搜档网
当前位置:搜档网 › 夹紧机构设计及优化

夹紧机构设计及优化

夹紧机构设计及优化
夹紧机构设计及优化

课题信息:

课题性质:论文

课题来源:科研

发出任务书日期:

指导教师签名:

年月日

配气机构整体系统仿真及优化

配气机构整体系统仿真及优化 康黎云司庆九 (重庆长安集团汽车工程研究院CAE所) 摘要:通过A VL EXCITE Timing Drive的仿真,对某机型的配气机构进行动力学计算以了解存在的问题和优化方向。拟定重新设计凸轮型线和调整弹簧参数的优化措施,并用EXCITE Timing Drive进行对比计算,结果表明凸轮型线的设计和弹簧参数的更改达到了优化目的。 关键词:配气机构;动力学;凸轮型线;气门弹簧 主要软件:A VL EXCITE Timing Drive;MSC/NASTRAN 1. 前言 某发动机的配气机构采用四气门单顶置凸轮轴摇臂驱动,其中进、排气侧分别为两同形式的指形从动件摇臂。摇臂驱动形式的配气机构刚度一般比挺柱直接驱动的配气机构要弱,相应其动力性也要差些。现实的问题是:如何从优化配气机构的角度出发,在不提高发动机转速的情况下增加该发动机的功率,同时还必须使配气机构的动力性也满足设计要求,如不出现飞脱、反跳及弹簧并圈等问题。 2. 分析过程 2.1 总体流程 为解决问题,制订以下分析流程,如图1所示: 图1 配气机构分析及优化流程图

2.2 优化前仿真分析 机构的主要全局参数如表1所示: 表1 配气机构主要技术参数 进气侧排气侧 15.5mm 基圆半径 15.5mm 气门正时 466°(曲轴转角) 258°(曲轴转角) 气门包角(含缓冲段) 170° 175° 气门倾角 16° 20° 0.25mm 气门间隙 0.15mm 弹簧预紧力 114N 工作段弹簧刚度 29N/mm 建立整个阀系的EXCITE Timing Drive模型:①. 从凸轮轴前端往后端看,凸轮的布置是排气门、两个进气门、排气门的形式;②. 由于发动机的点火顺序是1-3-4-2,所以对应缸的阀系相位要依次滞后90°;③. 忽略皮带传动对阀系的影响,而直接将转速加载到凸轮轴的最前段的SHPU单元上。整个模型如图2所示: 图2 阀系模型 以下为发动机优化前6000rpm下的动力学计算结果(图3~图6所示),从各曲线图可以看出,该配气机构在高转速下出现反跳、飞脱和并圈,因此,有必要对该套系统进行优化。优化的措施主要有以下几点: (1) 重新设计进、排气凸轮型线,以避免飞脱和反跳的产生。对于摇臂驱动的凸轮型线,使

配气机构文献综述

文献综述 题目 168F汽油机设计——配气机构 二级学院车辆工程学院 专业能源与动力工程 班级 112040601 学生姓名彭元平学号 11204060117 指导教师屈翔职称副教授 时间 2016-3-20

摘要: 配气机构作为内燃机的重要组成部分其设计合理与否直接关系到内燃机的动力性、经济性能、排放性能及工作的可靠性、耐久性。本文综述了汽油机配气机构的发展现状,论述了对配气机构优化设计的必要性,阐述了发动机配气机构优化设计的发展方向。 关键词:配气机构、凸轮型线、配气相位、气门弹簧。 Abstract: As important part of the internal combustion engine, valve mechanism with right design is a must, for it is directly relevant to power, economic performance, emission performance, reliability and durability of the internal combustion engine. This paper reviewed the gasoline engine valve mechanism from the aspects of the state-of-the-art and the necessities of its optimization design, and set forth the development of engine valve mechanism optimization design. Key words:Air distribution mechanism Cam type line Gas distribution phase Valve spring 1.前言 配气机构是汽油机最重要的组成部分它的功能是实现换气过程,即根据气缸的工作次序,定时的开启和关闭进、排气门,以保证换气充分。一台汽油机的工作是否稳定可靠[1],噪声与振动是否控制在较低的水平,都与其配气机构设计合理的是密不可分的。配气机构要使各气缸都保持换气良好的状态,使充气系数尽可能的提高,按照工作的需要,科学的开启与关闭进气门和排气门。 随着人们的需求,发动机的设计趋于高速化、高功率化。人们对其性能的要求也越来越高,配气机构作为发动机的配给系统,很大程度的决定了发动机的优劣[2]。所以想要提高发动机的性能,配气机构的优化设计也是必不可少的。随着前人的不断积累,配气机构的供给能力及结构形式都发生了很多改观,下面我将介绍配气机构的发展现状及主要优化形式。 2.凸轮型线的优化 内燃机配气凸轮机构是由配气凸轮驱动的,所以配气机构的这些性能指标在很大程度上取决于配气凸轮的结构。尤其是当发动机转速提高以后,凸轮型线设计的好坏对发动机的充气性能和动力性能的影响更大[3]。最近,海马轿车有限公司的王艳芳、王少辉[4]等汽车工程师做了相应的实验,他们选择了三种不同型线的进气凸轮轴和同

(完整版)升降机构毕业设计

以下文档格式全部为word格式,下载后您可以任意修改编 辑。 1 绪论 1.1 设计的主要目的 本课题主要完成的是一放线机升降结构设计,包括线圈夹紧.升降机构,实现线圈的夹紧.装卸操作。该放线机用于计算机通讯线缆或类似线缆的裁切的自动供料,以保证线缆切线长度。 1.2 设计的主要思路 设计研究的主要思路就是想把传统的螺旋式升降改为液压升降,这样就可以大大的节省人力物力,而且也能精准的完成机械的自由升降。以便更好的使用放线机。本人的想法是想用液压驱动不想用陈规的螺杆升降, 要解决这些问题必须解决升降系统和驱动系统,在常规的螺杆升降的前提下,要提升很大重量到指定高度是非常困难的,这样会大大的降低工作效率,所以选用液压升降会大大节省人力物力,还有就是因为刚卷质量非常大,单靠钢丝绳的拉力是远远不够的,想要正常的自由旋转就必须要有一个可靠的驱动系统,现在一般用的驱动系统都是电机驱动,因为它有许多优点,可以根据线卷的拉力大小来调节他的转速,还可以进行一般的正反转,还有就是在电机上安装一个变频器,可以无限调速,可以得到任何想要得转速。驱动装置则是用液压

驱动,它可以避免由于螺杆滑丝而引起的不必要的工程事故,而且力大可以迅速提升到指定高度。 1.3 设计的要求 1.夹紧只限于轴向,线绕度不受限制,夹紧力不致使线轴破坏。 2.驱动力可采取外驱动力。 3升降过程要求平稳.快捷。 4.放线时线圈外径悬空高度200mm—400mm。 5.线圈形状尺寸示于图1.1 图1.1 线卷的零件图 1.4 放线机发展情况综述 科学的发展越来越要求精确的技术,以此同时我们还不能以牺牲

效率为代价。现在线路的应用越来越多,相应各种线的切割,也越来越多,这就要求我们有一种设备既有很高的效率又能保证精度要求。所以我们来研究放线机有很好的经济很社会效益。 现阶段我国在各项技术中一直处于先进水平,在一些领域还保持着领先。一种应用于钢帘线及高精度、高性能金属线材生产的现代化关键设备——25模多功能智能化高速水箱拉丝机,由江苏泰隆机械集团研制成功,并于4月9日通过了科技成果鉴定。鉴定委员会认为,该设备的研制对推动我国高端金属线材制造技术的发展,扭转我国金属线材产量雄踞世界第一而装备技术却受制于发达国家的被动局面,具有重大现实意义。 这一技术成果的鉴定委员会主任由中科院院士吴宏鑫担任,来自中国航天科技集团、中国冶金设计院、南京航天航空大学、等国家高科技领域的科研院所及高校的权威专家组成鉴定小组。专家组在认真审定江苏泰隆机械集团提供的设计方案、技术资料和制造工序的基础上,参照了国际、国内重点用户的应用结论,一致认定,该项成果采用集成化、立体式传动结构和单侧主动式25道次拉拔技术,钢丝拉拔直线性能好,模具消耗低,拉丝效率高;单台设备集拉丝机、收线机、张力柜、配电柜等多种设备功能于一体,结构紧凑,大大节省了金属材料、装配工序和使用空间;以变频技术为依托,采用智能化技术实施动态性集中控制,来进行各种放线机的升降运动。 江苏泰隆机械集团几年前开始金属线材设备的开发研制,通过自主开发和引进消化,逐步形成从金属拉丝、高速层绕、重卷、外绕、放线、CO2气体保护焊丝及各类特种金属线材成套设备的开发与制造体系,不仅国内市场占有率达70%以上,而且出口10多个国家和地区。

夹紧机构介绍

但是,并非全部夹紧机构都具备上述三部分,有时可能缺少其中的某一部分,例如手动夹紧机构往往就很筒单。 组合机床夹具的夹紧机构,就其夹紧特性而言,可以分为直接夹紧机构和自锁夹紧机构两大类。如果按夹紧动力的来源区分,可以分为手动夹紧机构和自动夹紧机构,在自动夹紧机构中,又有气动夹紧、液压夹紧、自动扳手夹紧和弹簧夹紧等机构。 设计夹具时,工件夹紧方法的确定,是在工件定位基准、夹具定位机构和导向装置的结构确定之后进行的,但工件的夹紧同工件的定位和导向装置是密切联系着的,因此在设计夹具时,这几个方面应当同时考虑。 在进行夹紧机构的结构设计之前,必须首先确定夹紧机构的下列主要项目:夹紧力的作用点、方向和大小;夹紧动力的种类;最合理的夹紧结构示意图及传动方式等。其中夹紧力的作用点和方向,在制定机床方案进行工艺分析时就已经确定了,并且以特殊的符号表示在被加工零件工序图中,以作为夹具结构设计的依据。设计时要根据工件特点、工艺方法、加工情况(粗、精加工;单面、多面加工等)以及工件的定位安装形式等因素来选择夹紧机构的形式。 设计夹紧机构时,应注意满足以下基本要求: (1)保证加工精度夹紧机构应能保证工件可靠地接触相应的定位基面,夹紧后不许破坏工件的正确位置。 夹紧后,工件在加工过程中,不应由于切削力的作用而产生位移和晃动。为此,必须保证夹紧机构能产生定够的夹紧力,同时还要求具有较高的刚性。由于组合机床通常都是多面多刀同时进行加工,夹具往往在较大的切削力作用下工作,提高夹紧机构的刚性,是十分重要的,因此组合机床夹具的夹紧螺栓、压板和传动杠杆等通常都比较粗大,以保证其足够的刚性。 夹紧工件时,不应破坏的已加工表面,也不应引起工件过大的变形,夹紧机构应力求使工件夹紧稳定和变形较小。为此,应当正确地选择夹紧部位和设置辅助支承等。 当加工刚性很差的工件时,或在精加工机床夹具上,夹紧机构应能保证夹紧力有调节的可能性。 ⑵保证生产率夹紧机构应当具有适当的自动化程度。夹紧动作要力求迅速,多压板夹紧时要力求采用联动夹紧机构,以缩短辅助时间。 由于组合机床是适用于成批和大量生产的专用机床,因此有条件采用比较完善的夹紧机构和实现夹紧自动化。 ⑶保证工作可靠一具有自锁性能夹紧机构除了应当能产生足够的夹紧力外,通常还要求具有自锁性能以保证它的工作可靠性。 在自动夹紧或用自动扳手夹紧的夹紧机构中,通常使其中间传动机构具有自锁性,以保证在撤除夹紧动力后工件仍不致于松开。 气动夹紧通常也需要有自锁环节,以保证在压缩空气中断或失压时,工件在加工过程中不致松开。只有当切削过程比较稳定和切削力不大的情况下,例如在攻丝机床上,采用气动夹紧才可以不带自锁环节。 液压夹紧不—定需要有自锁环节,但有了自锁环节以后,不仅可以使油路卸荷,而且也是一种安全的保险措施。 组合机床夹具常用的自锁夹紧机构有:螺旋夹紧机构;楔铁夹紧机构和偏心轮夹紧机构。 (4)结构紧凑简单在保证加工精度、满足生产率要求和工作可靠性的原则下,夹紧力应越小越好,这样碎以避免使用庞大而复杂的夹紧机构和减小夹压变形。 (5)操作方便,使用安全由于组合机床生产率较高,操作比较频繁,因此夹紧机

铣床夹紧装置液压系统的设计_毕业设计

铣床夹紧装置液压系统的设计 1.概述 1.1 液压传动的概念与发展 液压传动是以流体(液压油液)为工作介质进行能量传递和控制的一种传动形式。它们通过各种元件组成不同功能的基本回路,再由若干基本回路有机地组合成具有一定控制功能的传动系统。液压传动,是机械设备中发展速度最快的技术之一。特别是近年来,随着机电一体化技术的发展与微电子、计算机技术相结合,液压传动进入了一个新的发展阶段。 液压传动技术是根据帕斯卡提出的液体静压力传动原理而发展起来的一门 的一种传动形式。与机械传动相比,它是一门比较新兴的技术。从1795年英国制成 的液压传动技术和液压元件,且工艺水平低下,发展缓慢。1905 年将工作介质水改为油,进一步得到改善。第一次世界大战(1914-1918)后液压传动广泛应用,特别是 1920 年以后,发展更为迅速。1925年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。20 世纪初康斯坦丁?尼斯克(G?Constantimsco)对能量波动传递所进行的理论及实际研究;1910 年对液力传动(液力联轴节、液力变矩器等) 域得到了发展[3]。第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。20世纪60年代以后,工艺水平有了很大的提高,液压技术随着电气控制技术、传感器技术、计算机技术的发展而迅速发展成为包括传动、控制、检测在内的一门完整的自动化技术。在国民经济的各个部门都得到了应用,如工程机械、数控加工中心、冶金自动线等。 如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。历史的经验证明,流控学科技术的发展,仅有20%是靠本学科的科研成果推动,来源于其他领域发明的占50%移植,其他技术成果占30%,即大部分,来源于其他相关学科进步的推动。随着应用了电子技术、计算及技术、信息技术、自动控制技术及新工艺、新材料的发展和应用液压传动技术也在不断创新。液压传动

ADAMS夹紧机构作业成品

夹紧机构 交通运输linglonghaony 设计要求: ●至少产生800N的夹紧力; ●世界在手柄上的力不大于80N; ●释放手柄的力应最小; ●在振动环境中,夹紧机构的安全可靠; 根据设计要求,创建机构模型如下: 1、测试模型 设置仿真终止时间为0.2,仿真,工作步为100,对系统进行仿真,观察模型的运动情况。 创建传感器后进行模型测试,结果如下: 弹簧力变化曲线如图○1所示:角度的变化曲线如图○2所示: 图○1图○2

2、细化模型 (1)创建设计变量,如图○3所示: 图○3创建设计变量 (2)查看设计变量,如图○4所示: 图○4查看设计变量 3、迭代模型 (1)优化设计变量 系统对设计变量“DV1”进行优化设计,设计研究报告提供在每一个试验步骤变量“DV_1”的取值、弹簧力的大小以及设计变量“DV_1”对弹簧力影 响的敏感度,ADAMS自动生成研究报告如图○5所示:

图○5设计研究报告 系统在进行优化设计分析过程中生成的弹簧力和角度曲线的变化情况如图 ○6---○9所示: 图○6弹簧力在所有试验步中的变化曲线图○7角度在所有试验步中的变化曲线 图○8弹簧力相对于变量(DV_1)的变化曲线图○9变量(DV_1)相对于试验步的变化曲线

关闭信息窗口,依次对其他设计变量进行优化设计分析,具体结果见表1 通过上表可以看出,设计变量DV_4、DV_6、DV_8三个点的敏感度最高,也就是说POINT_2y、POINT_3y、POINT_5y的位置变化对夹紧机构力的影响最大。 4、优化设计 (1)修改设计变量 将设计变量“DV_4”的最小值和最大值分别设置为1和6; 将设计变量“DV_6”的最小值和最大值分别设置为6.5和10; 将设计变量“DV_8”的最小值和最大值分别设置为9和11; (2)优化设计 优化过程中弹簧力和角度变化曲线如图○11、○12所示 图○10弹簧力变化曲线图○11迭代过程中的弹簧力曲线 图○12角度变化曲线

基于PROE的四缸内燃机凸轮配气机构的结构设计及运动仿真分析

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 湖北文理学院 毕业设计(论文)正文题目 基于PRO/E的四缸内燃机凸轮配气机构的结 构设计及运动仿真分析 专业机械设计制造及其自动化 班级机制0812班 姓名李旭东 学号08116249 指导教师 职称 李梅 副教授 2012年5 月23日

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊基于PRO/E的四缸内燃机凸轮配气机构的结构设计及运动仿 真分析 摘要:配气机构作为内燃机的重要组成部分,其设计合理与否直接关系到内燃机的动力性能、经济性能、排放性能及工作的可靠性、耐久性。随着内燃机高功率、高速化,人们对其性能指标的要求越来越高,要求其在高速运行的条件下仍然能够平稳、可靠地工作,因而对其配气机构提出了更高的要求。配气凸轮型线是配气机构的核心部分,配气凸轮型线设计是配气机构优化设计的重要途径之一。模拟计算和实验研究是内燃机配气机构研究两种重要手段。 运用多体力学的方法对配气机构进行了动态仿真分析,采用数字多体程 序的方法,建立了配气系统的理论模型,进行配气机构的运动学、动力学分析,除了得到气门的升程、速度、加速度外,还考虑了摇臂与气门之间的碰撞,以及摇臂支座的柔性。因此得到气门与摇臂之间的碰撞力,摇臂支座的柔性衬套的受力,气门弹簧力,凸轮轴支座反力,气门座反力及凸轮与摇臂之间的压力角等。为凸轮型线、摇臂形状和整个配气机构的设计改进提供了重要依据。 利用pro/e强大的分析仿真功能, 对凸轮式配气机构的运动特性以及弹簧刚度对系统运动的影响进行了仿真分析, 得出弹簧刚度与气门振动的关系图, 为改善系统动力学性能和关键零部件设计提供了依据。利用计算机软件仿真, 有利于降低研发成本并缩短产品的开发周期。 关键词:内燃机;配气机构;凸轮型线;优化设计;汽车;发动机;配气系统;顶置凸轮;动态仿真

凸轮优化设计

一.配气凸轮优化设计 1.1配气凸轮结构形式及特点 配气凸轮是决定配气机构工作性能的关键零件,如何设计和加工出具有合理型线的凸轮轴是整个配气系统设计中最为重要的问题。对内燃机气门通过能力的要求,实际上就是对由凸轮外形所决定的气门升程规律的要求,气门开启迅速就能增大时面值,但这将导致气门机构运动件的加速度和惯性负荷增大,冲击、振动加剧、机构动力特性变差。因此,对气门通过能力的要求与机构动力特性的要求间存在一定矛盾,应该观察所设计发动机的特点,如发动机工作转速、性能要求、配气机构刚度大小等,主要在凸轮外形设计中兼顾解决发动机配气凸轮外形的设计也就是对凸轮从动件运动规律的设计。从动件升程规律的微小差异会引起加速度规律的很大变动,在确定从动件运动规律时,加速度运动规律最为重要,通常用其基本工作段运动规律来命名,一般有下面几种: 1.1.1等加速凸轮 等加速凸轮的特点是其加速度分布采取分段为常数的形式,其中又可分为两类,一类可称为“正负零型”,指其相应的挺柱加速度曲线为正—负—零:另一类可称“正零负型”,指其加速度曲线为正一零一负。当不考虑配气机构的弹性变形时,对最大正负加速度值做一定限制且在最大升程、初速度相同的各种凸轮中,这种型式的凸轮所能达到的时面值最大。等加速型凸轮常常适用于平稳性易保证,而充气性能较差的中低速柴油机中。但就实际情况而言,配气机构并非完全刚性,等加速凸轮加速度曲线的间断性必然会影响机构工作平稳性,在高速内燃机中一般不采用等加速型凸轮[9]。 1.1.2组合多项式型 组合多项式型凸轮的基本段为一分段函数,它由几个不同的表达式拼接而成。通过调整各段所占角度及函数方程,获得不同斜率的加速度曲线。组合多项式型凸轮时面值大,而且能够方便地控制加速度变化率及确保正、负加速段间的圆滑过渡,可以较好地协调发动机充气性能及配气机构工作平稳性的要求[7]。由于凸轮从动件运动规律由若干函数组成,在各段间联结点处不易保证升程规律三阶以上导数的连续性,可能会影响配气机构工作的平稳性,组合多项式型凸轮主要应用在要求气门时面值大和较好动力性能的情形。 1

曲柄摇杆机构设计方法毕业设计论文

曲柄摇杆机构设计方法

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

工装夹持优化.

一.柔性装配过程动态调姿理论 1. 飞机大部件数字化调姿、定位系统简介 飞机、船舶、火箭、化工罐体等大型部件的制造均采用模块化分段进行, 即采用“部装-总装”的生产模式。在部装时完成零件、组件的组装生产,形成部件;然后在总装时实现各部件之间的对合装配。在总装的对合装配过程中, 要求各个对合部件具有正确的位置和姿态, 这就需要对各部件的位置和姿态进行调整和测量。位姿调整的精度和稳定性直接影响对合后大型部件的外形精度和工作性能。数字化柔性装配系统要求对各大部件能够自动化调整姿态并对姿态进行实时测量。 飞机大部件数字化调姿、定位系统决定了飞机定位精度,从而决定了飞机装配的整体质量。传统刚性定位系统是将飞机部件定位在固定型架上,采用孔系定位基准、外形定位基准等刚性工艺装备,这样在刚性定位基准下,部件被定位后不能自由移动,即使定位有误差也不能进行分配、调整;有时候为了保证定位装置与飞机结构的连接,经常造成部件的过载,造成飞机部件结构变形;同时定位、装配依赖于多个操作人员、刚性装置,不能形成有效的集成系统。 现阶段飞机产品设计采用全数字化定义,且大部分产品数据、零件制造都依赖数字化软件及设备。在现代飞机大尺寸、高精度情况下,飞机部件的定位精度决定了飞机外形、整体气动性,这些都要求装配过程中需要采用新的工艺方法和技术来协调数字化制造的要求。 飞机部件数字化调姿、定位系统就是为了应对上述情况,通过数字量来实现制造、装配过程中的数据传递,满足数字化设计、制造一体化需求,不仅减少工装数量,降低研制成本,减少占地面积,缩短生产准备周期,减少外部工装与产品结构的接触,进一步保证装配质量。 2. 大部件对接飞机数字化装配系统及其特点 借鉴国外飞机自动化装配经验,在数字化测量系统技术、完整的数字化定义、数字化协调技术、基于并联机构的自动化控制和机械随动定位以及CAPE信息支撑

发动机配气机构计算分析流程

文档编号 版本 发布日期发动机配气机构计算分析流程 编制:日期: 校对:日期: 审核:日期: 批准:日期:

目 录 1 参数定义 (3) 2 配气机构计算分析和优化流程框图 (7) 3 过程实施 (9) 3.1 AVL-workspace-TYCON软件介绍 (9) 3.1.1简介 (9) 3.1.2 AVL-Workspace Tycon的应用 (9) 3.1.3 AVL-Workspace Tycon主要菜单和主要模块介绍 (9) 3.2配气机构评价指标 (12) 3.2.1 运动学分析和评价 (12) 3.2.2 动力学分析和评价 (15) 3.3配气机构运动学动力学TYCON模型建立 (15) 3.4 凸轮型线评价及配气机构运动学分析 (16) 3.4.1凸轮型线及配气机构运动学分析界面的进入 (16) 3.4.2 Cam Design界面中数据的输入 (17) 3.4.3 凸轮型线评价及配气机构运动学分析 (20) 3.5 配气机构动力学分析 (21) 3.5.1动力学模型的文件和目录说明 (21) 3.5.2仿真计算、参数设置和结果控制 (22) 3.5.3动力学计算后处理 (24) 3.6 配气机构改进和优化 (25) 3.6.1 凸轮型线优化设计流程及界面 (26) 3.6.2 缓冲段设计 (26) 3.6.3 工作段设计 (29) 3.6.4 新凸轮型线的分析 (33) 致谢 (34)

1 参数定义 发动机配气机构计算分析所需参数如表1所示。 表1.1 发动机配气机构计算参数表 单元名称参数单位 旋转激励单元转速输入方式的选择 转速值 rpm或者rad 有无转速波动 凸轮单元基圆半径 mm 型线数据与实际位置偏移角度 deg 凸轮转角转转系数 凸轮升程数据单位与米的转换关系 凸轮型线数据类型 凸轮型线数据 凸轮轴承单元Y方向刚度 N/mm Z方向刚度 N/mm Y方向阻尼 N.s/mm Z方向阻尼 N.s/mm 机油动力粘度 N.s/mm2 相对间隙 轴瓦直径 mm 轴承宽度与轴瓦直径比值 带轮和链轮单元质量 t 转动惯量(扭转) t.mm2 转动惯量(弯曲) t.mm2 相对阻尼 杨氏模量 N/mm2 剪切模量 N/mm2 中截面面积 mm2 质心到第一轴距离 mm 剪切面积率 惯性矩(扭曲) mm4 惯性矩(弯曲) mm4 带的预紧力 N 传动力 N 带的阻尼 N.s/mm 带轮有效半径 mm 带刚度 N/mm 配气相位单元发火次序 deg 载荷数据时间偏移量 s 凸轮中心到接触点的距离矢量 mm

毕业论文总体方案设计

总体方案 一、课题:CK6150经济型数控车床进给系统及润滑系统的设计 二、小组成员:刘伟、杨睿、徐宇红、张飞鹏 三、总规划: 1)引言 1.数控技术的发展 2.数控机床改造的必要性 (2)数控机床进给传动系统的分析 1.数控机床进给系统的作用数控机床的进给传动系统常用伺服进给系统来工作。 伺服进给系统的作用是 根据数控系统传来的指令信息,进行放大后控制执行部件的运动,它不仅控制进给运动的速度,同时还要精确控制刀具相对于工件的移动位置和轨迹。因此,数控机床的进给系统,尤其是轮廓控制系统,必须对进给运动的位置和速度两方面同时实现自动控制。 2.数控机床对进给传动系统的要求 摩擦阻力小 运动惯量小 传动精度与定位精度高 进给调速范围宽 响应速度快 无间隙传动 稳定性好,寿命长 使用维护要方便 3.进给传动系统的组成一个典型的数控机床闭环控制进给系统,通常由位置比较、 放大元件,驱动 单元,机械传动装置和检测反馈元件等组成,其中,机械传动装置是位置控制环中的重要环节。 机械传动装置是指将驱动源旋转运动变为工作台直线运动的整个机械传动链,包括减速装置、联轴器、丝杠螺母副等。减速装置采用齿轮机构和带轮机构,导向元 件采用导轨。进给系统的精度、灵敏度和稳定性,将直接影响工件的加工质量。 数控机床常见的进给传动系统主要由电动机、联轴器、滚珠是杠副、轴承等组成,由于电动机有步进电动机、直流伺服电动机、交流伺服电动机等几种形式,因此,数控机床进给传动系统有 3 种类型,即步进电动机伺服进给系统、直流伺服电动机进 给系统、交流伺服电动机进给系统。

(3)进给传动系统的选型与设计(杨睿、张飞鹏负责)经济型的数控机床动力系统可分为三类

最新-基于PROE的进排气阀门的运动仿真分析

本科学生毕业设计 基于PRO/E的进排气阀门的运动仿真分析 院系名称: 专业班级: 学生姓名: 指导教师: 职称: 黑龙江工程学院 二○一二年六月

The Graduation Design for Bachelor's Degree Movement Simulation of Input Air and Outputair Valve of Engine based on Pro/e Candidate: Specialty: Class: Supervisor: Heilongjiang Institute of Technology 2012-06·Harbin

摘要 配气机构作为内燃机的重要组成部分,其设计合理与否直接关系到内燃机的动力性能、经济性能、排放性能及工作的可靠性、耐久性。随着内燃机高功率、高速化,人们对其性能指标的要求越来越高,要求其在高速运行的条件下仍然能够平稳、可靠地工作,因而对其配气机构提出了更高的要求。配气凸轮型线是配气机构的核心部分,配气凸轮型线设计是配气机构优化设计的重要途径之一。模拟计算和实验研究是内燃机配气机构研究两种重要手段。本文对配气机构给零件形状、尺寸进行了设计,并且应用pro-engineer进行了实体建模,得到了配气机构的三维装配图。再将配气机构模型导入ADAMS软件进行约束的建立以及驱动的添加,使得配气机构能够在ADAMS 软件中进行仿真,从而得到各种数据曲线对整个机构的性能进行分析,根据各种数据分析得到配气机构的最优设计。 关键词:内燃机;配气机构;虚拟样机技术;建模;仿真

ABSTRACT The valve train is one of the most important mechanisms in a internal combustion engine, whether the performances are good or bad, that affecting the power performance, economic performance, emissions performance of the engine, as well as affecting the reliability and wear performances of the whole engine. Along with the requests of the engine’s high power, super-speed, people demand a higher index. That is, when the engine runs under a high speed, it can still work steadily and dependably, which demand that the valve train system should have a high performance. Cam profile is the hard core of the valve train, which design is one of the important ways to carry out valve train optimal design. Simulation calculation and experimentation research are two important ways to carry out research and development on valve train of internal-combustion engine.This thesis devise the parts shape and dimension for the valve train, obtain the 3D assembly diagram base on model entities by pro-engineer. Importing the valve train to ADAMS software, then creating the constraints and adding drives. Sequentially, analyze the whole organization performance, after get the various data curve from valve train be capable simulation in ADAMS software. Finally, obtain the optimum design of valve train according to various data analysis. Key words: Internal combustion engine; Valve train VPT; Virtual prototyping technology; Modeling; Simulation

汽车内燃机配气机构的优化设计

汽车内燃机配气机构的优化设计 摘要 配气机构作为内燃机的重要组成部分,其设计合理与否直接关系到内燃机的动力性能、经济性能、排放性能及工作的可靠性、耐久性。随着内燃机高功率、高速化,人们对其性能指标的要求越来越高,要求其在高速运行的条件下仍然能够平稳、可靠地工作,因而对其配气机构提出了更高的要求。配气凸轮型线是配气机构的核心部分,配气凸轮型线设计是配气机构优化设计的重要途径之一。模拟计算和实验研究是内燃机配气机构研究两种重要手段。 关键词:内燃机;配气机构;凸轮型线;优化设计

ABSTRACT The valve train is one of the most important mechanisms in a internal combustion engine, whether the performances are good or bad, that affecting the power performance, economic performance, emissions performance of the engine, as well as affecting the reliability and wear performances of the whole engine. Along with the requests of the engine’s high power, super-speed, people demand a higher index. That is, when the engine runs under a high speed, it can still work steadily and dependably, which demand that the valve train system should have a high performance. Cam profile is the hard core of the valve train, which design is one of the important ways to carry out valve train optimal design. Simulation calculation and experimentation research are two important ways to carry out research and development on valve train of internal-combustion engine. Key words:Internal combustion engine; Valve train; Cam profile; Optimal design

(完整版)升降机构毕业设计论文

1 绪论 1.1 设计的主要目的 本课题主要完成的是一放线机升降结构设计,包括线圈夹紧.升降机构,实现线圈的夹紧.装卸操作。该放线机用于计算机通讯线缆或类似线缆的裁切的自动供料,以保证线缆切线长度。 1.2 设计的主要思路 设计研究的主要思路就是想把传统的螺旋式升降改为液压升降,这样就可以大大的节省人力物力,而且也能精准的完成机械的自由升降。以便更好的使用放线机。本人的想法是想用液压驱动不想用陈规的螺杆升降, 要解决这些问题必须解决升降系统和驱动系统,在常规的螺杆升降的前提下,要提升很大重量到指定高度是非常困难的,这样会大大的降低工作效率,所以选用液压升降会大大节省人力物力,还有就是因为刚卷质量非常大,单靠钢丝绳的拉力是远远不够的,想要正常的自由旋转就必须要有一个可靠的驱动系统,现在一般用的驱动系统都是电机驱动,因为它有许多优点,可以根据线卷的拉力大小来调节他的转速,还可以进行一般的正反转,还有就是在电机上安装一个变频器,可以无限调速,可以得到任何想要得转速。驱动装置则是用液压

驱动,它可以避免由于螺杆滑丝而引起的不必要的工程事故,而且力大可以迅速提升到指定高度。 1.3 设计的要求 1.夹紧只限于轴向,线绕度不受限制,夹紧力不致使线轴破坏。 2.驱动力可采取外驱动力。 3升降过程要求平稳.快捷。 4.放线时线圈外径悬空高度200mm—400mm。 5.线圈形状尺寸示于图1.1 图1.1 线卷的零件图 1.4 放线机发展情况综述 科学的发展越来越要求精确的技术,以此同时我们还不能以牺牲

效率为代价。现在线路的应用越来越多,相应各种线的切割,也越来越多,这就要求我们有一种设备既有很高的效率又能保证精度要求。所以我们来研究放线机有很好的经济很社会效益。 现阶段我国在各项技术中一直处于先进水平,在一些领域还保持着领先。一种应用于钢帘线及高精度、高性能金属线材生产的现代化关键设备——25模多功能智能化高速水箱拉丝机,由江苏泰隆机械集团研制成功,并于4月9日通过了科技成果鉴定。鉴定委员会认为,该设备的研制对推动我国高端金属线材制造技术的发展,扭转我国金属线材产量雄踞世界第一而装备技术却受制于发达国家的被动局面,具有重大现实意义。 这一技术成果的鉴定委员会主任由中科院院士吴宏鑫担任,来自中国航天科技集团、中国冶金设计院、南京航天航空大学、等国家高科技领域的科研院所及高校的权威专家组成鉴定小组。专家组在认真审定江苏泰隆机械集团提供的设计方案、技术资料和制造工序的基础上,参照了国际、国内重点用户的应用结论,一致认定,该项成果采用集成化、立体式传动结构和单侧主动式25道次拉拔技术,钢丝拉拔直线性能好,模具消耗低,拉丝效率高;单台设备集拉丝机、收线机、张力柜、配电柜等多种设备功能于一体,结构紧凑,大大节省了金属材料、装配工序和使用空间;以变频技术为依托,采用智能化技术实施动态性集中控制,来进行各种放线机的升降运动。 江苏泰隆机械集团几年前开始金属线材设备的开发研制,通过自主开发和引进消化,逐步形成从金属拉丝、高速层绕、重卷、外绕、放线、CO2气体保护焊丝及各类特种金属线材成套设备的开发与制造体系,不仅国内市场占有率达70%以上,而且出口10多个国家和地区。

发动机配气机构系统的动力学建模及仿真分析

发动机配气机构系统的动力学建模及仿真分析 罗卫平,陈曼华,姜小菁,王 (金陵科技学院机电工程学院,江苏南京211169) 摘要:针对发动机配气机构系统,在ADAM S/Engine软件中建立了其虚拟模型,在此基础上,对该机构进行了仿真分析,得到了气门的升程、速度、加速度和摇臂与挺柱的接触力等特性曲线,为配气机构动态性能的评价和优化提出了理论依据,从而为虚拟样机技术在新产品开发中的应用提供了有效方法。 关键词:配气机构;ADAM S/Engine;虚拟样机;多体动力学 中图分类号:U463.33;TP391.9文献标识码:A文章编号:1672-1616(2012)01-0051-04 配气机构的功用是根据发动机每一汽缸内进 行的工作循环顺序,定时地开启和关闭各汽缸的 进、排气门,以保证新鲜可燃混合气或空气得以及 时进入汽缸,并把燃烧后生成的废气及时排出汽 缸。配气机构的传统开发方法往往是多方案的比 较和试凑过程,这种基于物理样机的频繁的试验, 会延长研发周期和增加开发成本。虚拟样机技术 就是在这种情况下产生的一种数字化的研发模式, 即工程师在计算机上建立样机模型,对模型进行各 种动态性能的分析,然后改进样机设计方案,最后 投入生产。本文就是在这样的背景下,以多体动力 学为理论基础,采用美国MDI公司开发的 ADAM S软件。对发动机配气机构进行建模与仿 真,预测实际产品的特性,提供一个全面地研究产 品工作性能的方法。 1多体系统动力学研究的理论基础 随着多体动力学的发展,目前应用于多刚体系 统动力学的方法主要有以下几种:牛顿-欧拉法、 拉格朗日方法论、图论4法、凯恩法、变分法、旋量 法等。ADAMS用刚体i的质心迪卡儿坐标和反 映刚体方位的欧拉角作为广义坐标,即:q i=[x, y,z,W,H,<]T i,q=[q T1,,,q T n]T。采用拉格朗日 乘子法建立系统运动方程[1]: d d t 5T 5q# T - 5T 5q T +f T q Q+g T q#L=Q(1) 式中:T为系统动能;q为系统广义坐标列阵;Q 为广义力列阵;Q为对应于完整约束的拉氏乘子列阵,完整约束方程时,f(q,t)=0;L为对应于非完整约束的拉氏乘子列阵,非完整约束方程时,g(q, q#,t)=0。 2配气机构的动力学建模 配气机构是由凸轮轴、摇臂、气门、气门弹簧、挺柱、气门座等多个构件组成的机械系统,它是由凸轮的旋转带动驱动气门按预定的运动规律开启和关闭来实现配气的过程。ADAM S/Engine提供了多种配气机构部件模型的模板,因此在建立配气机构的模型时只需在ADAMS/Engine软件中选取 正确的模板,然后根据实际部件的特征,修改部件几何参数。如果模型库中不包含要建立的几何部件类型,则可以根据需要建立新的模板,然后导入标准界面进行分析[2]。本文利用ADAM S/Eng ine 模板建立了某柴油发动机顶置凸轮轴式配气机构的多刚体虚拟样机模型,如图1所示。 1)凸轮轴;2)摇臂;3)挺柱;4)气门弹簧; 5)气门;6)气门座 图1配气机构的虚拟样机模型 收稿日期:2011-08-10 作者简介:罗卫平(1973-),女,江苏南京人,金陵科技学院讲师,硕士,主要研究方向为虚拟技术和动力学仿真。

轴承内外圈加工专用机床上料机构设计

摘要 本文是根据无锡迪奥机械厂轴承内外圈生产线改造项目要求,针对工人手工上料易出现危险,且效率较低的问题,设计一套轴承内外圈加工专用机床上料机构,使其能够代替工人手工上料,保证工人操作的安全性,并提高生产效率。 论文根据轴承内外圈的特点,对其上料机构进行了合理的设计。此上料机构主要实现了坯料的自动定位、夹紧以及工件的回放等功能。这一系列运动都是由气缸驱动获得。本设计中的设计部分主要包括:上料机构设计;料道设计;夹紧机构设计;驱动系统等。确定了上料机构的具体尺寸后,利用UG软件对上料机构的零件进行参数化建模,并对整体结构进行虚拟装配。然后将装配体导入UG软件的运动仿真界面,并利用软件进行运动学仿真和动力学仿真。分析仿真结果,得出相应结论。最后对轴承内外圈加工专用机床上料机构进行优化设计,提高其稳定性,可靠性,让本设计能够真正的投入到日常生产操作中,使其切实能够为轴承厂的生产线改造做出贡献。 关键词:上料机构;参数化建模;虚拟装配;运动仿真

Abstract This article is based on the requirements of the bearings inside and outside circle line renovation project of the wuxi dior machinery, and it aims to solve the problem that the manual feeding by workers which is dangerous for workers, and it has low efficiency, therefore a set of bearing inner and outer circle machining machine tool feeding mechanism is designed to replace the manual feeding of workers, and ensure the security of workers when operating, and improving producing efficiency. This paper provides a reasonable design of the feeding mechanism according to the characteristics of the bearing inner and outer circle. The feeding mechanism mainly achieves the following functions: the automatically positioning, clamping and artifact-play backing of the billet, etc. This series of movement is driven by cylinder. The design part of this design mainly includes: the design portion of feeding mechanism; material design; the design of Clamping mechanism; Drive systems, etc. The method is: firstly determining the dimensions of the feeding mechanism, and then using UG software for parametric modeling of parts of the feeding mechanism, after that, doing virtual assembly to the overall structure; then importing the assembly body to the motion simulation interface of UG software, and using the software to do kinematics simulation and dynamics simulation. Thereafter, analyzing the simulation results, and getting the corresponding conclusions. Finally the optimization design of bearing inner and outer circle machining machine tool feeding mechanism is done, to improve its stability, reliability, and to make the design truly enter into the daily production operation, make it practical and able to contribute to bearing factory production line modification. Key words: feeding agencies; parametric modeling; virtual assembly; motion simulation

相关主题