切片、产品,相关产业链专业单一; 光热--钢铁、玻璃、水泥等等,涉及到多个行业,类似房地产,相关产业链长,非常丰富; 5.核心技术设备所有权不同:光伏--核心技术、设备都被德国、俄罗斯、日本、美国等掌握;我们需花大量外汇购买;光热--核心技术、设备全部国产化;所有知识产权完全国有; 二、含义:太阳能光热发电是指利用大规模阵列抛物或碟形镜面收集太阳热能,通过换热装置提供蒸汽,结合传统汽轮发电机的工艺,从而达到发电的目的。采用太阳能光热发电技术,避免了昂贵的硅晶光电转换工艺,可以大大降低太阳能发电的成本。而且,这种形式的太阳能利用还有一个其他形式的太阳能转换所无法比拟的优势,即太阳能所

100kW光伏并网发电系统典型案例解

100kW光伏并网发电系统典型案例解 100kW光伏并网发电系统典型案例解析 1、项目地点分析 本项目采用光伏并网发电系统设计方案,应用类别为村级光伏电站项目。项目安装地为江西,江西位于位于中国的东南部,长江中下游南岸。地处北纬24°29′-30°04′,东经113°34′-118°28′之间。项目所在地坐标为北纬25°8′,东经114°9′。根据查询到的经纬度在NASA上查询当地的峰值日照时间如下: (以下数据来源于美国太空总署数据库) 从上表可以看出,项目建设地江西在国内属于二三类太阳能资源地区,年平均太阳能辐射量峰值平均每天为3.41kWh/m2,年平均太阳能总辐射量峰值为:3.41kWh/m2*365=1244.65 kWh/m2。 2、光伏组件 2.1光伏组件的选择 本项目选用晶硅太阳能电池板,单块功率为260Wp。下面是一组多晶硅的性能参数,组件尺寸为1650*990*35mm。 2.2光伏组件安装角度

根据项目所在地理位置坐标,项目所在地坐标为项目所在地坐标为北纬25°8′,东经114°9′,光伏组件安装最佳倾角为20°如下图所示: 2.3组件阵列间距及项目安装面积 采用260Wp的组件,组件尺寸为1650*990*35mm,共用400块太阳能电池板, 总功率104kWp。根据下表公式可以计算出组件的前后排阵列间距为2.4m,单 块组件及其间距所占用面积为2.39㎡。

104kWp光伏组件组成的光伏并网发电系统占地面积为2.39*400=956㎡,考虑到安装间隙、周围围墙等可能的占地面积,大约需要1000㎡。 3、光伏支架 本项目为水平地面安装,采用自重式支架安装方式。自重式解决方案适用于平屋顶及地面系统。利用水泥块压住支架底部的铝制托盘,起到固定系统的作用。

塔式与槽式太阳能热发电技术

塔式与槽式太阳能热发电技术 塔式太阳能热发电 塔式太阳能热发电系统也称集中型太阳能热发电系统。塔式太阳能热发电系统的基本形式是利用独立跟踪太阳的定日镜群,将阳光聚集到固定在塔顶部的接收器上,用以产生高温,加热工质产生过热蒸汽或高温气体,驱动汽轮机发电机组或燃气轮机发电机组发电,从而将太阳能转换为电能。 塔式太阳能热发电特点 塔式电站的优点: 1.聚光倍数高,容易达到较高的工作温度,阵列中的定日镜数目越多,其聚光比越大,接收器的集热温度也就愈高; 2.能量集中过程是靠反射光线一次完成的,方法简捷有效; 3.接收器散热面积相对较小,因而可得到较高的光热转换效率。 塔式太阳能热发电的参数可与高温、高压火电站一致,这样不仅使太阳能电站有较高的热效率,而且也容易获得配套设备。虽然这种电站的建设费用十分昂贵,美国的SolarOne电站初次投资为1.42亿美元,成本比例为:定日镜52%、发电机组、电气设备18%、蓄热装置10%、接收器5%、塔3%、管道及换热器8%、其它设备4%。但随着制镜技术的提高和规模的增大,定日镜成本将大幅度降低。以美国Sunlab为代表的研究部门以及Sargent&Lundy评估机构对塔式太阳能热发电的成本作出了预测图1。Sunlab基于8.7GW规模预计到2020年塔式太阳能热发电的成本最终可达到约30~40$MWh,即每度电3~4美分;Sargent&Lundy基于2.6GW规模预计到2020年塔式太阳能热发电的成本最终可达到50~60$MWh,即每度电5~6美分。与常规化石能源发电相比,如果算上环境污染的成本,那么塔式太阳能热发电的前景将更加广阔。美国能源部主持的研究结果表明;在大规模发电方面,塔式太阳能热发电将是所有太阳能发电技术中成本最低的一种方式。 我国塔式太阳能热发电技术发展状况 随着太阳能利用技术的迅速发展,从20世纪70年代中期开始,我国一些高等院校和科研院所,对太阳能热发电技术做了不少应用性基础试验研究,并在天津建造了一套功率为lkW的塔式太阳能热发电模拟装置。 《中国新能源与可再生能源1999白皮书》指出:我国太阳能热发电技术的研究开发工作早在70年代末就开始了,但由于工艺、材料、部件及相关技术未得到根本性的解决,加上经费不足,热发电项目先后停止和下马。国家“八五”计划安排了小型部件和材料的攻关项目,带有技术储备性质,目前还没有试验样机,与国外差距很大。 近几年来,中国工程院院士张耀明教授带领南京春辉科技实业有限公司南京玻璃纤维研究设计院三所科技人员,在太阳能热发电研究领域中,取得了自动跟踪太阳、聚光、

碟式太阳能热发电系统的原理与构造

碟式太阳能热发电系统的原理与构造 芃 摘要:碟式太阳能热发电系统由碟式抛物面聚光镜、接收器、斯特林发动机、发电机组成,本文介绍了碟式抛物面聚光镜的结构,并介绍了碟式太阳能接收器的原理与结构。 关键字:碟式太阳能发电系统,碟式抛物面反射镜,直接加热式太阳能接收器,间接加热式太阳能接收器,池沸腾接收器,相变式太阳能加热器,斯特林发动机 碟式太阳能热发电系统主要由碟式聚光镜、接收器、斯特林发动机、发电机组成,目前峰值转换效率可达30%以上,是一种有前途的太阳能热利用装置。 1. 碟式抛物面反射镜 碟式太阳能热发电系统采用旋转抛物面汇聚太阳光,旋转抛物面是抛物线绕轴线旋转形成的面。与抛物面轴线平行的光线照射到镜面时,光线会聚焦到焦点,在焦点放置的物体会被加热到很高的温度,见图1。 图1 旋转抛物面聚光镜 每个碟式太阳能热发电系统都有一个旋转抛物面反射镜用来汇聚太阳光,圆形的反射镜像碟子一样,故称为碟式反射镜。由于反射镜面积小则几十平方米,大则数百平方米,很难造成整块的镜面,是由多块镜片拼接而成。一般几kW的小型机组用多块扇形镜面拼成园形反射镜,如图2左侧照片;也有用多块园形镜

面组成,如图2右侧照片。大型的一般用许多方形镜片拼成近似园形反射镜,如图3照片所示。 图2 网上的碟式太阳能系统照片 图3 网上的碟式太阳能系统照片 拼接用的镜片都是抛物面的一部分,不是平面,多块镜面固定在镜面框架上,构成整片的旋转抛物面反射镜。整片的旋转抛物面反射镜与斯特林机组支架固定

在一起,通过跟踪转动装置安装在机座的支柱上,斯特林机组安装斯特林机组支架上,机组接收器在旋转抛物面反射镜的聚焦点上,见图4。 跟踪转动装置由跟踪控制系统控制,保证抛物面反射镜对准太阳,把阳光聚集在斯特林机组的接收器上。关于跟踪知识请浏览“鹏芃科艺”网站(https://www.sodocs.net/doc/3281246.html,)的“聚光太阳能热利用”栏目“太阳的视运动与跟踪”章节。在该栏目的“碟式太阳能热发电系统”章节有碟式太阳能热发电系统动画,可在线观看或下载。 图4 碟式太阳能发电系统组成 2. 斯特林发电机组 斯特林发动机是一种外燃机,依靠发动机气缸外部热源加热工质进行工作,发动机内部的工质通过反复吸热膨胀、冷却收缩的循环过程推动活塞来回运动实现连续做功。由于热源在气缸外部,方便使用多种热源,特别是利用太阳能作为热源。碟式抛物面聚光镜的聚光比范围可超过1000,能把斯特林发动机内的工质温度加热到650度以上,使斯特林发动机正常运转起来。在机组内安装有发电机与斯特林发动机连接,斯特林发动机带动发电机旋转发电。 斯特林发动机的技术较复杂,就不在这里介绍了,在“鹏芃科艺”网站(https://www.sodocs.net/doc/3281246.html,)有“斯特林发动机”栏目专门介绍斯特林发动机的原理与

塔式太阳能热发电技术

塔式太阳能热发电技术浅析 14121330 彭启 1.前言 太阳能热发电是利用聚光器将太阳辐射能汇聚,生成高密度的能量,通过热功循环来发电的技术[1]。我国太阳能热发电技术的研究开发工作始于70年代末,一些高等院校和科研所等单位和机构,对太阳能热发电技术做了不少应用性基础实验研究,并在天津建造了一套功率为lkW的塔式太阳能热发电模拟实验装置,在上海建造了一套功率为lKW的平板式低沸点工质太阳能热发电模拟实验装置[2~3]。 目前主流的太阳能热发电技术主要有4种方式:塔式、槽式、碟式和线性菲涅尔式[4],这4种太阳能光热发电技术各有优缺点。 塔式太阳能聚光比高、运行温度高、热转换效率高,但其跟踪系统复杂、一次性投入大,随着技术的改进,可能会大幅度降低成本,并且能够实现大规模地应用,所以是今后的发展方向。槽式技术较为成熟,系统相对简单,是第一个进入商业化生产的热发电方式,但其工作温度较低,光热转换效率低,参数受到限制。碟式光热转换效率高,单机可标准化生产、既可作分布式系统单独供电,也可并网发电,但发电成本较高、单机规模很难做大。线性菲涅尔式结构简单、发电成本低、具有较好的抗风性能,但工作效率偏低、且由于发展历史较短,技术尚未完全成熟,目前处于示范工程研究阶段。 2.发电原理与系统 塔式太阳能热发电系统的基本形式是利用独立跟踪太阳的定日镜群,将阳光聚集到固定在塔顶部的接收器上产生高温,加热工质产生过热蒸汽或高温气体,驱动汽轮机发电机组或燃气轮机发电机组发电,从而将太阳能转换为电能[5]。 塔式太阳能热发电系统,也称集中型太阳能热发电系统,主要由定日镜阵列、高塔、吸热器、传热介质、换热器、蓄热系统、控制系统及汽轮发电机组等部分组成,基本原理是利用太阳能集热装置将太阳热能转换并储存在传热介质中,再利用高温介质加热水产生蒸汽,驱动汽轮发电机组发电。 塔式太阳能热发电系统中,吸热器位于高塔上,定日镜群以高塔为中心,呈圆周状分布,将太阳光聚焦到吸热器上,集中加热吸热器中的传热介质,介质温度上升,存入高温蓄热罐,然后用泵送入蒸汽发生器加热水产生蒸汽,利用蒸汽驱动汽轮机组发电,汽轮机乏汽经冷凝器冷凝后送入蒸汽发生器循环使用。在蒸汽发生器中放出热量的传热介质重新回到低温蓄热罐中,再送回吸热器加热。塔式太阳能热发电系统概念设计原理系统如图1所示。 图1 塔式太阳能电站系统流程示意图

5kWp光伏太阳能并网发电系统

5kWp光伏太阳能并网发电系统 设 计 方 案 设计人:申小波(Mellon) 单位:个人 电话: 日期: 2013年10月27日

目录 一、光伏太阳能并网发电系统简介 (2) 二、项目地点及气候辐照状况 (2) 三、相关规范和标准 (5) 四、系统结构与组成 (5) 五、设计过程 (6) 1、方案简介 (6) 2、设计依据 (6) 3、组件设计选型 (7) 4、直流防雷汇流箱设计选型 (9) 5、交直流断路器 (11) 6、并网逆变器设计选型 (13) 7、电缆设计选型 (14) 8、方阵支架 (15) 9、配电室设计 (15) 10、接地及防雷 (15) 11、数据采集检测系统 (16) 六、仿真软件模拟设计 (17) 七、接入电网方案 (22)

八、设备配置清单及详细参数 (22) 九、系统建设及施工 (22) 十、系统安装及调试 (23) 十一、运行及维护注意事项 (26) 十二、设计图纸 (28) 十三、工程预算投资分析报告 (32)

5kWp光伏太阳能并网发电系统配置方案 一、光伏太阳能并网发电系统简介 并网系统(Utility Grid Connected)最大的特点:太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网,并网系统中光伏方阵所产生电力除了供给交流负载外,多余的电力反馈给电网。在阴雨天或夜晚,太阳电池组件没有产生电能或者产生的电能不能满足负载需求时就由电网供电。 因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用光伏方阵所发的电力,从而减小了能量的损耗,并降低了系统的成本。但是系统中需要专用的并网逆变器,以保证输出的电力满足电网电力对电压、频率等电性能指标的要求。因为逆变器效率的问题,还是会有部分的能量损失。这种系统通常能够并行使用市电和太阳能太阳电池组件阵列作为本地交流负载的电源,降低了整个系统的负载缺电率,而且并网系统可以对公用电网起到调峰作用。但并网光伏供电系统作为一种分散式发电系统,对传统的集中供电系统的电网会产生一些不良的影响,如谐波污染,孤岛效应等。 二、项目地点及气候辐照状况 图片来自Google地球 1、项目地点为:江苏省泰州市XX区XX镇; 2、纬度:32°22’,经度:120°12’; 3、平均海拔高度:7m;

太阳能光热发电技术

太阳能光热发电技术的应用与发展 摘要:太阳能是一种用之不尽、取之不竭的清洁能源,在能源与环境问题日趋严峻的今天,很多国家都对太阳能发电技术进行了研究和实践,并取得了一些成果。太阳能光热发电是太阳能利用的一种有效方式,目前有槽式、碟式和塔式三种典型的太阳能光热发电方式。比之传统的火力发电方式,太阳能有其环保的优势,但是也存在一些问题需要去克服。随着人类对清洁能源的需求太阳能发电技术将会得到更加深入的发展。 1.太阳能热发电技术概述 能源与环境问题是当今世界面临的两个重要问题,随着化石能源的日趋枯竭,一次能源的利用成本也不断增加,由于大量的燃烧矿石燃料,使环境问题日益严重,温室效应、空气污染越来越引起人们的重视。近年来一些可再生能源受到了人们的推崇,为各国所重视。太阳能是一种取之不尽、用之不竭的清洁能源,利用太阳能直接发电是缓解甚至解决能源问题的一种有效方式,世界各国也都在做积极的努力,已经有很多太阳能发电项目投入运行,太阳能发电技术在未来有着广阔的发展前景。 太阳能是太阳通过辐射的方式想宇宙空间释放的能量,人类所需能量的绝大部分都直接或间接地来自太阳。正是各种植物通过光合作用把太阳能转变成化学能在植物体内贮存下来。煤炭、石油、天然气等化石燃料也是由古代埋在地下的动植物经过漫长的地质年代形成的。它们实质上是由古代生物固定下来的太阳能。此外,水能、风能、等也都是由太阳能转换来的。地球轨道上的平均太阳辐射强度为1369W/ m2。地球赤道的周长为40000km,从而可计算出,地球获得的能量可达173000TW。在海平面上的标准峰值强度为1kW/m2,地球表面某一点24h的年平均辐射强度为 0.20kW/m2,相当于有 102000TW的能量,人类 依赖这些能量维持生存, 其中包括所有其他形式的 可再生能源(地热能资源 除外),虽然太阳能资源总 量相当于现在人类所利用 的能源的一万多倍,但太 阳能的能量密度低,而且 它因地而异,因时而变, 这是开发利用太阳能面临 的主要问题。太阳能的这图 1 世界各国太阳能发电装机容量些特点会使它在整个综合能源体系中的作用受到一定的限制。

光伏并网发电系统设计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。 U R L

图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC变换器和后级的DC-AC逆变器组成。在系统中,DC-DC 变换器采用BOOST结构,主要完成系统的MPPT控制;DC-AC部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz交流电。设计采用单片机SPWM调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT原理及电路设计 MPPT原理 由于光伏阵列的最大功率点是一个时变量,可以采用搜索算法进行最大功率点跟踪。其搜索算法可分为自寻优和非自寻优两种类别。所谓自寻优算法即不直接检测外界环境因素的变化,而是通过直接测量得到的电信号,判断最大功率点的位置。典型的追踪方法有扰动观测法和增量导纳法等。增量导纳法算法的精确度最高,但是,由于增量导纳法算法复杂,对实现该算法的硬件质量要求较高、运算时间变长,会增加不必要的功率损耗,所以实际工程应用中,通常采用扰动观测法算法]1[。 扰动观测法原理:每隔一定的时间增加或者减少电压,并通过观测其后功率变化的方向,

塔式太阳能热发电站工作原理

2塔式太阳能热发电系统就是在空旷的地面上建立一高大的中央吸收塔,塔顶上安装固定一个吸收器,塔的周围安装一定数量的定日镜,通过定日镜将太阳光聚集到塔顶的接收器的腔体内产生高温,再将通过吸收器的工质加热并产生高温蒸汽,推动汽轮机进行发电。 3图示可以说为塔式太阳能热发电系统工作流程示意图。 对各个部件进行说明。 冷凝器:发电厂要用许多冷凝器使汽轮机排出的蒸汽得到冷凝,变成水,重新参加循环。 不同颜色的线条表示不同温度的工质。 4在大面积聚光方法中,与槽式聚光方式相比,塔式聚光有以下优点: 1)槽式的聚光比小,一般在50左右,为维持高温时的运行效率,必须使用真空管作为吸热器件。而塔式的聚光比大,一般可以达300到1500,因此可以使用非真空的吸热器进行光热转换,热转换部分寿命优于依赖于真空技术的槽式聚光技术。 2) 由于有大焦比,塔的吸热器可以在500℃到1500℃的温度范围内运行,对提高发电效率有很大的潜力。而槽式的工作温度一般在400℃以内,限制了发电透平部分的热电转换效率。接收器散热面积相对较小,因而可得到较高的光热转换效率。 5.塔式太阳能热发电系统的组成按照供能的不同主要由定日镜系统、吸热与热能传递系统(热交换系统) 、发电系统3部分组成。 定日镜场系统实现对太阳的实时跟踪,并将太阳光反射到吸热器。 位于高塔上的吸热器吸收由定日镜系统反射来的高热流密度辐 射能,并将其转化为工作流体的高温热能。 高温工作流体通过管道传递到位于地面的蒸汽发生器,产生高压过热蒸汽,推动常规汽轮机发电。 由于太阳能的间隙性,必须由蓄热器提供足够的热能来补充乌云遮挡及夜晚时太阳能的不足,否则发电系统将无法正常工作。 6大汉兆瓦级太阳能塔式热发电站由集热岛、热能储存岛与常规岛构成。集热岛包括定日镜场、吸热器系统与吸热塔。 吸热器为过热型腔式吸热器,吸热塔高118 m,过热型腔式吸热器安装在吸热塔92 m 标高处。热能储存岛由高温子系统、低温子系统组成,高温蓄热工质为导热油。低温子系统就是1 个100 m3的饱与蒸汽蓄热器,工质为饱与水蒸气。常规岛由1 台8、4 t/h 的燃油辅助锅炉与1、5 兆瓦的汽轮发电机组构成。 热力循环过程包括两个方面:

太阳能热发电

太阳能热发电 热动081班 20084140114 武伟杰随着经济的发展、社会的进步,人们对能源提出越来越高的要求,寻找新能源成为当前人类面临的迫切课题。现有电力能源的来源主要有3种,即火电、水电和核电。 火电的缺点: 火电需要燃烧煤、石油等化石燃料。一方面化石燃料蕴藏量有限、越烧越少,正面临着枯竭的危险。据估计,全世界石油资源再有30年便将枯竭。另一方面燃烧燃料将排出二氧化碳和硫的氧化物,因此会导致温室效应和酸雨,恶化地球环境。 水电的缺点: 水电要淹没大量土地,有可能导致生态环境破坏,而且大型水库一旦塌崩,后果将不堪设想。另外,一个国家的水力资源也是有限的,而且还要受季节的影响。 核电的缺点: 核电在正常情况下固然是干净的,但万一发生核泄漏,后果同样是可怕的。前苏联切尔诺贝利核电站事故,已使900万人受到了不同程度的损害,而且这一影响并未终止。 这些都迫使人们去寻找新能源。新能源要同时符合两个条件:一是蕴藏丰富不会枯竭;二是安全、干净,不会威胁人类和破坏环境。最理想的新能源是太阳能。 照射在地球上的太阳能非常巨大,大约40分钟照射在地球上的太阳能,便足以供全球人类一年能量的消费。可以说,太阳能是真正取之不尽、用之不竭的能源。而且太阳能发电绝对干净,不产生公害。所以太阳能发电被誉为是理想的能源。从太阳能获得电力,需通过太阳电池进行光电变换来实现。它同以往其他电源发电原理完全不同,具有以下特点:①无枯竭危险;②绝对干净(无公害); ③不受资源分布地域的限制;④可在用电处就近发电;⑤能源质量高;⑥使用者从感情上容易接受;⑦获取能源花费的时间短。不足之处是:①

照射的能量分布密度小,即要占用巨大面积;②获得的能源同四季、昼夜及阴晴等气象条件有关。但总的说来,瑕不掩瑜,作为新能源,太阳能具有极大优点,因此受到世界各国的重视。 利用太阳能发电有两大类型,一类是太阳光发电(亦称太阳能光发电),另一类是太阳热发电(亦称太阳能热发电)。太阳能光发电是将太阳能直接转变成电能的一种发电方式。它包括光伏发电、光化学发电、光感应发电和光生物发电四种形式,在光化学发电中有电化学光伏电池、光电解电池和光催化电池。太阳能热发电是先将太阳能转化为热能,再将热能转化成电能,它有两种转化方式。一种是将太阳热能直接转化成电能,如半导体或金属材料的温差发电,真空器件中的热电子和热电离子发电,碱金属热电转换,以及磁流体发电等。另一种方式是将太阳热能通过热机(如汽轮机)带动发电机发电,与常规热力发电类似,只不过是其热能不是来自燃料,而是来自太阳能。 太阳能热发电系统一般由太阳能即热系统、蓄热与换热系统和汽轮机发电系统组成。与常规热发电的不同是太阳能热发电必须考虑太阳能能量密度低、间歇性、不稳定性等因素。太阳能热发电的集热系统用聚光集热装置将太阳能收集起来,将集热工质加热到一定的温度,经过换热器将热能传递给动力回路中循环做工的工质,或产生高温高压得过热蒸汽驱动汽轮机、再带动发电机发电;从汽轮机出来的发气,其压力和温度已大大降低,或经冷凝器凝结成液体后,被重新泵送入换热器,开始新的循环。太阳能电站一般带有储热装置。 太阳能热发电系统一般由六部分组成: (1)太阳能集热子系统; (2)吸热与输送热量子系统; (3)蓄热子系统; (4)蒸汽发生系统; (5)动力子系统; (6)发电子系统。 其中,前两部分简称为太阳场,是太阳能热发电技术的核心。由于太阳能供应不稳定、不连续,为保障热发电系统的稳定运行,通常在系统中配置蓄能子系统,将收集的太阳能热能存储起来,以保证在夜间或太阳辐照不足时的发电;或

太阳能并网光伏发电系统设计

】 南昌航空大学 自学考试毕业论文 【 题目太阳能并网光伏发电系统 专业光伏材料及应用 学生姓名 准考证号 指导教师 . 2012 年 04 月

光伏发电并网控制技术设计 摘要 随着全球经济社会的不断发展,能源消费也相应的持续增长。能源问题已经成为关系到人类生存和发展的首要问题。所以,迫切需要对新的能源进行开发和研究。而太阳能的利用近年来已经逐渐成为新能源领域中开发利用水平高,应用较广泛的能源,尤其在远离电网的偏远地区应用更为广泛。 本文主要对光伏并网发电系统作了分析和研究。论文首先介绍了太阳能发电的意义以及光伏并网发电在国内外的应用现状。其次,对太阳能发电系统的特性和基本原理分别做了具体分析,并对系统各组成部分的功能进行了详细的介绍。接着,对光伏并网中最重要部分——逆变器进行研究。再次,提出光伏并网发电系统的设计方案。最后,对光伏并网发电系统的硬件进行设计。并网光伏发电充分发挥了新能源的优势,可以缓解能源紧张问题,是太阳能规模化发展的必然方向。我国政府高度重视光伏并网发电,并逐步推广"屋顶计划"。太阳能并网发电正在由补充能源向替代能源方向迈进。 关键词:能源;太阳能;光伏并网;逆变器

目录 第一章太阳能光伏产业绪论 (1) 光伏发电的意义 (1) 光伏并网发电 (1) 第二章太阳能光伏发电系统 (5) 太阳能光伏发电简介 (5) 太阳能光伏发电系统的类别 (5) 太阳能光伏发电系统的发电方式 (6) 影响太阳能光伏发电的主要因素 (7) 第三章并网太阳能光伏发电系统组成 (10) 并网光伏系统的组成和原理 (10) 光伏电池的分类及主要参数 (12) 光伏控制器性能及技术参数 (14) 光伏逆变器性能及技术参数 (15) 第四章发展与展望 (18) 发展与展望 (18) 全文总结 (19) 参考文献 (20) 致谢 (21)

塔式太阳能热发电中的定日镜跟踪系统设计

万方数据

万方数据

万方数据

塔式太阳能热发电中的定日镜跟踪系统设计 作者:耿其东, 朱天宇, 陈飞, GENG Qi-dong, ZHU Tian-yu, CHEN Fei 作者单位:耿其东,GENG Qi-dong(盐城工学院机械工程学院,江苏,盐城,224051), 朱天宇,陈飞,ZHU Tian-yu,CHEN Fei(河海大学机电工程学院,江苏,常州,213022) 刊名: 热力发电 英文刊名:THERMAL POWER GENERATION 年,卷(期):2009,38(2) 被引用次数:0次 参考文献(5条) 1.刘祖平一种跟踪和聚光的全新的理论[期刊论文]-中国科学技术大学学报 2006(12) 2.张宝星太阳能利用的跟踪与聚集系统研究[学位论文] 2006 3.饶鹏.孙胜利.叶虎勇两维程控太阳跟踪器控制系统的研制[期刊论文]-控制工程 2004(06) 4.张明峰PIC单片机入门与实战 2001 5.Soteris A.Kalogirou DESIGN AND CONSTRUCTION OF A ONE-AXIS SUN-TRACKING SYSTEM 1996(06) 相似文献(10条) 1.期刊论文张耀明.张文进.刘德有.孙利国.刘晓晖.王军太阳能热发电系列文章(17)70kW塔式太阳能热发电系统研究与开发(下)-太阳能2007(11) 阐述了塔式太阳能热发电系统中的接收器、燃气体轮机系统、辅助系统和控制系统的有关知识;介绍了南京江宁70kWe塔式太阳能热发电系统的接收器、燃气体轮机系统、辅助系统和控制系统的构成;总结了系统建设的目的和意义,并展望塔式太阳能热发电的前景. 2.期刊论文杨敏林.杨晓西.左远志.YANG Min-lin.YANG Xiao-xi.ZUO Yuan-zhi塔式太阳能热发电吸热器技术研究进展-科学技术与工程2008,8(10) 近年来,塔式太阳能热发电技术得到了迅猛发展,大量实验和运行数据充分证明了其技术可行性和商业应用前景.文中较系统的回顾了塔式太阳能热发电系统吸热器技术的发展历程及现状,对应用较为广泛的熔盐吸热器、空气吸热器及水/蒸汽吸热器作了详细的分析,并展望了我国开展塔武太阳能热发电应用研究的发展方向. 3.期刊论文张耀明.刘德有.张文进.孙利国.刘晓晖.王军太阳能热发电系列文章(16)70kW塔式太阳能热发电系统研究与开发(上)-太阳能2007(10) 介绍了南京江宁70kWe塔式太阳能热发电系统的基本原理与总体思路;对比了太阳能级燃气轮机与普通情况下使用的燃气轮机的差别;从定日镜的光学原理、控制原理等方面出发,阐述设计、制造工作中的做法;并对定日镜场的整体布置提出了一些见解和看法. 4.学位论文姚志豪太阳能塔式热发电站系统建模与控制逻辑研究2009 本论文的研究对象是中国第一座MW级塔式太阳能热发电站,研究内容是对该电站进行系统建模并对系统控制逻辑进行探讨。该电站采用多面定日镜作为聚光器,将太阳法向直射辐射能量反射聚焦到吸热器上产生过热蒸汽,然后利用传统的朗肯循环实现蒸汽的做功发电。
本论文紧密围绕科技部“十一五”863重点项目“太阳能热发电技术及系统示范”的子课题“太阳能塔式热发电系统总体设计技术及系统集成”中的内容,在本文研究对象大汉塔式电站的系统模型建立、子系统过程分析、全系统仿真及全场控制系统设计等几个方面分别开展了研究工作。
在电站全系统模型建立方面,设计并分析了十种电站全场运行模式及其互相之间的判别和切换控制逻辑。同时,还设计并分析了九种电站全场运行状态及其互相之间的切换逻辑,并建立了电站全系统能流传递模型及光热和发电两大子系统的输入输出参数模型。在此基础上,对定日镜场、吸热器、储热子系统、汽轮发电机组的基本数学模型进行了描述和分析,由此构建了除管路和阀门之外,较为完整的大汉塔式电站系统动力学模型。
在子系统过程分析方面,分别对大汉塔式太阳能热发电站“聚光、集热、储热、发电”这几个子系统单元基本运行过程进行了分析和探讨。总结了影响塔式太阳能热发电站能量来源不稳定及非连续性的天文学与地理、环境等方面的基本因素,提出了校正定日镜跟踪误差的BCS原理性算法。从塔式电站生产电能、电网输送电能及用户需求电能三个方面,对储热系统的重要性作了分析。对大汉电站的双级储热系统,设计了其“储热-放热”运行模式判断与切换基本逻辑。初步提出了定日镜场反射聚光功率与吸热器升压及产生蒸汽流量之间的关联函数。对影响机组正常运行的主要因素即云遮工况出现时大汉电站的系统动作逻辑进行了初步设计。
在全系统仿真及全场控制系统设计方面,利用TRNSYS软件设计搭建了大汉电站全系统仿真模型,对其在设计日与全年的发电量进行了仿真与理论计算分析。同时,对世界上第一座已实现商业化运行的塔式电站西班牙的PS10进行了系统模型重建与仿真,并得到了与已公布数据有较好吻合的结果。另外 ,还初步设计了电站全场控制系统基本原理框图及吸热器的几个主要监测及控制回路。分别设计了吸热器蒸汽温度的蒸汽侧喷水减温调节与镜场侧聚光调节的方法,对其基本热力学过程及方案原理进行了分析。在此基础上,初步设计了吸热器串级三冲量给水调节系统并对其传递函数原理图进行了描述。同时,还初步设计了考虑塔式太阳能热发电站气象、环境及聚光精度影响等基本特性的吸热器过热段喷水减温控制系统SAMA图,并对其中关键的焓值计算方案进行了探讨分析。 5.期刊论文范志林.张耀明.刘德有.王军.刘巍太阳能热发电系列文章(7)塔式太阳能热发电站接收器-太阳能2007(1) 本文介绍了国际现有高温太阳能热发电接收器的类型、结构、性能、应用状况,并结合我国研究现状指出我国开展太阳能接收器研究需解决的问题. 6.期刊论文章国芳.朱天宇.王希晨塔式太阳能热发电技术进展及在我国的应用前景-太阳能2008(11) 在介绍塔式太阳能热发电系统的基本原理、系统组成的基础上,回顾了塔式太阳能热发电系统的发展历程,着重阐述了塔式热发电所涉及的关键技术,包括定日镜、接收器、传热蓄热工质的研究进展,并通过分析我国气象、地理条件及能源需求,指出塔式太阳能热发电在我国的西藏、内蒙等西北部地区具有广阔的应用前景.

太阳能热发电技术现状

i太阳能热发电技术现状 李强 衢州学院机械工程学院 4140113038 摘要:介绍了槽式、塔式和盘式太阳能热利用发电站的发展史和技术现状。指出槽式太阳能热发电站的功率可至 1000MW,是所有太阳能热发电站中功率最大的,其年收益也最高。塔式太阳能热利用发电站的功率可至1000MW,与槽式系统相比,在商业上还不成熟。但高温型塔式系统和燃气轮机混合发电或和混合发电站联合发电最具市场化前景。盘式太阳能热发电系统功率5-1000kW,它用在流动场所,应用范围大,除可满足用电需求,还可代替柴油机组。 关键词:太阳能热发电,进展。 Abstract:Groove is introduced, and disc tower solar thermal power plant's development history and the status quo of the technology. Points out that the trough type solar thermal power plants to 1000 mw of power, is the largest solar power in the thermal power plant, its annual revenue is the highest. Tower solar thermal power plant to 1000 mw of power, compared with the groove system, in business is not yet mature. But high temperature type tower systems and gas turbine hybrid power generation or joint power and hybrid power plants the most market prospects. Disc solar thermal power generation system power 5-1000 - kw, it is used in flow, application scope is big,

光伏并网发电系统设计复习过程

光伏并网发电系统设 计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。

R L U 图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC 变换器和后级的DC-AC 逆变器组成。在系统中,DC-DC 变换器采用BOOST 结构,主要完成系统的MPPT 控制;DC-AC 部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz 交流电。设计采用单片机SPWM 调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT 原理及电路设计 3.1 MPPT 原理

塔式光热发电技术介绍

塔式光热发电技术介绍 太阳能热发电是利用聚光太阳能集热器把太阳能辐射能聚集起来,加热工质推动原动机发电的一项太阳能利用技术。按太阳能采集方式不同,主要分为塔式、槽式、碟式、线性菲涅尔式四种。其中,塔式太阳能光热发电以其在规模化、光电转化效率以及投资成本等多方面具有槽式、蝶式以及线性菲涅耳式等难以媲美的综合优势,而具有更好的发展前景,目前各国都越来越关注塔式光热发电技术的发展和研究。 一、塔式光热发电技术介绍 1.基本原理 塔式系统主要由多台定日镜组成定日镜场,将太阳能反射集中到镜场中间高塔顶部的高温接收器上,转换成热能后,传给工质升温,经过蓄热器,再输入热力发动机,驱动发电机发电。塔式光热发电系统由聚光子系统,集热子系统,发电子系统,蓄热子系统,辅助能源子系统五个子系统组成。其中,聚光子系统与集热子系统为其组成核心技术。 2.塔式光热发电的优势 由于槽式聚光器的几何聚光比低及集热温度不高,使得抛物槽式太阳能光热发电系统中动力子系统的热转功效率偏低,通常在35%左右。因此,单纯的抛物槽式太阳能光热发电系统在进一步提高热效率、降低发电成本方面的难度较大;线性菲涅尔式太阳能热发电系统效率不高;碟式太阳能热发电系统单机规模受到限制,造价昂贵。与另外三种光热发电方式相比,塔式塔式太阳能热发电系统可通过熔盐储热,且具有聚光比和工作温度高、热传递路程短、热损耗少、系统综合效率高等特点,可实现高精度、大容量、连续发电,是最为理想的发电方式。 二、太阳能光热发电发展现状 日前,全世界已建成十余个塔式太阳能光热发电试验示范电站。代表性的塔式光热电站有美国的Ivanpah电站,西班牙的PS10、PS20以及Gema Solar电站、2016年2月刚投入运营的南非Khi Solar One塔式电站、新月沙丘电站。我国

5MW太阳能并网发电系统

5MW太阳能并网发电系统 1.太阳能并网发电系统简介 太阳能并网发电系统通过把太阳能转化为电能,不经过蓄电池储能,直接通过并网逆变器,把电能送上电网。太阳能并网发电代表了太阳能电源的发展方向,是21世纪最具吸引力的能源利用技术。和离网太阳能发电系统相比,并网发电系统具有以下优点: (1)利用清洁干净、可再生的自然能源太阳能发电,不耗用不可再生的、资源有限的含碳化石能源,使用中无温室气体和污染物排放,和生态环境和谐,符合经济社会可持续发展战略。 (2)所发电能馈入电网,以电网为储能装置,省掉蓄电池,比独立太阳能光伏系统的建设投资可减少达35%一45%,从而使发电成本大为降低。省掉蓄电池并可提高系统的平均无故障时间和蓄电池的二次污染。 (3)光伏电池组件和建筑物完美结合,既可发电又能作为建筑材料和装饰材料,使物质资源充分利用发挥多种功能,不但有利于降低建设费用,并且还使建筑物科技含量提高、增加“卖点”。 (4)分布式建设,就近就地分散发供电,进入和退出电网灵活,既有利于增强电力系统抵御战争和灾害的能力,又有利于改善电力系统的负荷平衡,并可降低线路损耗。 (5)可起调峰作用。联网太阳能光伏系统是世界各发达国家在光伏使用领域竞相发展的热点和重点,是世界太阳能光伏发电的主流发展趋势,市场巨大,前景广阔。 2.并网发电系统的原理及组成 太阳能电池发电系统是利用光生伏打效应原理制成的,它是将太阳辐射能量直接转换成电能的发电系统。它主要由太阳能电池方阵和逆变器两部分组成。如图1所示:白天有日照时,太阳能电池方阵发出的电经过并网逆变器将电能直接输送到交流电网上,或将太阳能所发出的电经过并网逆变器直接为交流负载供电。 图1:原理框图 2.1太阳能电池组件 一个太阳能电池只能产生大约0.6伏左右的电压,远低于实际使用所需电压。为了满足实际使用的需要,需要把太阳能电池连接成组件。太阳能电池组件包含一定数量的太阳能电池,这些太阳能电池通过导线连接。如一个组件上,太阳能电池的数量是36片串联,这意味着一个太阳能组件大约能产生21.6伏左右的电压。

相关主题