搜档网
当前位置:搜档网 › 测井曲线的识别及应用

测井曲线的识别及应用

测井曲线的识别及应用
测井曲线的识别及应用

第一讲测井曲线的识别及应用

钻井取芯、岩屑录井、地球物理测井是目前比较普及的三种认识了解地层的方法。钻井获取的岩芯资料直观、准确,但成本高、效率低。岩屑录井简便、及时,但干扰因素多,深度有误差,岩屑易失真。测井是一种间接的录井手段,它是应用地球物理方法,连续地测定岩石的物理参数,以不同的岩石存在着一定物性差别,在测井曲线上有不同的变化特征为基础,利用各种测井曲线显示的特征、变化规律来划分钻井地质剖面、认识研究储层的一种录井方法;具有经济实用、收获率高、易保存的优势,是目前我们认识地层的主要途径。

鄂尔多斯盆地常规测井系列分为综合测井和标准测井两种。

综合测井系列:重点反映目的层段钻井剖面的地层特征。测量井段由井底到直罗组底部,比例尺1:200。由感应、八侧向、四米电阻、微电极、声速、井径、自然电位、自然咖玛八种测井方法组成。探井、评价井为了提高储层物性解释精度,加测密度和补偿中子两条曲线。

标准测井系列:全面反映钻井剖面地层特征,测量井段由井底到井口(黄土层底部),比例尺1:500,多用于盆地宏观地质研究。过去标准测井系列较单一,仅有视电阻率、自然咖玛测井等两三条曲线。近几年完钻井的标准测井系列曲线较完善,只比综合测井系列少了微电极测井一项。

一、测井曲线的识别

微电极系测井、四米电阻测井、感应—八侧向测井、都是以测定岩石的电阻率为物理前提,但曲线的指向意义各异。微电极常用于判断砂岩渗透性和薄层划分。感应—八侧向测井用于判定砂岩的含油水层性能。四米电阻、声速、井径、自然电位、自然咖玛用于砂泥岩性划分。它们各有特定含义,又互相印证,互为补充,所以,我们使用时必须综合考虑。

1、微电极测井

大家知道,油井完钻后由井眼向外围依次是:泥饼、冲洗带、侵入带、地层。泥饼是泥浆中的水分进入地层后,吸附、残留在砂岩壁上的泥浆颗粒物。冲洗带是紧靠井壁附近,地层中的流体几乎被钻井液全部赶走了的部分;其深入地层的范围一般约7—8厘米。侵入带是钻井液与地层中流体的混合部分。

微电极测井是一种探测井壁周围泥饼和冲洗带电阻率的测井方法。由三个微电极系测得的微梯度和微电位两条曲线组成。微梯度探测范围(横向深度)4—5厘米,显示的是泥饼的电阻值(泥饼的厚度一般在3—5厘米之间,泥饼的电阻率通常为泥浆滤液电阻率的1—2倍);微电位探测深度8—10厘米,显示的是冲洗带的电阻值。当地层为非渗透性的泥岩、页岩时井壁无泥饼和冲洗带,梯度电阻值等于或接近电位电阻值,曲线重合或叠置;当地层为渗透性的砂岩时,梯度电阻值小于电位电阻值,两条曲线分离,出现差异,差异越大说明砂岩渗透性能越好。所以,主要用来判断储层的渗透性能。

微电极系由于电极距短,反应灵敏,极板紧贴井壁受泥浆影响小对层界面反映清晰,划分2~5米薄层时使用较多,曲线的拐点处为小层界面。

2、感应测井

感应测井是利用电磁感应的原理来测量地层的导电性能。双感应—八侧向综合井下仪器,测量的是地层深、中、浅三个不同位置上的电阻率值。深感应探测深度约为中感应的二倍(距井筒四米左右),反映的是原始地层的电阻率。中感应反映的是距井筒1~2米范围内地层的电阻率。八侧向反映的是井壁附近的电阻率。这种由近到远的三组合比较清楚的指示了电阻率的径向变化。是我们判定储层性质,定性划分油水层,定量解释油层的含油饱和度、含水饱和度的主要依据。

非渗透性的泥、页岩,钻井泥浆对其浸染较小,没有泥饼和侵入带,深、中、浅三个部位的电阻率差别较小,所以,深感应、中感应、八侧向三条曲线形态接近或重合。

致密砂岩段钻井泥浆对其浸染较小,侵入带较浅,八侧向反映的是冲洗带+侵入带的电阻率,深、中感应反映的均是原始地层的电阻率,所以,深、中感应电阻值相等曲线重合,八侧向电阻率值较高曲线峰态明显。

渗透性好的砂岩段侵入带较深,深、中、八三条曲线差异较大,渗透性越好曲线间距越大。当原始地层为水层时,电阻值向着远井方向递减,含水饱和度越高电阻率越小,所以,测得的视电阻率值深感应最小,八侧向最大,中感应居中,在测井图上,深、中、八三条曲线由左向右平行排列。当原始地层为油层时,油

层电阻值高于侵入带而低于井壁附近,所以,深感应电阻率大于中感应而小于八侧向,中、深、八三条曲线由左向右依次排列。

平时工作中,我们常以中感应曲线为中轴,以深感应曲线的正负偏态,判定储层的含油水性。深感应曲线负偏时(深感应曲线在中感应曲线左边),是水层;深感应曲线正偏时(深感应曲线在中感应曲线右边),则为油层。

另外,感应测井受高阻邻层(钙质层等)影响小,对低电阻地层反映灵敏,也是我们确定延长统标志层—凝灰岩的主要依据之一。曲线的半幅点为层系界面。

3、普通电阻率测井

普通电阻率测井根据电极系大小分为1米、2.5米、4米电阻率测井,不同的地区根据自己的地层特征选择最适合自己的电极系,长庆近年来均采用四米电阻率测井系。主要用于定性划分岩石类型和判定砂岩的含油、含水性能。

一般情况下,泥岩、页岩、煤表现为高电阻,砂岩中等~略低电阻,凝灰岩低电阻。但仅根据四米视电阻率数值的大小,并不能准确判定它所反映的岩石性质,因为砂岩含油时电阻会上升,含水时电阻会下降,油层粒度较细、地层水矿化度较高或泥浆侵入较深时电阻率也较低。这种视电阻率解释的多义性,必须用其他测井曲线来弥补。四米电阻测井曲线的上下组合形态、变化趋势在大层段地层对比划分时应用较多。

4、声速测井

声速测井是一种研究声波在岩石单位距离的传播时间的测井方法。它利用声波在不同密度的岩石中传播速度的差异,判定岩性和定量计算孔隙度的大小。

泥岩、页岩、煤孔隙小较致密,声波穿越单位厚度地层用的时间短,速度快,所以,声速曲线幅度较高,呈尖刀状向右突出。

砂岩孔隙发育,孔隙内又有油水等液体,声波穿越单位厚度地层用的时间长,速度慢,所以,声速曲线幅度较低、较平直。

随着砂岩物性和孔隙中填充物的变化,砂岩的声速曲线也会有一些小的起伏或摆动。砂岩疏松,物性变好,曲线向右抬升;砂岩致密,物性变差,曲线向左偏移。延长组油层声速一般在220 微秒/米左右,延安组油层声速一般在240 微秒/米左右。

灰岩、钙质夹层声速曲线幅度较低,曲线幅度以砂岩为对称轴,呈小尖峰状向左突出。

密度测井曲线与声速测井曲线形态接近,但对泥页岩反应更灵敏,尖刀状峰值更高,两条曲线互相参照解释储层物性精度会更高。

5、井径测井

井孔直径的变化也是岩石性质的一种间接反映。泥、页岩层常因泥浆的浸泡和冲刷造成井壁坍塌,出现井径扩大。渗透性岩层常因泥浆液体滤失形成的泥饼使井径缩小,而在致密岩层(粉砂岩、钙质层)处井径一般变化不大,实际井径接近钻头直径。井径曲线是识别疏松地层与致密地层的首选依据,也是地层对比划分的重要标志。

6、自然电位测井

自然电位测井获取的是井内不同深度上的自然电位与地面上某一点的固定

电位值之差。自然电位测井曲线图上用每厘米偏转所代表的毫伏数和正负方向来表示井内自然电位数值的相对高低,而无绝对的零线。

通常把自然电位曲线上对应厚层泥岩的自然电位值的连线当作基线,称为泥岩基线。某一地层的自然电位相对于泥岩基线发生偏离时,则称为自然电位异常;曲线偏向泥岩基线的左方为负异常,偏向泥岩基线的右方为正异常。

这一偏转方向,主要取决于井筒内泥浆滤液矿化度与地层水矿化度的相对大小。在一般情况下,测井时泥浆滤液矿化度必须小于地层水矿化度,因此自然电位显示为负异常。在自然电位曲线上有异常出现的地方,该异常相对于泥岩基线偏转的距离,叫做自然电位异常幅度。远近储层物性越好、厚度越大,自然电位曲线负偏幅度越大。纯砂岩的自然电位负偏幅度最大。随着砂岩中泥质含量的增加或粒度减小或孔隙减少,自然电位曲线负偏幅度随之减小。因此,根据自然电位曲线负偏幅度变化,可以区分地层的岩石性质,定性判断砂岩的渗透性、旋回性、粒度等。自然电位测井。常用曲线的半幅点来进行分层。

7、自然咖玛测井

粘土颗粒能够吸附较多的放射性元素的离子,所以泥岩就具有较强的自然放射性。利用这一特性测量地层咖玛射线总强度,用于区分岩性、定量计算地层的泥质含量的测井方法叫自然咖玛测井。

泥岩、页岩放射性元素含量高,自然咖玛曲线幅度高。砂岩、煤放射性元素含量低,自然咖玛曲线幅度低。砂岩中随着泥质含量增减,自然咖玛曲线幅度发生变化。自然咖玛测井是划分岩性的主要依据之一。

一般情况下,用曲线半幅点确定岩层界面,岩层较薄时则用曲线拐点划分界面。

二、测井曲线的应用

测井曲线受泥浆性能、温度、仪器等多种因素影响,一条曲线往往不能准确的反映地下情况,必须把几条曲线结合起来分析。曲线幅度的高低仅限于本井上下围岩之间的对比,同一地层邻井之间曲线幅度的高低、数值的大小可以参考,但不同区域同一测井系列的曲线可比性较小。

常见岩石的电性特征:

砂岩:低伽玛、高自然电位、小井径、中~较低声速、中~低电阻、中~低感应,微电极曲线平直且电位与梯度差异大。

泥岩:高伽玛、低自然电位、大井径、高声速、高电阻、高感应。

油页岩(长7):高伽玛、高自然电位(甚至高过本井的砂岩),高声速、高电阻、高感应。(高自然电位是油页岩与泥岩的最大区别)

煤线:低伽玛、低自然电位、大井径、高声速、高电阻、高感应。(低伽玛是煤线与泥岩的主要区分标志)

凝灰质泥岩:尖刀~指状低感应、高声速、大井径、高伽玛、低自然电位,低电阻。

第二讲、地层对比与划分

地层是区域构造运动和地史演化的产物,是油气藏的载体。同一时期、同一构造运动中形成的地层,具有相同的沉积特点和储渗特性。地层对比的目的就是将具有相同岩性、电性、成因、上下接触关系的地层归为一类,追踪它们在时间、空间上的变化规律,研究与油气藏有关的地层。

地层对比划分可分为岩芯对比和测井曲线对比两种,常用的是测井曲线对比法。

(一)地层对比划分依据

地层对比划分依据有标志层和标准层两个。

1、标志层:

标志层是大层(1~3级旋回),对比划分的依据。

标志层的确定原则:岩性典型,电性特征明显,易识别,分布稳定,易与追踪。

鄂尔多斯盆地经过近四十年的实践摸索,将煤层(炭质泥岩)和凝灰质泥岩作为地层对比划分的标志层。它们是特定气候条件下区域性的沉积物,全盆地内普遍发育,代表性强,覆盖面广。

若煤层、凝灰岩不发育,标志层电性特征不明显时,可将与标志层位置相当,电性特征典型的泥、页岩作为地层对比划分的参考依据。

2、标准层:

用标志层将大层确定之后还必须选定一些标准层作为细分小层的依据。这些标准层多数是在油层附近且分布稳定的泥岩。

标准层是小层(四级旋回),对比划分的主要依据。

(二)地层对比划分的原则与方法

地层对比划分的原则:“旋回对比,分级控制”。

地层对比划分的方法:先追踪标志层,后确定标准层,再找含油层段。即:

先定大层后分小层。

1、旋回级别的分类:

一级旋回:延安组、延长组

一级旋回受区域构造运动控制。在全区分布稳定,含有一套生储组合或储盖

组合。

二级旋回:延10、延9,长3、长2 ……

二级旋回是一级旋回中的次级旋回;每个旋回都有大体相同的沉积特征。

三级旋回:长81、长82、长31、长32 。

三级旋回受局部构造运动控制,由几个沙泥岩段组成。

四级旋回:长811、延812、延813

四级旋回受水动力条件及局部沉积作用控制,由单一岩性或由粗到细(从

砂岩开始到泥岩结束)、由细到粗的一个周期组成。四级旋回是地层对比划分中

的最小级别,也叫沉积单元,如果再细分就叫油砂体。

一级~三级旋回一般叫大层划分,四级和四级以下的一般叫小层对比划分。开发系统大多数开展的都是四级旋回的追踪对比。

2、延长组地层划分方法

延长统十个油层组的划分依据主要是凝灰质泥岩,次为泥页岩。

凝灰质泥岩在岩屑中为白色片状,手摸有滑腻感,在荧光灯下发橘红色强光。在测井剖面上具有尖刀状低感应、高声速、大井径、高伽玛的电性特征;厚2米左右。

延长统地层依据岩性组合和十个标志层,划分为十个油层组。十个标志层代码为:K0~K9,自下而上为:

K0:位于长10底。

K1:位于长7底,是长7与长8的分界线,厚20m左右。底部有2m厚的凝灰岩,中上部是15~20m厚的油页岩。因其在陕北延河流域的张家滩地区出露,所以人们常称为“张家滩页岩”。

油页岩在电测图上以自然电位曲线负偏幅度较高(甚至高过砂岩),区别于泥页岩。

K2:位于长63底部,是长7与长6的分界线。

K3:位于长62底。

K4:位于长4+5底,是长4+5与长6的分界线。在陕北地区较发育,陇东地区基本上是泥岩。

K5:位于长4+5中部,是长4+51与长4+52的分界线,厚度6~8m,在声速曲线上表现出4个一组的齿状尖子,感应曲线特征不明显。

K6:位于长3底,是长3与长4+5的分界线。

K7:位于长2底,是长2与长3分界线。

K8:位于长2中部,是长21与长22的分界线。

K9:位于长1底,是长1与长2的分界线。

3、延安组地层划分方法

煤线是延安组地层对比的主要标志层。煤线在测井图上具有:低伽玛、大井径、高声速、高电阻(4m)、高感应的特征。低伽玛是测井图上区分煤线与泥岩的主要标志。

延安组地层沉积时区域气候由干冷~暖湿进行周期性循环,干冷时沉积河湖砂泥岩,暖湿时沉积沼泽煤系地层;两个煤系之间的地层代表了一个完整的旋回和气候周期,周而复始使延安组地层韵律性极强。分层时把二个煤层之间的一套地层作为一个二级旋回(煤层归下伏地层,煤顶为分层界限)。

延4+5~延10地层顶部普遍发育煤线,若遇有些区块、有些层位煤线不发育时,可借用邻区或邻井作参考。具体方法是:挑选与本区距离最小、最接近的井做参考,根据两区地层厚度和砂岩旋回性变化趋势,以泥岩为分界线逐井由区外向区内推。

测井曲线典型形态

测井曲线的形态代表了地层特征,如自然电位曲线分为钟型,漏斗型,锯齿型,指型等,他们分别代表了各种信息。但是其中SP曲线幅度又分为高幅,中幅,低幅。请问一下这些幅度是怎样定义的。是用公式算的还是直接看曲线的。还有双测向曲线,声波时差,微电极曲线齿型是什么意思。 电位的形状确实可以指示出一定的沉积环境,,比如“漏斗”:有口向上的漏斗,有口向下的漏斗,这就能分出沉积顺序,逆序还是正序。 不同测井曲线的形态以及变化关系,都反映了不同的沉积环境,是沉积相的指相标志,也是层析地层划分识别的标志之一,你随便找一本层序地层学的书都有介绍幅度一般代表了当时的沉积能量; 一般都指的是电位或者伽马曲线. 至于曲线形态: 1)钟型;底部突变接触,代表三角洲水下分流河道; 2)漏斗型:顶部突变接触,代表三角洲前缘,河口坝微相; 3)箱型:顶底界面均为突变接触,表示水动力条件稳定,代表潮汐砂体或者废弃水下分流河道; 4)齿形:反映沉积过程中能量快速变化,一般代表河道侧翼,席状砂,分流间湾微相. 1、曲线幅度 高幅度:反映海湖岸的滩、坝砂岩体,由于波浪的作用淘冼、冲刷干净泥质含量少,改造彻底、分选好,中━细砂岩渗透性好, 故高幅度。 中幅度:反映河道砂岩,水流冲刷强、物源丰富,分选差。 低幅度:反映河漫滩相,水流冲刷弱沉积物以细粒为主故以低幅度为主。 2、曲线形态 钟形:下粗上细,反映水流能量逐渐减弱,物源供应的不断减少。其代表相是蛇曲河点砂坝。曲线反映底为冲刷面,上面为河道 6, 砾石堆积,再上为河道砂,最上是河道侧向迁移后形成的堤岸砂,漫滩泥,沉积序列为河道的正粒序结构特征。 漏斗形:下细上粗反映向上水流能量加强,分选逐渐变好。代表相为海相滩坝砂岩体;另外

常用测井曲线名称

常用测井曲线名称 测井符号英文名称中文名称 Rt true formation resistivity. 地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率 Ild deep investigate induction log 深探测感应测井 Ilm medium investigate induction log 中探测感应测井 Ils shallow investigate induction log 浅探测感应测井 Rd deep investigate double lateral resistivity log 深双侧向电阻率测井Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井 CON induction log 感应测井 AC acoustic 声波时差 DEN density 密度 CN neutron 中子 GR natural gamma ray 自然伽马 SP spontaneous potential 自然电位 CAL borehole diameter 井径 K potassium 钾 TH thorium 钍 U uranium 铀 KTH gamma ray without uranium 无铀伽马 NGR neutron gamma ray 中子伽马 5700系列的测井项目及曲线名称 Star Imager 微电阻率扫描成像 CBIL 井周声波成 测井符号英文名称中文名称 Rt true formation resistivity. 地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率 Ild deep investigate induction log 深探测感应测井 Ilm medium investigate induction log 中探测感应测井 Ils shallow investigate induction log 浅探测感应测井 Rd deep investigate double lateral resistivity log 深双侧向电阻率测井 Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井 RMLL micro lateral resistivity log 微侧向电阻率测井

测井曲线代码大全

测井曲线代码 RD、RS—深、浅侧向电阻率 RDC、RSC—环境校正后的深、浅侧向电阻率VRD、VRS—垂直校正后的深、浅侧向电阻率DEN—密度 DENC—环境校正后的密度 VDEN—垂直校正后的密度 CNL—补偿中子 CNC—环境校正后的补偿中子 VCNL—垂直校正后的补偿中子 GR—自然伽马 GRC—环境校正后的自然伽马 VGR—垂直校正后的自然伽马 AC—声波 V AC—垂直校正后声波 PE—有效光电吸收截面指数 VPE—垂直校正后的有效光电吸收截面指数SP—自然电位 VSP—垂直校正后的自然电位 CAL—井径 VCAL—垂直校正后井径 KTh—无铀伽马 GRSL—能谱自然伽马 U—铀 Th—钍 K—钾 WCCL—磁性定位 TGCN—套管中子 TGGR—套管伽马 R25—2.5米底部梯度电阻率 VR25—环境校正后的2.5米底部梯度电阻率DEV—井斜角 AZIM—井斜方位角 TEM—井温 RM—井筒钻井液电阻率 POR2—次生孔隙度 POR—孔隙度 PORW—含水孔隙度 PORF—冲洗带含水孔隙度 PORT—总孔隙度 PERM—渗透率 SW-含水饱和度 SXO—冲洗带含水饱和度

SH—泥质含量 CAL0—井径差值 HF—累计烃米数 PF—累计孔隙米数 DGA—视颗粒密度 SAND,LIME,DOLM,OTHR—分别为砂岩,石灰岩,白云岩,硬石膏含量 VPO2—垂直校正次生孔隙度 VPOR—垂直校正孔隙度 VPOW—垂直校正含水孔隙度 VPOF—垂直校正冲洗带含水孔隙度 VPOT—垂直校正总孔隙度 VPEM—垂直校正渗透率 VSW-垂直校正含水饱和度 VSXO—垂直校正冲洗带含水饱和度 VSH—垂直校正泥质含量 VCAO—垂直校正井径差值 VDGA—垂直校正视颗粒密度 VSAN,VLIM,VDOL,VOTH—分别为垂直校正砂岩,石灰岩,白云岩,硬石膏含量岩石力学参数 PFD1—破裂压力梯度 POFG—上覆压力梯度 PORG—地层压力梯度 POIS—泊松比 TOUR—固有剪切强度 UR—单轴抗压强度 YMOD—杨氏模量 SMOD—切变模量 BMOD—体积弹性模量 CB—体积压缩系数 BULK—出砂指数 MAC MAC—偶极子阵列声波 XMAC-Ⅱ—交叉偶极子阵列声波 DTC1—纵波时差 DTS1—横波时差 DTST1—斯通利波时差 DTSDTC-纵横波速度比 TFWV10-单极子全波列波形 TXXWV10-XX偶极子波形 TXYWV10- XY偶极子波形 TYXWV10- YX偶极子波形 TYYWV10- YY偶极子波形 WDST-计算各向异性开窗时间 WEND-计算各向异性关窗时间

测井曲线代码一览表

测井曲线代码一览表 测井类资料2009-08—0716:01阅读437 评论0 字号: 大大中中小小 from石油科技论坛 常用测井曲线名称 测井符号英文名称中文名称 Rt true formation resistivity。地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率 Ild deep investigate induction log 深探测感应测井 Ilm medium investigate induction log 中探测感应测井 Ils shallowinvestigateinductionlog 浅探测感应测井 Rd deepinvestigate double lateral resistivity log 深双侧向电阻率测井 Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井 RMLL microlateral resistivitylog 微侧向电阻率测井CON induction log感应测井 AC acoustic声波时差 DEN density 密度 CN neutron 中子 GR natural gammaray自然伽马 SP spontaneous potential 自然电位 CAL borehole diameter 井径 K potassium 钾 TH thorium钍 U uranium铀 KTH gammaray without uranium无铀伽马 NGR neutrongamma ray 中子伽马 5700系列得测井项目及曲线名称 StarImager微电阻率扫描成像 CBIL 井周声波成像 MAC 多极阵列声波成像 MRIL核磁共振成像 TBRT 薄层电阻率 DAC 阵列声波 DVRT 数字垂直测井 HDIP 六臂倾角 MPHI 核磁共振有效孔隙度 MBVM 可动流体体积 MBVI 束缚流体体积 MPERM 核磁共振渗透率 Echoes 标准回波数据

常用测井曲线符号及单位(最规范版)

常用测井曲线符号单位测井曲线名称符号(常用)单位符号名称 自然伽玛GRAPI 自然电位SP MV毫伏 井径CAL cm厘米 中子伽马NGR 冲洗带地层电阻率Rxo 深探测感应测井Ild 中探测感应测井Ilm 浅探测感应测井Ils 深双侧向电阻率测井Rd 浅双侧向电阻率测井Rs 微侧向电阻率测井RMLL 感应测井CON 声波时差AC 密度DENg/cm3 中子CNv/v 孔隙度POR 冲洗带含水孔隙度PORF 渗透率PERM毫达西 含水饱和度SW

冲洗带含水饱和度SXO 地层温度TEMP 有效孔隙度POR 泥浆滤液电阻率Rmf 地层水电阻率Rw 泥浆电阻率Rm 微梯度ML1或MIN 微电位ML2或MNO 补偿密度RHOB或DEN G/CM3 补偿中子CNL或NPHI 声波时差DT或AC US/M微秒/米 深侧向电阻率LLD或RT OMMxx米 浅双侧向电阻率LLS或RS OMM欧姆米 微球电阻率MSFL或SFLU、RFOC 中感应电阻率ILM或RILM 深感应电阻率ILD或RILD 感应电导率CILD MMO毫姆xx PERM绝对渗透率,PIH油气有效渗透率,PIW水的有效渗透率。测井符号英文名称中文名称 Rttrueformationresistivity.地层真电阻率 Rxoflushedzoneformationresistivity冲洗带地层电阻率

Ilddeepinvestigateinductionlog深探测感应测井 Ilmmediuminvestigateinductionlog中探测感应测井 Ilsshallowinvestigateinductionlog浅探测感应测井 Rddeepinvestigatedoublelateralresistivitylog深双侧向电阻率测井Rsshallowinvestigatedoublelateralresistivitylog浅双侧向电阻率测井RMLLmicrolateralresistivitylog微侧向电阻率测井 CONinductionlog感应测井 ACacoustic声波时差 DENdensity密度 CNneutron中子 GRnaturalgammaray自然伽马 SPspontaneouspotential自然电位 CALboreholediameter井径 Kpotassium钾 THthorium钍 Uuranium铀 KTHgammaraywithouturanium无铀伽马 NGRneutrongammaray中子伽马 5700系列的测井项目及曲线名称 StarImager微电阻率扫描成像 CBILxx声波成像

测井曲线描述与(张君学)讲解

测井曲线的识别与应用 一、测井曲线资料应用的意义 测井资料在油、气田的勘探与开发中有广泛的的用途,大体可分为在裸眼井中的应用和套管井中的应用,及其它一些专门目的的应用。在裸眼井中,测井资料主要用于寻找油、气层,并对储集层的孔隙性、渗透性和含油性作出评价,为油、气田的开发决策提供信息;在套管井中,测井资料主要用于开发过程中油、气层的动态分析,为油、气田开发的合理调整提供资料。 二、常用的测井曲线的类型 常用的测井曲线有:自然电位曲线、自然伽玛测井曲线、微电位测井曲线、微梯度测井曲线、深感应测井曲线、中感应测井曲线、4米电阻测井曲线、声波时差测井曲线、井径测井曲线等。 三、常用测井曲线识别 第一节自然电位测井 在钻开岩层时,井壁附近产生的电化学活动能形成一电场,该场产生的电位就叫自然电位,其产生的原因是地层水矿化度和泥浆滤液矿化度压力不同,以及泥浆压力与地层压力不同。 在砂泥岩剖面中,自然电位曲线以泥岩为基线,只在砂

质渗透性岩层处,才出现自然电位曲线异常,所以我们可以利用它来划分渗透性岩层。纯砂岩井段出现最大的负异常,含泥质的砂岩负异常幅度较低,而且随泥质含量的增多负异常幅度下降。此外通过自然电位曲线幅度还可判断渗透层孔隙中所含流体的性质,一般含水砂岩的自然电位幅度比含油砂岩的自然电位幅度要高。 自然电位曲线的应用仅限于淡水泥浆钻的井,因为自然电位曲线幅度(偏离泥岩基线的幅度)与地层水含盐量和井中流体含盐量之差有关。对于淡水泥浆,纯砂岩的负向偏移幅度最大,当砂岩含泥时,幅度减小。而当采用盐水泥浆时,含盐水地层的SP曲线,偏移很小或没有偏移,甚至出现反转。自然电位曲线在含盐水纯砂岩部位最高,而当地层含有烃类时,自然电位幅度有所降低,当砂层厚度小于3m或更薄时,其幅度大大降低;当砂岩胶结作用较强时,其幅度可显著降低。 应用:1、自然电位曲线,对于厚岩层可用由线半幅点划分岩层界面,对于薄岩层必须与视电阻率曲线配合,才能获得准确结果。 2、可以很清楚地划分渗透层与非渗透层。而且可以运用自然电位曲线观察岩性的变化,如当砂岩岩性变细,含泥量增加时,常表现为自然电位幅度的降低等。

测井曲线解释

主要测井曲线及其含义 主要测井曲线及其含义 一、自然电位测井: 测量在地层电化学作用下产生的电位。 自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。Rmf ≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。 自然电位测井 SP曲线的应用:①划分渗透性地层。②判断岩性,进行地层对比。③估计泥质含量。④确定地层水电阻率。 ⑤判断水淹层。⑥沉积相研究。 自然电位正异常 Rmf<Rw时,SP出现正异常。 淡水层Rw很大(浅部地层) 咸水泥浆(相对与地层水电阻率而言) 自然电位测井 自然电位曲线与自然伽马、微电极曲线具有较好的对应性。 自然电位曲线在水淹层出现基线偏移 二、普通视电阻率测井(R4、R2.5) 普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。 视电阻率曲线的应用:①划分岩性剖面。②求岩层的真电阻率。③求岩层孔隙度。④深度校正。⑤地层对比。 电极系测井 2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。 底部梯度电极系分层: 顶:低点; 底:高值。 三、微电极测井(ML) 微电极测井是一种微电阻率测井方法。其纵向分辨能力强,可直观地判断渗透层。 主要应用:①划分岩性剖面。②确定岩层界面。③确定含油砂岩的有效厚度。④确定大井径井段。⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。 微电极确定油层有效厚度 微电极测井 微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。 四、双感应测井 感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。 感应测井曲线的应用:①划分渗透层。②确定岩层真电阻率。③快速、直观地判断油、水层。 油层: RILD>RILM>RFOC

第8章 密度测井和岩性密度测井

第八章 密度测井和岩性密度测井 此两种测井方法是由伽马源向地层发射伽马射线,经与地层介质相互作用后,再由伽马探测器接收(即为伽马-伽马测井),地层不同,探测器记录的读数不同,从而被用来研究地层性质。 §1 密度测井、岩性密度测井的地质物理基础 一、岩石的体积密度b ρ(即真密度): V G b =ρ (单位体积岩石的质量) 对含水纯岩石: φρφρρρρφ ?+-=?+?=+=f ma f ma ma f ma b V V V V G G )1( 单位:(g/cm 3) 其中:V V V ma =+φ (1)组成岩石的骨架矿物不同,ρma 不同,如石英为2.65,方解石为2.71,白云石为2.87,对于相同孔隙度得到的体积密度也就不同,由此可判断岩性;另一方面,利用体积密度计算孔隙度时,必须得先确定岩性。 (2)孔隙性地层的密度小于致密地层,且随着φ的增加ρb 减小,由此可求φ。 且(盐水泥浆)(淡水泥浆)1.10 .1=f ρ 二、康普顿散射吸收系数∑ 中等能量γ射线与介质发生康普顿散射康普顿散射而使其强度减小的参数(康普顿减弱系数---由康普顿效应引起的伽马射线通过单位距离物质减弱程度): A N z b A e ρσ??=∑ 沉积岩中大多数核素A z 均接近于0.5(见表8-1, P 138),常见的砂岩、石灰岩、白云

岩的A z 的平均值也近似为0.5(见表8-2), 所以对于一定能量范围的伽马射线(e σ为常数),∑只与b ρ有关。 密度测井利用此关系,通过记录康普顿散射的γ射线的强度来测量岩石的密度。 三、岩石的光电吸收截面 1、线性光电吸收系数:当γ的能量大于原子核外电子的结合能时,发生光电效应的概率。 n A Z λρτ1.40089 .0= 2、岩石的光电吸收截面指数Pe 它是描述发生光电效应时物质对伽马光子吸收能力的一个参数,即伽马光子与岩石中一个电子发生光电效应的平均光电吸收截面,单位b/电子。而它与原子序数关系为: Pe=aZ 3.6 a 为常数,地层岩性不同,Pe 有不同的值,也就是说Pe 对岩性敏感,可以以来确定岩性,Pe 是岩性密度测井测量的一个参数。 3、体积光电吸收截面 体积光电吸收截面也是描述发生光电效应时物质对伽马光子吸收能力的一个参数,它是指每立方米物质的光电吸收截面,以U 来表示,单位b/cm 3。地层岩性不同,其体积光电吸收截面不同(表8-2,139页)。U 对岩性敏感,也是岩性密度测井所要确定的一个参数。岩石的体积光电吸收截面为: ∑==n i i i V U U 1 Ui 、Vi 分别为组成岩石各部分的光电吸收截面和相对体积。如孔隙度为φ的纯砂岩的光电吸收截面为: f ma U U U ??+-=)1( 体积光电吸收截面U 与光电吸收截面指数Pe 有近似关系: b U Pe ρ/≈ 故可由Pe 求得U 。 §2 地层密度测井

常用测井曲线代码

测井符号英文名称中文名称 Rt trueformation resistivity. 地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率 Ild deep investigate induction log 深探测感应测井 Ilm medium investigate induction log 中探测感应测井 Ils shallow investigate induction log 浅探测感应测井 Rd deep investigate double lateral resistivity log深双侧向电阻率测井Rs shallow investigate double lateral resistivity log浅双侧向电阻率测井 RMLL micro lateral resistivity log 微侧向电阻率测井 CON induction log 感应测井 AC acoustic 声波时差 DEN density 密度CN neutron 中子GR natural gamma ray 自然伽马SP spontaneous potential 自然电位CAL borehole diameter 井径K potassium 钾 TH thorium 钍U uranium 铀KTH gamma ray without uranium 无铀伽马NGR neutron gamma ray 中子伽马 5700系列的测井项目及曲线名称 Star Imager 微电阻率扫描成像 CBIL 井周声波成像 MAC 多极阵列声波成像 MRIL 核磁共振成像 TBRT 薄层电阻率 DAC 阵列声波 DVRT 数字垂直测井 HDIP 六臂倾角

测井曲线解释

测井曲线基本原理及其应用 一. 国产测井系列 1、标准测井曲线 2、5m底部梯度视电阻率曲线。地层对比,划分储集层,基本反映地层真电组率。恢复地层剖面。 自然电位(SP)曲线。地层对比,了解地层的物性,了解储集层的泥质含量。 2、组合测井曲线(横向测井) 含油气层(目的层)井段的详细测井项目。 双侧向测井(三侧向测井)曲线。深双侧向测井曲线,测量地层的真电组率(RT),试双侧向测井曲线,测量地层的侵入带电阻率(RS)。 0、5m电位曲线。测量地层的侵入带电阻率。0、45m底部梯率曲线,测量地层的侵入带电阻率,主要做为井壁取蕊的深度跟踪曲线。 补偿声波测井曲线。测量声波在地层中的传输速度。测时就是声波时差曲线(AC) 井径曲线(CALP)。测量实际井眼的井径值。 微电极测井曲线。微梯度(RML),微电位(RMN),了解地层的渗透性。 感应测井曲线。由深双侧向曲线计算平滑画出。[L/RD]*1000=COND。地层对比用。 3、套管井测井曲线 自然伽玛测井曲线(GR)。划分储集层,了解泥质含量,划分岩性。 中子伽玛测井曲线(NGR)划分储集层,了解岩性粗细,确定气层。校正套管节箍的深度。套管节箍曲线。确定射孔的深度。固井质量检查(声波幅度测井曲线) 二、3700测井系列 1、组合测井 双侧向测井曲线。深双侧向测井曲线,反映地层的真电阻率(RD)。浅双侧向测井曲线,反映侵入带电阻率(RS)。微侧向测井曲线。反映冲洗带电阻率(RX0)。 补偿声波测井曲线(AC),测量地层的声波传播速度,单位长度地层价质声波传播所需的时间(MS/M)。反映地层的致密程度。 补偿密度测井曲线(DEN),测量地层的体积密度(g/cm3),反映地层的总孔隙度。 补偿中子测井曲线(CN)。测量地层的含氢量,反映地层的含氢指数(地层的孔隙度%) 自然伽玛测蟛曲线(GR),测量地层的天然放射性总量。划分岩性,反映泥质含量多少。 井径测井曲线,测量井眼直径,反映实际井径大砂眼(CM)。 2、特殊测井项目 地层倾角测井。测量九条曲线,反映地层真倾角。 自然伽玛能谱测井。共测五条曲线,反映地层的岩性与铀钍钾含量。 重复地层测试器(MFT)。一次下井可以测量多点的地层压力,并能取两个地层流体样。 三、国产测井曲线的主要图件几个基本概念: 深度比例:图的单位长度代表的同单位的实际长度,或深度轴长度与实际长度的比例系数。如,1:500;1:200等。 横向比例:每厘米(或每格)代表的测井曲线值。如,5Ω,m/cm,5mv/cm等。 基线:测井值为0的线。 基线位置:0值线的位置。 左右刻度值:某种曲线图框左右边界的最低最高值。 第二比例:一般横向比例的第二比例,就是第一比例的5倍。如:一比例为5ΩM/cm;二比例则为25m/cm。 1、标准测井曲线图 2、2、5米底部梯度曲线。以其极大值与极小值划分地层界面。它的极大值或最佳值基本反映地层的真电阻率(如图) 自然电位曲线。以半幅点划分地层界面。一般砂岩层为负异常。泥岩为相对零电位值。 标准测井曲线图,主要为2、5粘梯度与自然电位两条曲线。用于划分岩层恢复地质录井剖面,进行井间的地层对比,粗略的判断油气水层。 3、回放测井曲线图(组合测井曲线) 深浅双侧向测井曲线。深双侧向曲线的极度大值反映地层的真电阻率(RT),浅双侧向的极大值反映浸入带电阻率(RS)。以深浅双侧向曲线异常的根部(异常幅度的1/3处)划分地层界面。

各种测井曲线代码

各种测井曲线代码 附录33 测井曲线名称代码 名称代码名称代码名称代码 0、4米电位电阻率 R04 井径1 C1 阵列感应4英尺分辨率及60英寸探测深度电阻率 AF60 0、45米电位电阻率 R045 井径2 C2 阵列感应4英尺分辨率及90英寸探测深度电阻率 AF90 0、5米电位电阻率 R05 井径3 C3 阵列感应4英尺分辨率侵入带真电阻率 AFRX 1米底部梯度电阻率 R1 井斜 DEV 补偿声波时差 AC 2、5米底部梯度电阻率 R25 井斜方位 AZIM 井径CAL 4米底部梯度电阻率 R4 高分辨率侧向电阻率 LLHR 长源距声波时差 DT 6米底部梯度电阻率 R6 方位电阻率曲线1 ARO1 纵横波速度比 VPVS 8米底部梯度电阻率 R8 方位电阻率曲线10 AR10 纵横波方式单极横波时差 DT4S 深侧向电阻率 RD 方位电阻率曲线11 AR11 纵横波方式单极纵波时差 DT4P 浅侧向电阻率 RS 方位电阻率曲线12 AR12 泊松比PR 邻近侧向电阻率 RPRX 方位电阻率曲线2 ARO2 上偶极横波时差 DT2 微侧向电阻率 RMLL 方位电阻率曲线3 ARO3 下偶极横波时差 DT1 微球型聚焦电阻率 MSFL 方位电阻率曲线4 ARO4 斯通利波时差 DTST 深感应电阻率 RILD 方位电阻率曲线5 ARO5 全波列波形 WF

中感应电阻率 RILM 方位电阻率曲线6 ARO6 声波成象ACI 八侧向电阻率 RFOC 方位电阻率曲线7 ARO7 自然伽马GR 球型聚焦电阻率 SFLU 方位电阻率曲线8 ARO8 无铀自然伽马 CGR 数字聚焦电阻率 DFL 方位电阻率曲线9 ARO9 钾 K 感应电导率 COND 阵列感应1英尺分辨率地层真电阻率AORT 钍 TH 微电位电阻率 ML1 阵列感应1英尺分辨率及10英寸探测深度电阻率 AO10 铀 U 微梯度电阻率 ML2 阵列感应1英尺分辨率及20英寸探测深度电阻率 AO20 补偿中子 CNL 钻井液电阻率 RM 阵列感应1英尺分辨率及30英寸探测深度电阻率 AO30 井壁中子 SNL 井温 TEMP 阵列感应1英尺分辨率及60英寸探测深度电阻率AO60 中子伽马 NGR 钻头直径 BS 阵列感应1英尺分辨率及90英寸探测深度电阻率 AO90 补偿密度 DEN 200兆赫兹电阻率 R4SL 阵列感应1英尺分辨率侵入带真电阻率 AORX 岩性密度 LDL 200兆赫兹幅度比 R4AT 阵列感应2英尺分辨率地层真电阻率ATRT 密度校正值 DRH 200兆赫兹介电常数 D2EC 阵列感应2英尺分辨率及10英寸探测深度电阻率 AT10 光电吸收截面指数 PE 200兆赫兹相位角 P2HS 阵列感应2英尺分辨率及20英寸探测深度电阻率 AT20 核磁共振总孔隙度 TPOR 47兆赫兹电阻率 R4SL 阵列感应2英尺分辨率及30英寸探测深度电阻率 AT30 核磁共振渗透率 KCMR 47兆赫兹幅度比 R4AT 阵列感应2英尺分辨率及60英寸探测深度电阻率 AT60 核磁共振束缚流体体积 MBVI

各种测井曲线的用途

声波时差 主要用来判断渗透层,声波时差越大,说明岩石中间的空隙越大,也就说明绝对孔隙度越好.在油层区域范围内,声波时差非常小时,可以判定该层位为干层. 自然伽玛 主要用来判断泥质含量,伽玛值越高,说明泥质含量越高,也就是这段的物性不好. 自然电位 主要用来判断岩性,在沙泥岩区域,当自然电位高时,可以判定为泥岩,低为砂岩. 电阻率 电阻率一般分为三条曲线:深感应,中感应,八侧向三条. 三者之间的间隔距离说明含水情况,间隔距离越大,说明含水越高. 另外还有两条4M和2.5M的电阻曲线,仅仅作为参考,一般情况下不太用得到的. 另外,还有一个微电位和微梯度,他们之间的间隔距离说明渗透率和孔隙度. 间隔距离越大,说明渗透率越好.两条平行的情况说明该层的渗透率比较稳定. 几条曲线综合运用: 假设为低自然电位,低自然伽玛,高声波时差: 高电阻且三条曲线分开距离小,可以基本判定为油层. 高电阻且分开距离大,可以基本判定为油水同层活底水油层. 低电阻且分开距离大,可以基本判定为水层. lld Deep Investigation Log 是深侧向测井 lls Shallow Investigation Log 是浅侧向测井 msfl Microspherical Focused Log 是微球形聚焦测井 ild 是深感应测井 ils 是浅感应测井 ilm 是中感应测井 上述这三个最后一个字母分别是d代表deep,就是深;s代表shallow,就是浅;m代表middle,就是中的意思。il是是induction log ,就是感应测井的意思 sflu 是球形聚焦电阻率测井 pef 是光电吸收截面指数 rhob 是岩性密度测井 nphi?这个不知道,是不是phin,这个是中子孔隙度测井,呵呵! cali 这个是井径测井 bs 这个也不是很清楚。 其实我倒是觉得写成大写大家更好认一点,因为这些本来就是英文缩写的大写字母,在表头里往往出现的是小写,所以让人很费解.

测井曲线代码-整理版

原始测井曲线代码 代码名称 A1R1 T1R1声波幅度 A1R2 T1R2声波幅度 A2R1 T2R1声波幅度 A2R2 T2R2声波幅度AAC 声波附加值 AA VG 第一扇区平均值AC 声波时差 AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗 AIPD 密度孔隙度 AIPN 中子孔隙度 AMA V 声幅 AMAX 最大声幅 AMIN 最小声幅 AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅 AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值 AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子 AR10 方位电阻率 AR11 方位电阻率 AR12 方位电阻率 ARO1 方位电阻率 ARO2 方位电阻率 ARO3 方位电阻率ARO4 方位电阻率 ARO5 方位电阻率 ARO6 方位电阻率 ARO7 方位电阻率 ARO8 方位电阻率 ARO9 方位电阻率 AT10 阵列感应电阻率 AT20 阵列感应电阻率 AT30 阵列感应电阻率 AT60 阵列感应电阻率 AT90 阵列感应电阻率 ATA V 平均衰减率 ATC1 声波衰减率 ATC2 声波衰减率 ATC3 声波衰减率 ATC4 声波衰减率 ATC5 声波衰减率 ATC6 声波衰减率 ATMN 最小衰减率 ATR T 阵列感应电阻率 ATRX 阵列感应电阻率 AZ 1号极板方位 AZ1 1号极板方位 AZI 1号极板方位 AZIM 井斜方位 BGF 远探头背景计数率 BGN 近探头背景计数率 BHTA 声波传播时间数据 BHTT 声波幅度数据 BLKC 块数 BS 钻头直径 BTNS 极板原始数据 C1 井径 C2 井径 C3 井径 CAL 井径 CAL1 井径 CAL2 井径 CALI 井径 CALS 井径 CASI 钙硅比 CBL 声波幅度 CCL 磁性定位 CEMC 水泥图 CGR 自然伽马 CI 总能谱比 CMFF 核磁共振自由流体体积 CMRP 核磁共振有效孔隙度 CN 补偿中子 CNL 补偿中子 CO 碳氧比 CON1 感应电导率 COND 感应电导率 CORR 密度校正值 D2EC 200兆赫兹介电常数 D4EC 47兆赫兹介电常数 DAZ 井斜方位 DCNT 数据计数 DEN 补偿密度 DEN_1 岩性密度 DEPTH 测量深度 DEV 井斜 DEVI 井斜 DFL 数字聚焦电阻率 DIA1 井径 DIA2 井径 DIA3 井径 DIFF 核磁差谱 DIP1 地层倾角微电导率曲线1 DIP1_1 极板倾角曲线 DIP2 地层倾角微电导率曲线2 DIP2_1 极板倾角曲线 DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线 DIP4 地层倾角微电导率曲线4 DIP4_1 极板倾角曲线 DIP5 极板倾角曲线 DIP6 极板倾角曲线 DRH 密度校正值 DRHO 密度校正值 DT 声波时差 DT1 下偶极横波时差 DT2 上偶极横波时差 DT4P 纵横波方式单极纵波时 差 DT4S 纵横波方式单极横波时 差 DTL 声波时差

测井曲线的识别及应用

第一讲测井曲线的识别及应用 钻井取芯、岩屑录井、地球物理测井是目前比较普及的三种认识了解地层的方法。钻井获取的岩芯资料直观、准确,但成本高、效率低。岩屑录井简便、及时,但干扰因素多,深度有误差,岩屑易失真。测井是一种间接的录井手段,它是应用地球物理方法,连续地测定岩石的物理参数,以不同的岩石存在着一定物性差别,在测井曲线上有不同的变化特征为基础,利用各种测井曲线显示的特征、变化规律来划分钻井地质剖面、认识研究储层的一种录井方法;具有经济实用、收获率高、易保存的优势,是目前我们认识地层的主要途径。 鄂尔多斯盆地常规测井系列分为综合测井和标准测井两种。 综合测井系列:重点反映目的层段钻井剖面的地层特征。测量井段由井底到直罗组底部,比例尺1:200。由感应、八侧向、四米电阻、微电极、声速、井径、自然电位、自然咖玛八种测井方法组成。探井、评价井为了提高储层物性解释精度,加测密度和补偿中子两条曲线。 标准测井系列:全面反映钻井剖面地层特征,测量井段由井底到井口(黄土层底部),比例尺1:500,多用于盆地宏观地质研究。过去标准测井系列较单一,仅有视电阻率、自然咖玛测井等两三条曲线。近几年完钻井的标准测井系列曲线较完善,只比综合测井系列少了微电极测井一项。 一、测井曲线的识别 微电极系测井、四米电阻测井、感应—八侧向测井、都是以测定岩石的电阻率为物理前提,但曲线的指向意义各异。微电极常用于判断砂岩渗透性和薄层划分。感应—八侧向测井用于判定砂岩的含油水层性能。四米电阻、声速、井径、自然电位、自然咖玛用于砂泥岩性划分。它们各有特定含义,又互相印证,互为补充,所以,我们使用时必须综合考虑。 1、微电极测井 大家知道,油井完钻后由井眼向外围依次是:泥饼、冲洗带、侵入带、地层。泥饼是泥浆中的水分进入地层后,吸附、残留在砂岩壁上的泥浆颗粒物。冲洗带是紧靠井壁附近,地层中的流体几乎被钻井液全部赶走了的部分;其深入地层的范围一般约7—8厘米。侵入带是钻井液与地层中流体的混合部分。

测井资料交会图法在火山岩岩性识别中的应用

文章编号 1004Ο5589(2003)02Ο0136Ο05 测井资料交会图法在火山岩岩性识别中的应用 赵 建 高福红 吉林大学地球科学学院,长春130026 摘 要 在火山岩储层研究中,岩性识别显得越来越重要。在评述目前常用的岩性识别方法后,重点以测井资料交会图法为例,以松辽盆地徐家围子断陷升平气田深层白垩系营城组火山岩为对象,优选出密度测井、自然伽玛测井、声波测井、电阻率、钍铀等测井项目的数据进行交会,编制出测井曲线交会图版,并以此为依据识别出该区的火山岩主要岩性有:安山岩、玄武岩、流纹岩和凝灰岩等。识别结果与实际情况相吻合。 关键词 火山岩 岩性识别 交会图 中图分类号 P588.1 文献标识码 A 收稿日期 2002Ο11Ο04;改回日期 2003Ο03Ο20 作者简介 赵 建(1976-),男,河南周口人,硕士研究生,从事含油气盆地研究. 通讯作者简介 高福红(1962-),女,辽宁朝阳人,副教授,从事沉积学和含油气盆地研究. Application of Crossplots B ased on Well Log Data in Identifying Volcanic Lithology Jian Zhao ,Fuhong G ao College of Earth Sciences ,Jili n U niversity ,Changchun ,130061Chi na Abstract Lithologyical identification is becoming increasingly important in the study of volcanic rock reser https://www.sodocs.net/doc/3311253104.html,mon methods in identifying volcanic lithology are introduced briefly here.The volcanic rocks of Y ingcheng Formation in Shengping G as Field are used as examples and well log crossplots are compiled based on the following data :density log ,gamma 22ray log ,acoustic log ,resistivity log ,thorium and uranium log.By this means ,andesite ,basalt ,rhyolite and tuff are identified.The identification result is well coincident with the lithological fact in the area. K ey w ords volcanic rock ,lithology identification ,crossplot 1 概 述 火成岩油气藏目前已成为世界油气田勘探开发的一个新领域。在美国、前苏联、古巴和墨西哥等很多国家都有这类油气藏被发现[1]。我国大多数油田也相继发现有这类储层。例如在准噶尔盆地西北缘的石炭系和二叠系中发现了一批火山岩油藏,而且探明的地质储量相当可观;二连盆地白垩系地层中、黄骅凹陷北堡地区、苏北地区等相继发现了火山岩储层油气藏。目前,在松辽盆地北部营城组火山岩地层油气勘探也取得了较好的效果。所有这些都 展示了火山岩良好的勘探前景。对这类特殊的储层 进行研究时,要进行火山岩岩性识别。识别含油气盆地中的火山岩岩性最直接有效的方法是岩心分析,但是考虑到油田上的生产效益,深层钻井取心成本很高,因此不可能在每口井中都取心,加上过去的老井在钻探过程中,遇到火山岩层时常常又不够重视,所以取心更是很少。因此利用间接的方法进行岩性识别成了必然。 在不同的地区,由于喷发方式和所处的构造不同,火山岩的岩性具有很大差异,岩石类型多样化,结构、构造复杂化。比如在我国中部的石西地区火 世界地质 G lobal G eology ,2003,22(2):136~140

测井曲线符号极其单位符号

第一道主要为反映岩性的测井曲线道,包括: 自然电位测井曲线――曲线符号为SP、记录单位mv; 自然伽马测井曲线――曲线符号为GR、记录单位API; 井径测井曲线――曲线符号为CAL,记录单位in或cm; 岩性密度测井曲线(光电吸收界面指数)――曲线符号为PE; 第二道是深度道;通常的深度比例尺为1:200 或1:500 第三道是反映含油性的测井曲线道,包括深中浅三条电阻率测井曲线,分别是: 深侧向测井曲线――曲线符号为LLD、记录单位Ωm; 浅侧向测井曲线――曲线符号为LLS、记录单位Ωm; 微球形聚焦测井曲线――曲线符号为MSFL、记录单位Ωm; 电阻率测井曲线通常为对数刻度。 第四道为反映孔隙度的测井曲线道,包括: 密度测井曲线――曲线符号为DEN或RHOB,记录单位g/cm3; 中子测井曲线――曲线符号为CNL或PHIN,记录单位%,有时为v/v。 声波测井曲线――曲线符号为AC或DT,记录单位us/ft,有时为us/m。 中子和密度测井曲线的刻度的特点是保证在含水砂岩层上两条曲线重迭,在含气层上,密度孔隙度大于中子孔隙度,在泥岩层上,中子孔隙度大于密度孔隙度; 第五道是反映粘土矿物类型的测井曲线道,包括自然伽马能谱测井中的三条曲线: 放射性钍测井曲线――曲线符号为Th或THOR,记录单位是ppm; 放射性铀测井曲线――曲线符号为U或URAN,记录单位ppm; 放射性钾测井曲线――曲线符号为K或POTA,记录单位%,有时为v/v。 测井曲线中英文名称对照

测井曲线英文与汉字名称对照代码名称 A1R1 T1R1声波幅度 A1R2 T1R2声波幅度 A2R1 T2R1声波幅度 A2R2 T2R2声波幅度 AAC 声波附加值 AAVG 第一扇区平均值 AC 声波时差 AF10 阵列感应电阻率 AF20 阵列感应电阻率 AF30 阵列感应电阻率 AF60 阵列感应电阻率 AF90 阵列感应电阻率 AFRT 阵列感应电阻率 AFRX 阵列感应电阻率 AIMP 声阻抗 AIPD 密度孔隙度 AIPN 中子孔隙度 AMAV 声幅 AMAX 最大声幅 AMIN 最小声幅 AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅 AO10 阵列感应电阻率 AO20 阵列感应电阻率 AO30 阵列感应电阻率 AO60 阵列感应电阻率 AO90 阵列感应电阻率 AOFF 截止值 AORT 阵列感应电阻率 AORX 阵列感应电阻率 APLC 补偿中子 AR10 方位电阻率 AR11 方位电阻率 AR12 方位电阻率 ARO1 方位电阻率 ARO2 方位电阻率 ARO3 方位电阻率

测井曲线代码一览表

测井曲线代码一览表 测井类资料2009-08-07 16:01 阅读437 评论0 字号:大大中中小小 from 石油科技论坛 常用测井曲线名称 测井符号英文名称 中文名称 Rt true formation resistivity. 地层真电阻率 Rxo flushed zone formation resistivity 冲洗带地层电阻率 Ild deep investigate induction log 深探测感应测井 Ilm medium investigate induction log 中探测感应测井 Ils shallow investigate induction log 浅探测感应测井 Rd deep investigate double lateral resistivity log 深双侧向电阻率测井 Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井 RMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井 AC acoustic 声波时差 DEN density 密度 CN neutron 中子 GR natural gamma ray 自然伽马 SP spontaneous potential 自然电位

CAL borehole diameter 井径 K potassium 钾 TH thorium 钍 U uranium 铀

KTH gamma ray without uranium 无铀伽马 NGR neutron gamma ray 中子伽马 5700系列的测井项目及曲线名称 Star Imager 微电阻率扫描成像 CBIL 井周声波成像 MAC 多极阵列声波成像 MRIL 核磁共振成像 TBRT 薄层电阻率 DAC 阵列声波 DVRT 数字垂直测井 HDIP 六臂倾角 MPHI 核磁共振有效孔隙度 MBVM 可动流体体积 MBVI 束缚流体体积 MPERM 核磁共振渗透率 Echoes 标准回波数据 T2 Dist T2分布数据 TPOR 总孔隙度 BHTA 声波幅度 BHTT 声波返回时间 Image DIP 图像的倾角 COMP AMP 纵波幅度 Shear AMP 横波幅度 COMP ATTN 纵波衰减 Shear ATTN 横波衰减 RADOUTR 井眼的椭圆度 Dev 井斜 原始测井曲线代码 AMP5 第五扇区的声幅值 AMP6 第六扇区的声幅值 AMVG 平均声幅 AO10 阵列感应电阻率

相关主题