搜档网
当前位置:搜档网 › 试验二 快速法压缩试验

试验二 快速法压缩试验

试验二 快速法压缩试验
试验二 快速法压缩试验

试验二快速法压缩试验

(一)试验目的

固结试验的目的在于绘制压缩曲线,求得土的压缩性指标a、Es等,利用它们可进行地基的变形等有关计算,以及判断土的压缩性。

(二)试验原理

试样装在厚壁金属容器内,上下各放透水石一块,然后在试样上分级施加垂直压力P,测记加压后不同时间的垂直变形△H,由压缩前后土的体积变化,如图2-1可得:

()()

010011

0101

00000

s V s V

s V

H H A V V V V

H H V V

H H A V V V

-+-+

--

===

+

土粒的压缩常可忽略不计,故V S0 =V S1

即压缩前后固体颗粒的体积不变,代入上式得:

若测得稳定压缩变形量△H,则可由上式求得相应的孔隙比e1,同样,在P2、P3、P4作用下测得稳定压缩变形量,并求得相应的e2、e3、e4等,这样就可绘制e-P曲线,依此计算各指标。

(三)试验设备及仪器

1.压缩(固结)仪,本试验采用杠杆加压式(图2-2)包括:

(1)固结容器

(2)加力及传力设备:传力杠杆、平衡锤、砝码等;

(3)切取试样用的环刀,内径一般为8cm,面积为50cm2,高2cm。

(4)测微计(精度1/100mm)

1

1

1

1

1e

e

e

V

V

V

V

V

V

V

V

V

V

V

V

H

H

H

H

H

s

v

s

s

s

v

s

v

v

s

v

v

+

-

=

-

-

=

+

-

=

?

=

-

s

H

H

e

e

H

H

e

e

?

-

=

+

?

-

=

1

)

1(

图2-1 压缩前后土的体积变化示意图

图2–2 固结仪示意图

1–水槽;2–护环;3–环刀;4–加压上盖;

5–透水石;6–量表导杆;7–量表架;8–试样

(5)其他:秒表、天平、烘箱、切土刀(或钢丝锯)、凡士林等。

(四)试验步骤

1.整平土样两端,用环刀套切土样,在切取土样时应注意下列几点:

(a)土层受压方向应与天然土层受压方向一致。

(b)环刀内壁涂一薄层凡士林,以减少土样与环刀壁的摩擦及土样扰动。

(c)切土样时,先将环刀刃向下压入土样少许,将土样修成略大于环刀直径的土样,边修边压,直至土样突出环刀为止,然后修去上下两端余土,刮平土样表面。(注意不得来回涂抹)。

在切削过程中,细心观察土样,进行必要的描述。

2.将环刀外壁擦净,称环刀加土质量准确至0.1g,计算密度用。

3.将金属底板放入容器内,在其上顺序放上湿润而洁净的透水石滤纸各一,将装有土样的环刀(刃口向下)放在护环内,将护环放入容器内,再在试样上放滤纸、透水石和传压盖。

4.将装好的固结容器放在加压设备正中,装上测微表,并调节其可伸长距离不小于8mm,然后检查测微表是否灵敏和垂直。

5.在砝码盘上加初始荷重50g(土样所受压力1kPa),以便使仪器上下各部件之间接触贴妥,然后转动测微表表盘,使指针对准零点。

6.加第一级荷重P1=50kPa,注意加砝码要轻,避免发生冲击。

如系饱水试验,应向固结容器内注水,使土样处在水下。

7.在加荷的同时,开动秒表,记录测微表读数,测记时间一般为15",1',2'15",4',6'15",9',12'15",16'(水利部《土工试验规程》规定快速法压缩试验应测读1小时,最后一级荷载除测定1小时读书,还需稳定度数,稳定标准为每小时的压缩量不超过0.005mm)。

8.重复上述步骤继续加荷P2=100kPa,P3=200kPa,P4=400kPa(最终加荷量应根据实际工程需要而定)。

9.在最后一级荷重下,除测记上述读数外,还需测记加荷30'读数,然后拆除测微计,卸下砝码从固结容器内取出环刀与土样,用滤纸吸去附在土样表面及环刀外水份,称环刀加土质量以求试验后的密度。

10.将环刀中的土样推出,从其内部取两试样,测定试验后的含水率,用以计算压缩的孔隙比。

进入动画(固结试验)

(五)计算及绘图

1.计算

(1)试验前土样孔隙比e0:

式中:1W —环刀+湿土质量,g 0W =环刀质量,g

ω—试验前土样的含水率,%

V —环刀容积,cm 3

G s —土粒比重。

ρd ——试样干密度,g/cm 3

ρ—试样密度,g/cm 3

(2)试样土骨架高度:

式中:H —试验前土样高度,即环刀高度2cm 。 (3)各级荷载在加荷后的16'及最后一级荷载30'的土样孔隙比e :

△H 2—各级荷载作用下仪器的变形。(试验室给出)

△H 1—各级荷载加荷后16'与最后一级荷载加荷后30'的测微计读数

(4)按下式计算压缩系数,压缩模量

2.绘图:

(1)根据不同荷载下,不同时间测微计的读数(减去仪器变形)绘制土的变形△H 与时间t 的关系曲线。

(2)绘出土的压缩曲线即e~p 曲线。

3.校正:

上述试验方法是教学用的快速压缩试验,按正常方法进行压缩试验,每级荷载作用下一般需经过24小时。但通过比较试验得知,厚度为2cm 的试样,在荷载作用下,一小时的固结度可达到0.9以上,因此《土工试验规程》中列有一小时快速压缩试验法,即各级荷载作用下只读到一小时仅在最后一级荷载下,除测记一小时的量表读数外还应测记24小时的量表读数,然后对压缩曲线进行校正,可得与正常慢压法近似的结果。而教学试验只采用的是16分钟快速法,校正方法种类很多,我们采用直线比例校正法。

直线比例校正法假设:各级荷载P n 作用下,P n 值与相应一小时(或16')的 与相应24小时(或30')的e n 的差值 之比 ,为一常数。 (1)按下式求出校正后孔隙比e 1,e 2,e 3 P 1: P 2:)

e -e (:)e -e (:)e -e (:)(P :4433221142'''-'=e e P 已知:)

e -e (e 444'=? V W W 01-=ρω+ρ=ρ0101.d 10-ρρ?=ωd

s G e 01e H

H s +=

s H H

e e ?-=02

1H H H ?-?=?233221P P e e a --=-2101-+=a e E s n e '

)e e (n n -')(n

n n e e P -'

)(P P -e e )(P P -e e )(P P -e e 44

333442224411

1e e e ?'=?'=?'=∴

实验二金属材料的压缩试验1

实验二金属材料的压缩试验 实验时间:设备编号:温度:湿度一、实验目的 二、实验设备和仪器 三、实验数据及处理 材料 直径d o(mm)高度 l(mm) L d o 截面积A0 (mm 2 ) 屈服载荷 F s(K N) 最大载荷 F b(K N) 1 2 平均 低碳钢铸铁

载荷一变形曲线(F—△l曲线)及结果 材料低碳钢铸铁F—△l曲线 断口形状 实验结果屈服极限ós=屈服极限ób= 四、问题讨论 (1)观察铸铁试样的破坏断口,分析破坏原因; (2)公析比较两种材料拉伸和压缩性质的异同。

金属村翻盖的压缩试验 原始试验数据记录 实验指导老师: 200 年月日

实验四金属扭破坏实验、剪切弹性模量测定 实验时间:设备编号:温度:湿度一、实验目的 二、实验设备和仪器 三、实验数据及处理 弹性模量E= 泊松比μ= 实验前 材料标距 L0(mm) 直径d0(mm)平均极惯 性矩I p (mm4) 最小抗扭 截面模量 W T (mm3)截面I 截面II 截面III 1 2 平均 1 2 平均 1 2 平均 低碳钢铸铁

低碳钢钢剪切弹性模量测定 扭矩T(K N)扭转角(rad)扭转角度增量(rad)△φT0= T1 T2 T0 T3 T4 T5 △T= 理论值相对误差 截荷-变形曲线(F-△l曲线及结果) 材料低碳钢铸铁 T—φ曲线 断口形状 实验记录屈服扭矩T s 破坏扭矩T b 破坏扭矩T b 实验结果屈服极限t s 强度极限t b

四、问题讨论 (1)为什么低碳钢试样扭转破坏断面与横截面重合,而铸铁试样是与试样轴线成450螺旋断裂面? (2)根据低碳钢和铸铁拉伸、压缩、扭转试验的强度指标和断口形貌,分析总结两类材料的抗拉、抗压、抗剪能力。

固结试验

固结试验 一、试验目的 测定试样在完全侧限与轴向排水条件下,变形和压力的关系或孔隙比与压力关系,变形和时间的关系,以便计算土的压缩系数、压缩指数、压缩模量、固结系数等。 二、试验原理 土在外荷载作用下,水和空气逐渐被挤出,土骨架颗粒之间相互挤密,封闭气体的体积缩小,从而引起土的固结变形。 三、试验方法 1.快速固结法:规定试样在各级压力下的固结时间为1小时,仅在最后一级压力下除测记1小时的量表读数外,还应测读达压缩稳定时的量表读数,一般为24小时。 2.标准固结法:各级荷载以24小时为稳定标准,按照规定时间:6s、15s、1min、2min15s、4min、6min15s、9min、12 min 15s…….24h,至稳定为止。读数计算沉降量。 本次试验课因时间问题,采用“标准固结法”,每级荷载假设9min固结稳定。 四、仪器设备 ①三联固结仪;②环刀(高=2cm,面积=30cm2)、刮土刀、天平、秒表等。 五、试验步骤 1.将环刀内侧涂上一层凡士林,刀刃相下放在土样上。 2.用刮土刀将环刀均匀压入土样,高出环刀上沿1-2mm为宜,然后用钢丝锯和刮土刀将土样两端刮平。 3.擦干净环刀外层称其质量,取贴近环刀的余土测含水率。 4.将土样放入固结容器内,试样上依次放置护环、滤纸、透水板、加压盖。 5.将固结容器放置于固结仪加压框中,安装百分表并施加1kPa预压力后百分表调零。 6.按照试验方案加初级荷载,加荷后按6s、15s、1min、2min15s、4min、6min15s、9min…时间顺序读数。 7.固结稳定后,施加下一级荷载并按上述时间读数直至加荷结束。 8.试验结束后,拆除试验,清理试验仪器。 六、成果整理 1.计算公式 1.试验记录表

金属材料的压缩实验

金属材料的压缩实验 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

金属材料压缩实验 一、预习要求 1、电子万能材料试验机在实验前需进行哪些调整如何操作 2、简述测定低碳钢弹性模量E 的方法和步骤。 3、实验时如何观察低碳钢压缩时的屈服极限 三、材料压缩时的力学性能测定 (一)实验目的 1、测定低碳钢压缩时的屈服极限σs 和铸铁压缩时的强度极限σb 。 2、观察比较两种材料压缩破坏现象。 (二)实验仪器及试样 1、万能材料试验机。 2、游标卡尺。 3、压缩试样。压缩试样通常为圆柱形,也分短、长两种(图4a 和b )。短试样用于测定材料抗压强度,通常规定310 ≤≤ d h ;长试样多用于测定钢、铜等材料的弹性 常数E 、μ等。 (三)实验原理 (四)实验步骤及数据处理 1、测量试样尺寸 测定试样的初始高度和直径,并记录到表3中。测定直径时,需在试样中部量取 互相垂直的两个方向的数据取平均值。 2、调整试验机 选择合适的摆锤和示力度盘,自动绘图装置上安装好纸和笔,开动油泵电机。 3、低碳钢压缩实验 安放试样到万能材料试验机活动平台上,注意应放在正中央。开动试验机送油阀,先使活动平台快速提升,当试样与上承压板将要接触时,应减少供油量,放缓提升速度以免压缩过程过快使测试失败。当外载荷加上后观察示力指针,当示力指针停顿并有回摆时说明进入屈服阶段,记录下指针回摆的最低点读数,此值即为对应于屈服极限的载荷值P s 。当示力指针继续上升时,此时进入强化阶段,试样出现明显的变形。变形到一定程度后关闭送油阀打开回油阀卸去载荷,观察试样变形情况。 4、铸铁的压缩实验 准备工作与低碳钢压缩相同。安装好试样后打开送油阀对试样进行压缩直到压断后卸去载荷,通过示力盘上从动指针位置读出最大载荷,此值即为对应于强度极限的载荷值P b 。 5、数据处理 根据测定的试样尺寸计算出试样的横截面积,得: 低碳钢的屈服极限 A P s s = σ 图4 压缩试样

(土工)固结实验(报告)

固结实验报告 专业班级学号姓名同组者姓名(写一个)实验编号实验名称固结实验 实验日期批报告日期成绩 一、实验目的 土的固结试验可测定土的压缩系数、压缩模量、体积压缩系数、压缩指数、回弹指数、竖向固结系数、水平向固结系数以及先期固结压力,为计算分析土的变形特性提供依据。 二、实验原理 土在外荷载作用下,其空隙间的水和空气逐渐被挤出,土的骨架颗粒之间相互挤紧,封闭气泡的体积也将缩小,从而引起土体的压缩变形。 三、实验仪器 1、小型固结仪:包括压缩容器和加压设备两部分,环刀(内径Ф61.8mm,高20mm,面积30cm2),单位面积最大压力4kg/cm2;杠杆比1:10。 2、测微表:量程10mm,精度0.01mm。 3、天平,最小分度值0.01g及0.1g各一架。 四、实验步骤 1、按工程需要选择面积为30cm2的切土环刀取土样。 2、在固结仪的固结容器内装上带有试样的切土环刀(刀口向下),在土样两端应贴上洁净而润湿的滤纸,放上透水石,然后放入加压导环和加压板以及定向钢球。 3、检查各部分连接处是否转动灵活;然后平衡加压部分。 4、横梁与球柱接触后,插入活塞杆,装上测微表,并使其上的短针正好对 R。 准6字,再将测微表上的长针调整到零,读测微表初读数0

5、加载等级:按教学需要本次试验定为0.5、1.0、2.0、3.0、4.0、每级荷载经10分钟记下测微表读数,读数精确到0.01mm。然后再施加下一级荷载,以此类推直到第五级荷载施加完毕,记录测微表读数R1、R2、R3、R4、R5。 7、试验结束后,必须先卸下测微表,然后卸掉砝码,升起加压框架,移出压缩仪器,取出试样后将仪器擦洗干净。 五、注意事项 1、使用仪器前必须严格按程序进行操作,对仪器不清楚的地方马上问老师 2、试验过程中不能卸载,百分表也不用归零。 六、实验数据记录与处理 压缩曲线

实验3-金属材料的压缩实验

实验三 金属材料的压缩实验 一、实验目的 1.测定低碳钢(Q235 钢)的压缩屈服点sc σ和铸铁的抗压强度bc σ。 2.观察、分析、比较两种材料在压缩过程中的各种现象。 二、设备和仪器 1.WES-600S 型电液式万能试验机。 2.游标卡尺。 三、试样 采用1525??(名义尺寸)的圆柱形试样。 四、实验原理 低碳钢(Q235 钢)试样压缩图如图3-1b 所示。试样开始变形时,服从胡克定律,呈直线上升,此后变形增长很快,材料屈服。此时载荷暂时保持恒定或稍有减小,这暂时的恒定值或减小的最小值即为压缩屈服载荷F SC 。有时屈服阶段出现多个波峰波谷,则取第一个波谷之后的最低载荷为压缩屈服载荷F SC 。尔后图形呈曲线上升,随着塑性变形的增长,试样横截面相应增大,增大了的截面又能承受更大的载荷。试样愈压愈扁,甚至可以压成薄饼形状(如图3-1a 所示)而不破裂,因此测不出抗压强度。 铸铁试样压缩图如图3-2a 所示。载荷达最大值F bc 后稍有下降,然后破裂,能听到沉闷的破裂声。 铸铁试样破裂后呈鼓形,破裂面与轴线大约成45o ,这主要是由切应力造成的。 图3-1 低碳钢试样压缩图 图3-2 铸铁试样压缩图 五、实验步骤 1.测量试样尺寸 用游标卡尺在试样高度重点处两个相互垂直的方向上测量直径,取其平均值,记录数据。

2.开机 打开试验机及计算机系统电源。 3.实验参数设置 按实验要术,通过试验机操作软件设量试样尺寸等实验参数。 4.测试 通过试验机操作软件控制横梁移动对试样进行加载,开始实验。实验过程中注意曲线及数字显示窗口的变化。实验结束后,应及时记求并保存实验数据。 5.实验数据分析及输出 根据实验要求,对实验数据进行分析,通过打印机输出实验结果及曲线。 6.断后试样观察及测量 取下试样,注意观察试样的断口。根据实验要求测量试样的延伸率及断面收缩率 7.关机 关闭试验机和计算机系统电源。清理实验现场.将相关仪器还原。 六、实验结果处理 1. 参考表3-1记录实验原始数据。 表3-1 实验原始数据记录参考表 2. 实验数据处理 据低碳钢(Q235 钢)压缩实验所得到的屈服载荷sc F 计算低碳钢的压缩屈服点sc σ: sc sc 0 F A σ= (3-1) 据铸铁压缩实验所得到的最大载荷bc F 计算铸铁的抗压强度bc σ: bc bc 0 F A σ= (3-2) 七、实验报告要求 包括实验目的,设备名称、型号,实验原始数据记录(列表表示)与实验数据处理,试样破坏形状示意图,分析讨论。

固结试验

固结试验 姓名:学号:班级: 一、试验目的 测定试样在侧限与轴向排水条件下的压缩变形△h和荷载P的关系,以便计算土的单位沉降量S1、压缩系数a v和压缩模量E s等。 二、试验方法 土的压缩性主要是由于孔隙体积减少而引起的。在饱和土中,水具有流动性,在外力作用下沿着土中孔隙排出,从而引起土体积减少而发生压缩,试验时由于金属环刀及刚性护环所限,土样在压力作用下只能在竖向产生压缩,而不可能产生侧向变形,故称为侧限压缩。 三、试验设备 1.固结仪:如附图8-1所示,试样面积30cm2,高2cm。 2.量表:量程10mm,最小分度0.01mm。 3.其它:刮土刀、电子天平、秒表。 四、试验步骤 (1)切取试样:用环刀切取原状土样或制备所需状态的扰动土样。

(2)测定试样密度:取削下的余土测定含水率,需要时对试样进行饱和。 (3)安放试样:将带有环刀的试样安放在压缩容器的护环内,并在容器内顺次放上底 板、湿润的滤纸和透水石各一,然后放入加压导环和传压板。 (4)检查设备:检查加压设备是否灵敏,调整杠杆使之水平。 (5)安装量表:将装好试样的压缩容器放在加压台的正中,将传压钢珠与加压横梁的凹穴相连接。然后装上量表,调节量表杆头使其可伸长的长度不小于8mm,并检查量表是否灵活和垂直(在教学试验中,学生应先练习量表读数)。 (6)施加预压:为确保压缩仪各部位接触良好,施加1kPa的预压荷重,然后调整量表 读数至零处。 (7)加压观测: 1)荷重等级一般为50、100、200、400kPa。 2)如系饱和试样,应在施加第一级荷重后,立即向压缩容器注满水。如系非饱和试 样,需用湿棉纱围住加压盖板四周,避免水分蒸发。 3)压缩稳定标准规定为每级荷重下压缩24小时,或量表读数每小时变化不大于0.005 mm认为稳定(教学试验可另行假定稳定时间)。测记压缩稳定读数后,

固结实验报告

图6-1 固结仪示意图 1-水槽 2-护环 3-环刀 4-导环 5-透水石 6-加压上盖 7-位移计导杆 8-位移计架 9-试样 实验四 固结试验 实验人: 学号: 一、概述 土的压缩性是指土在压力作用下体积缩小的性能。在工程中所遇到的压力(通常在16kg/cm 2以内)作用下,土的压缩可以认为只是由于土中孔隙体积的缩小所致(此时孔隙中的水或气体将被部分排出),至于土粒与水两者本身的压缩性则极微小,可不考虑。 压缩试验是为了测定土的压缩性,根据试验结果绘制出孔隙比与压力的关系曲线(压缩曲线),由曲线确定土在指定荷载变化范围内的压缩系数和压缩模量。 二、仪器设备 1、小型固结仪:包括压缩容器和加压设备两部分,环刀(内径Ф61.8mm ,高20mm ,面积30cm 2),单位面积最大压力4kg/cm 2;杠杆比1:20。 2、测微表:量程10mm ,精度0.01mm 。 3、天平,最小分度值0.01g 及0.1g 各一架。 4、毛玻璃板、滤纸、钢丝锯、秒表、烘箱、削土刀、凡士林、透水石等。 三、操作步骤 1、按工程需要选择面积为30cm 2的切土环刀,环刀内壁涂上一薄层凡士林,刀口应向下放在原状土或人工制备的扰动土上,切取原状土样时应与天然状态时垂直方向一致。 2、小心边压边削,注意避免环刀偏心入土,应使整个土样进入环刀并凸出环刀为止,然后用钢丝锯或修土刀将两端余土削去修平,擦净环刀外壁。

3、测定土样密度,并在余土中取代表性土样测定其含水率,然后用圆玻璃片将环刀两端盖上,防止水分蒸发。 4、在固结仪的固结容器内装上带有试样的切土环刀(刀口向下),在土样两端应贴上洁净而润湿的滤纸,放上透水石,然后放入加压导环和加压板以及定向钢球。 5、检查各部分连接处是否转动灵活;然后平衡加压部分(此项工作由实验室代做)。即转动平衡锤,目测上杠杆水平时,将装有土样的压缩部件放到框架内上横梁下,直至压缩部件之球柱与上横梁压帽之圆弧中心微接触。 6、横梁与球柱接触后,插入活塞杆,装上测微表,使测微表表脚接触活塞杆顶面,并调节表脚,使其上的短针正好对准6字,再将测微表上的长针调整到零,读测微表初读数 R 。 7、加载等级:按教学需要本次试验定为0.5、1.0、2.0、3.0、4.0kg/cm 2五级;即50、100、200、300、400Kpa (1Kpa=0.001N/mm 2)五级荷重系累计数值),如第一级荷载0.5kg/cm 2需加砝码1.5kg 以后三级依次计算准确后加入砝码,加砝码时要注意安全,防止砝码放置不稳定而受伤。 8、每级荷载经10分钟记下测微表读数,读数精确到0.01mm 。然后再施加下一级荷载,以此类推直到第五级荷载施加完毕,记录测微表读数R1、R2、R3、R4、R5。 9、试验结束后,必须先卸下测微表,然后卸掉砝码,升起加压框架,移出压缩仪器,取出试样后将仪器擦洗干净。 四、成果整理 1、按下式(6-1)计算试样的初始孔隙比0e : () 1 10 00-+?= ρρw d e w s (6-1) 式中 s d —土粒比重; w ρ—水的密度,一般可取1g/cm 3; 0w —试样初始含水率; 0ρ—试样初始密度(g/cm 3)。 2、按下式(6-2)计算试样中颗粒净高s h : 00 1e h h s += (6-2) 式中 0 h —试样的起始高度,即环刀高度(mm )。

金属材料的拉伸与压缩实验

机械学基础实验 指导书 力学实验中心 金属材料的拉伸与压缩实验 1.1 金属材料的拉伸实验 拉伸实验是材料力学实验中最重要的实验之一。任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。 我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。 这个实验是研究材料在静载和常温条件下的拉断过程。利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。 试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。例如: 对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。 为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式: 图1-1 1. 10倍试件; 圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.650S = 045 S d 0——试验前试件计算部分的直径;

金属材料的压缩实验

金属材料压缩实验 一、预习要求 1、电子万能材料试验机在实验前需进行哪些调整?如何操作? 2、简述测定低碳钢弹性模量E的方法和步骤。 3、实验时如何观察低碳钢压缩时的屈服极限? 三、材料压缩时的力学性能测定 (一)实验目的 1、测定低碳钢压缩时的屈服极限os和铸铁压缩时的强度极限Ob。 2、观察比较两种材料压缩破坏现象。 (二)实验仪器及试样 1、万能材料试验机。 2、游标卡尺。 3、压缩试样。压缩试样通常为圆柱形,也分短、长两种 (图4a和b)。短试样用于测定材料抗压强度, 通常规定1乞加 _3 ;长试样多用于测定钢、铜等材 d o 料的弹性常数E、卩等。 图4压缩试样 (三)实验原理 1x低碳钢压缩试验 低碳钢在压缩时的F■川曲线见图1-1。在屈服之前,曲线与拉忡时相同. 在屈服之后的曲线,就与拉伸不同了。在弹性范由内,加裁速率应控制在1?10M^a/s.在 明显與性变Jg范围内.加載的应变速率应控制在(100-500) X 10-6/s之间.材料受压 屈眼时,变形继续增大,载荷保持不变或者岀现波动,如图所示。从图中读出压缩屈服荷载P Q然后计算压缩屈服点。 % =瓷<1-1> 耳试件轴线成45°斜截而卜的剪阖力是便材料发生滑移.即屈服的原因a 由林料力学知道”无论试件截面上的正应力是拉应力还是压应力*只要大小相同,则在45°斜 載面上产生的剪应力大小都是相同的,因此%与q应是相等或相近的* 屈服过后,试件变短,横橡面积变大,F-小曲线继续上升,宜至试件被压威饼状。因此低碳钢压缩试验不能测岀其强度极限. 2.错铁压编试验 铸扶压縮时的P-AI曲线呈非线性,见图1-2. 脆性材料受压试件的破坏是个复朵的外部施力、内部损伤破坏的力学过程。国内外都在研讨、争论这节问题。试件端部的受力状态与试件的破坏形式冇首密切关 系°不加任何垫片时.铸铁试件沿着与轴线成45。-55。方向破坏.破坏时斜面卜的剪 应力■同样的材料在剪切试验中所测得的剪切破坏极限%相当接近。试件两端面加垫薄片(三合板〉时”其受压破坏形式和前者冇较大差舁口 抗压强度按下式计算’ (1-2)

实验二低碳钢和铸铁的压缩实验

实验二金属材料(低碳钢和铸铁)的压缩实验 一、实验目的 (1)比较低碳钢和铸铁压缩变形和破坏现象。 (2)测定低碳钢的屈服极限σs和铸铁的强度极限σb。 (3)比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因。 二、验仪器和设备 (1)万能材料试验机。 (2)游标卡尺。 三、试件介绍 根据国家有关标准,低碳钢和铸铁等金属材料的压缩试件一般制成圆柱形试件。低碳钢压缩试件的高度和直径的比例为3:2,铸铁压缩试件的高度和直径的比例为2:1。试件均为圆柱体。 四、实验原理及方法 压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较,可以分析不同应力状态对材料强度、塑性的影响,从而对材料的机械性能有比较全面的认识。 压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。摩擦力的存在会

影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。 低碳钢压缩时也会发生屈服,但并不象拉伸那样有明显的屈服阶段。因此,在测定Ps 时要特别注意观察。在缓慢均匀加载下,测力指针等速转动,当材料发生屈服时,测力指针转动将减慢,甚至倒退。这时对应的载荷即为屈服载荷Ps。屈服之后加载到试件产生明显变形即停止加载。这是因为低碳钢受压时变形较大而不破裂,因此愈压愈扁。横截面增 ,因此也得不到强度极大时,其实际应力不随外载荷增加而增加,故不可能得到最大载荷P b ,所以在实验中是以变形来控制加载的。 限 b 前出现较明显的变形然后破裂,此时试验机测力铸铁试件压缩时,在达到最大载荷P b 指针迅速倒退,从动针读取最大载荷P 值,铸铁试件最后略呈故形,断裂面与试件轴线大 b 约呈450。 图2—2 低碳钢压缩图铸铁压缩图 五、实验步骤 (1)试验机准备。根据估算的最大载荷,选择合适的示力度盘(量程)按相应的操作规程进行操作。 (2)测量试件的直径和高度。测量试件两端及中部三处的截面直径,取三处中最小一处的平均直径计算横截面面积。 (3)将试件放在试验机活动台球形支撑板中心处。 (4)开动试验机,使活动台上升,对试件进行缓慢均匀加载,加载速度为0.5mm/min。对于低碳钢,要及时记录其屈服载荷,超过屈服载荷后,继续加载,将试件压成鼓形即可停

固结试验常规法与快速法对比

固结试验常规法与快速法对比 前言 固结试验是土工试验的常规试验之一,用来测定土的压缩性指标,利用这些指标来计算基础的沉降量。由于市场的需要,拟建建筑物越建越高,现在的固结试验只做常规压缩已经不能满足工程的需要,高压是我们经常需要的做的。为了快速测定压缩性指标,提高工作效率,我们常用快速法来测定。 现在我们取20组各种不同深度土质均匀的土样,进行常规法固结试验与快速法固结试验平行对比,以确定快速法是否适用。 土的压缩 土体在压力作用下体积减小的性质,称为土的压缩性,土体体积缩小包括三个方面: (1)土颗粒本身的压缩; (2)土孔隙水中的水体及封闭在孔隙中的气泡的压缩; (3)土颗粒相对位移,土中水及气体从孔隙中向外排出,从而使土体体积减小。 由于土颗粒及孔隙水的体积压缩变形量很微小,可以忽略不计,所以可将土体压缩看做是土中孔隙体积的减小。 孔隙中水和气体向外排出要有一个时间过程。因此土的压缩亦要经过一段时间才能完成。我们把土的压缩随时间增长的过程称为土的固结。 试验室测定土的压缩性的主要装置为固结仪。试验过程大致为:用金属环刀切取原状土样,然后将土样连同环刀放入圆筒形压缩容器的刚性护环内。在土样上下各放置一块透水石,以便土样受压后排出的水流出。试样的侧向限制是由环刀和刚性护环完成的。试样装好后,逐级加荷,每一级荷载作用下将土样压至稳定得到△hi后,再加下一级荷载。 在这种仪器中进行试验,由于试样不可能产生侧向变形,只有竖向压缩。于是,我们把这种条件下的压缩试验称为单向压缩试验或侧限压缩试验。土的压缩是由于孔隙体积的减小,所以土的变形常用孔隙比e表示。 1、按下式计算初始孔隙化: 2、计算各级荷重下变形稳定后的也隙比:

中国石油大学固结实验报告

中国石油大学海洋岩土力学实验报告 实验日期: 成绩: 班级: 学号: 姓名: 教师: 刘志慧 同组者: 具体实验内容:格式样板如下,字体均用宋体。 固结实验报告 一、实验目的 测定试样在侧限与轴向排水条件下,变形和压力,孔隙比和压力,变形和时间关系,计算土的压缩系数v a ,压缩指数c c ,压缩模量s E 。 二、实验原理(35) 土在外载荷作用下,其空隙间的水和空气逐渐被挤出,土的骨架颗粒之间相互挤紧,封闭气泡的体积也将缩小,从而引起土体的压缩变形。 三、实验仪器设备 固结剪切仪 环刀 凡士林 滤纸 天平 土样 刮刀 钢丝锯 毛玻璃 四、实验步骤 1.将环刀内外涂抹凡士林之后,取土样 2.称取土样的质量 3.将滤纸放在透水石上方,将透水石放入剪切盒中(注意滤纸在透水石上方,将与土壤接触) 4.将滤纸放置在土样上方,将透水石放置在土样上 5.将环刀放置在剪切盒上方,轻轻向下压透水石,将土样放置于剪切盒中 6.拿掉环刀,将剪切盒上盖(传压板)盖在透水石上方 7.将上顶头对准传压板,调整上压头螺钉,使杠杆处于水平或稍微上翘的位置 8.施加100kPa 的力,并按照数据表要求读数 9.待固结稳定之后在第二三四组施加200kPa 的力,并按要求读数 10.待固结稳定之后在第三四组施加300kPa 的力,并按要求读数 11.待固结稳定之后在第四组施加400kPa 的力,并按要求读数 五、实验数据处理(60)(根据实验数据画图p e i -,p e i lg -,计算土的压缩系数v a ,压缩指数c c ,压缩模量s E ) 环刀截面积30cm 2 环刀高度:2cm 土粒比重:2.65 含水率:30% 1.密度试验 环刀质量 环刀土质量 土质量 试样体积 密度g/cm 3 43.13g 159.10g 115.97g 60cm 3 1.93 2.固结实验记录表

实验六 固结试验

实验六固结试验 一、试验目的: 固结试验是测定土体在外力作用下排水、排气、气泡压缩性质的一种测试方法。在一般情况下,土体承受三个主应力的作用,发生三相应变。压缩试验的目的在于测定试样在侧限和轴向排水条件下的变形和压力、变形和时间以及空隙比和压力间的关系,以便绘制压缩曲线,求得土的压缩系数a V、压缩模量E S、,以便来判断土的压缩性和进行变形计算。 二、实验方法: 正常慢固结试验、快速固结试验。本试验因时间关系用快速固结试验法。 三、试验原理: 试样装在厚壁金属容器内,上下各放透水石一块,然后在试样上分级施加垂直压力P。记录加压后不同时间的垂直变形量,绘制不同荷载下垂直变形量Δh与时间t的关系曲线;垂直变形Δh与相应荷载P的关系曲线;空隙比e与荷载P的关系曲线。由于试样受金属厚壁容器的限制,不可能产生侧向膨胀,土样只有垂直变形,故该试验称为侧限压缩试验。通过记录加压前后土样空隙比的变化,建立变形和空隙比的关系,然后计算地基的压缩模量。四、仪器设备: 目前常用的压缩试验仪分杠杆加压式和磅称式两种。本试验用杠杆加压式。常用型号WG—1B三联中压固结仪、WG—1C三联低压固结仪。 1、压缩仪(土样面积30cm2,土样高度2cm),固结压力应满足12.5、25.0、50.0、100.0、200.0、300.0、400.0、600.0、800.0、1600.0kp的等级荷载,杠杆比1:12。 2、测微表(最大量程为10mm、最小分辨率为0.01mm的百分表)。 3、透水石试样上下放透水石,以便于土样受压后土中空隙水排除。

五、操作步骤 1、环刀选用 按工程需要选择(大环刀)50cm2或(小环刀)30cm2切土环刀(本试验用50cm2切土环刀),调整天平平衡,称量环刀的重量m1,计算初始密度ρ0,填入表1中。 2、套切试样前环刀内壁涂一薄层凡士林,以减少试样与环刀壁的摩擦及对试样的扰动。整平试样两端用环刀套切试样。 3、试样制备 切取原状土样时刀口朝下,土层受压方向应与天然土层受压方向一致,并观察土样的层次、颜色、有无杂质等,如有杂质时取出并用余土填补空缺处,小心地边压边削,注意避免环刀偏心入土,将土样修成略大于环刀的土柱,直至试样突出环刀为止,用钢丝锯拉断土样,然后修去上下两端余土,再修平试样两端表面,擦净环刀外壁,称环刀与湿土的质量m2,求得实验前的湿密度ρ0,立即用玻璃板将环刀两端盖上,防止水分蒸发。再用天平称两个铝盒的重量,取10克左右的土样,称两个铝盒加湿土样的重量,放在烘箱烘干8h,称铝盒加干土的重量,计算初始含水量W0,并将有关数据填入表2中。 4、安装试样 装入护环,在固接仪底部的透水石上放湿润的滤纸一张,将带有环刀的试样刀口朝上,再放湿润的滤纸一张,然后放上透水石和加压盖板,以及定向钢球。 5、固接容器和量表安装 将装好的固结容器放在加压框架上,对准加压框架正中,装上量表,并调节其可伸长距离不大于8mm,然后检查量表是否灵敏和垂直,使百分表长针正好对准“0”字,短针对准刻度的中间(注意要将百分表活动杆提到上部再调“0”。) 6、施加预压荷载 在砝码盘上加预压荷载1kp(此时试样所受压力约1kpa),检查试样与仪器上下各部件之间接触是否良好,如果良好则表针转动,然后微调表盘,使长指针对准零点方便计算。 7、施加第一级荷载并测读压缩量 工程上加载大小与级数根据土质实际情况需要确定。本次实验采用常规实验确定用12.5、25、50、100、200、300 、400kpa等四级荷载顺序加压。施加第一级荷载P1=12.5kpa,注意加砝码为吊盘+0.319kg+0.637 kg要轻放,避免发生冲击,在加荷的同时开动秒表,记录表读数。根据SD128-84《土工试验规程》,加荷后按下列时间顺序记录表读数,工程上加载为时间24h,教学试验受时间限制可选择1min、2min、3min、4min、5min、6min、7min、8min 9min、10min所对应的百分表的读数,并填入表3中,卸下第一级荷载,按装荷载的相反顺序取出土样。 8、根据上述施加一级荷载的步骤施加 P1=12.5kpa (吊盘+0.319kg) P2=25kpa (吊盘+0.319kg+0.637kg) P3=50kpa (吊盘+0.319kg+0.637kg+1.275kg)) P4=100kpa(吊盘+0.319kg+0.637kg+1.275kg+2.55kg); P5=200kpa(吊盘+0.319kg+0.637 kg+1.275kg+2.55kg+2.55kg); P6=300kpa(吊盘+0.319kg+0.637 kg+1.275kg+2.55kg+2.55kg+5.1kg) P7=400kpa (吊盘+0.319kg+0.637 kg+1.275kg+2.55kg+2.55kg+5.1kg+5.1kg)等各级荷载,并记录压缩量填在表3中。 9、实验结束,迅速拆除仪器各部件,将环刀中的试样取出,洗净环刀放到规定的地点。 五、试验数据的记录和资料整理(注意单位要统一) 1、基本数据:

金属材料压缩实验

金属材料压缩实验一、实验目的 1.测定低碳钢压缩时的下屈服强度R(或屈服极限σ);seL;)R(或抗压强度极限σ2.测定铸铁压缩时的抗压强度bm 3.观察并比较低碳钢和铸铁在压缩时的缩短变形和破坏现象。二、预习思考要点1.用短圆柱状低碳钢和铸铁试样做压缩实验时,怎样才能做到使其轴向(心)受压?放置压缩试样的支承垫板底部为什么制作成球形? 2.圆柱状低碳钢试样被压缩成饼状而不破碎,而圆柱状铸铁试样被压破裂面常发生在与轴线大致成45°~55°方向上,二者的变形特征与破坏形式为什么不同? 三、实验仪器和设备 1.万能材料试验机;2.游标卡尺。 四、实验试样对于低碳钢和铸铁类金属材料,按照GB 7314—1987《金属压缩试验方法》的规定,金属材料的压缩试样多采用圆柱体如图1-9所示。试样的长度L一般为直径d的2.5~3.5倍,其直径d = 10mm~20mm。也可采用正方形柱体试样如图1-10所示。要求试样端面应尽量光滑,以减小摩阻力对横向变形的影响。 正方形柱体试样1-10 圆柱体试样1-9 图图 五、实验原理 Ⅰ低碳钢:以低碳钢为代表的塑性材料,轴向压缩时会产生很大的横向变形,但由于试样两端面与试验机支承垫板间存在摩擦力,约束了这种横向变形,故试样出现显著的鼓胀效应如图1-11所示。为了减小鼓胀效应的影响,通常的做法是除了将试样端面制作得光滑以外,还可在端面涂上润滑剂以利最大限度地减小摩擦力。低碳钢试样的压缩曲线如图1-12所示,由于试样越压越扁,则横截面面积不断增大,试样抗压能力也随之提高,故曲线是持续上升为很陡的曲线。从压缩曲线上可看出,塑性材料受压时在弹性阶段的比例极限、弹性模量和屈服阶段的屈服点(下屈服强度)同拉伸时是相同的。但压缩试验过程中到达屈服阶段时不像拉伸试验时那样明显,因此要认真仔细观察才能确定屈服荷载F,从而得到

实验二 低碳钢、铸铁压缩试验

实验二 低碳钢、铸铁压缩试验 一、试验目的 了解塑性材料和脆性材料在压缩时的破坏现象,测定其机械性能,并与它们在简单拉伸时的机械性能作比较。 二、实验原理 压缩试验是在万能试验机或压力机上进行。试验机附有球形承垫图2-1,球形承垫位于试件下端。当试件端面略有不平行时,球形承垫可以自动调节,使压力趋于均匀分布。为了减少试件两端面与支承座之间的摩擦力,可在试件端面涂上石墨、润滑油等。但仍不可避免地存在摩擦力而阻止试件的横向变形,以 致试件被压成鼓形 图2-2。具体要求可参阅《金属压缩试验方法》GB7314-84。 图2-1压缩球形承垫 图2-2 低碳钢压缩后试件的形状图 低碳钢试件压缩时,在屈服前F-ΔL 关系曲线与拉伸时相似,由自动绘图仪可得到压缩图2-3。图中OA 为弹性阶段,B 点为屈服点,无明显的屈服阶段,F s 需仔细观察。在缓慢均匀加载时,测力指针作等速转动,当指针转动暂停或稍有退回时的载荷即为屈服载荷。由于这些现象不明显,常需要借助压缩图来判断F s 。此后,由于塑性变形试件面积随载荷增加而逐渐增大,最后试件被压成饼状而不破裂,故无法求得最大载荷及强度极限,只要测取屈服点R eL 即可: ;eL eL F R S 式中:F s ——屈服时的载荷; S 0----试件原来的横截面面积。 L 图2-3 低碳钢压缩图 图2-4铸铁压缩图 铸铁受压时,在很小的塑性变形下发生了破坏,图2-4,因此只能测出它的破坏抗力F m 由R m =F m /S 0。可得铸铁的强度极限。铸铁受压呈微鼓形破坏,试件表面将出现与试件横截面成45°~ 50°的倾斜裂纹,这是因为铸铁受压时,实际上是先达到剪力极限而破坏。 FeL 承垫 试件 球形承垫

固结实验

实训六固结试验 一、实训时间与课时 二、实训名称与内容 1、固结实验 2、固结实验是将天然状态下的原状土或人工制备的扰动土,制备成一定规格土样,然后置于固结仪内,在不同荷载和在完全侧限条件下测定土的压缩变形。 三、实训目的与要求 1、试验的目的是测定试样在侧限与轴向排水条件下,变形和压力或孔隙比 E等指标。和压力的关系,绘制压缩曲线,以便计算土的压缩系数 、压缩模量 s 2、通过各项压缩性指标,可以分析、判断土的压缩特性和天然土层的固结状态,计算土工建筑物及地基的沉降等。 四、实训场地、仪器与设备 1、实训楼土工实训室 2、固结仪;环刀:面积30cm2,高2cm;天平;测微表;秒表;烘箱;修土刀;称量盒;滤纸等。 五、实训步骤与方法 1、实训步骤 (1)根据工程要求,用环刀(50cm3)切取试样备用,并测出土样的密度、含水量、和比重。(参见前面的试验) (2)把下护环和大的透水石放入固结容器,并放上一张滤纸。 (3)将带有环刀的试样,刃口向下小心地装入压缩容器的下护环内。 (4)再套入上护环,放上滤纸和稍小的透水石,最后放上加压盖。 (5)轻抬杠杆,将装好试样的压缩容器放在加压台的正中,使加压横梁的凹槽与加压盖的钢珠紧密结合,然后装上测微表(百分表),并预调百分表大于6mm以上,并检查表是否灵敏和垂直。(学生在试验前应熟悉测微表如何读数。)(6)在砝码吊盘上加相当于试样受压约为1kPa的预压荷载,使固结仪的各

部分接触良好,并调平加压杠杆,然后调整测微表,使其大指针归零。 (7)卸去预压荷载,施加第一级荷载,其大小可视土的软硬程度或工程情况一般采用25、50、100、200、300、400 kPa ,或按设计要求,模拟实际加荷情况进行调整。 (8)在加荷同时开动秒表计时,按规定的时间读数,做完一级,再加下一级荷载,直至全部荷载完成。在试验过程中,应始终保持加压杠杆的平衡。 (9)试验结束后,迅速拆去测微表,卸除砝码,取出环刀,把仪器擦干净。 2、实训方法 固结试验分为标准固结试验;快速固结试验;应变控制连续加荷固结试验。 六、实训的注意事项 1、使用仪器前必须严格按程序进行操作,对仪器不清楚的地方马上问老师; 2、试验过程中不能卸载,百分表也不用归零; 3、随时调整加压杠杆,使其保持平衡; 4、加荷时应轻拿轻放,不得对仪器产生震动; 5、试验完毕,卸下荷载,取出土样,把仪器打扫干净。 七、实训成果与小结 1、实训成果 (1)按下式计算试样的原始孔隙比: ()010.011w s w G e ρρ +=- 式中:0e —— 试样原始孔隙比; w ρ —— 水的密度(g/ cm 3),一般取1; s G —— 土粒比重; w —— 试样原始含水量(%); ρ —— 试样原始密度(g/ cm 3) ; (2)按下式计算各级荷载下变形稳定后的孔隙比: ()001i i e h e e H +=-

金属的压缩实验

金属的压缩实验 一、概述 实验表明,工程中常用的塑性材料,其受压与受拉时所表现出的强度、刚度和塑性等力学性能是大致相同的。但广泛使用的脆性材料,其抗压强度很高,抗拉强度却很低。为便于合理选用工程材料,以及满足金属成型工艺的需要,测定材料受压时的力学性能是十分重要的。因此,压缩实验同拉伸实验一样,也是测定材料在常温、静载、单向受力下的力学性能的最常用、最基本的实验之一。 二、实验目的 1、观测低碳钢压缩时的屈服荷载F SC 2、测定铸铁压缩时的抗压强度σbC 3、观察并比较低碳钢和铸铁在压缩时的变形和破坏现象。 三、实验设备 1、液压式万能材料试验机 2、游标卡尺 四、试样的制备 按照国标GB7314-87《金属压缩试验方法》,金属材料的压缩试样多采用圆柱体,如图2-16所示。试样长度L=(2.5~3.5)d0的试样适用于测定σpc、σtc、σsc、σbc;L=(5~8)d0的试样适用于测定σpc0.01、E e;L=(1~2)d0的试样适用于测定σbc、。为了尽量使试样受轴向压力,加工试样时,必须有合理的加工工艺,以保证两端面平行,并与轴线垂直。 σpc-规定非比例压缩应力 σtc-规定总压缩应力 σsc-压缩屈服点 σbc-抗压强度 σpc0.01-规定非比例压缩应变为0.01%时的应力 E e-压缩弹性模量 五、实验原理 以低碳钢为代表的塑性材料,轴向压缩时会产生很大的横向变形,但由于试样两端面与试验机支承垫板间存在摩擦力,约束了这种横向变形,故试样中间部分出现显著的鼓胀,如图2-17所示。

塑性材料在压缩过程中的弹性模量、屈服点与拉伸时相同,但在到达屈服阶段时不像拉伸试验时那样明显,因此要仔细观察才能确定屈服载荷F sC。当继续加载时,试样越压越扁,由于横截面面积不断增大,试样抗压能力也随之提高,曲线持续上升,如图2-18所示。除非试样过分鼓出变形,导致柱体表面开裂,否则塑性材料将不会发生压缩破坏。因此,一般不测塑性材料的抗压强度,而通常认为抗压强度等于抗拉强度。 以铸铁为代表的脆性金属材料,由于塑性变形很小,所以尽管有端面摩擦,鼓胀效应却并不明显,而是当应力达到一定值后,试样在与轴线大约成450~550的方向上发生破裂,如图2-20所示。这是由于脆性材料的抗剪强度低于抗压强度,从而使试样被剪 断 六、实验步骤 1、用游标卡尺测量试样直径,方法是在试样原始标距中点处两个相互垂直的方向上测量直径,并取其算术平均值。 2、根据低碳钢屈服载荷和铸铁抗压强度的估计值, 选择试验机的示力盘,并调整其指针对零。 3、调整好自动绘图器。 4、准确地将试样置于试验机活动平台的支承垫板中心处。 5、调整试验机夹头间距,当试样接近上支承板时,开始缓慢、均匀加载。 6、对于低碳钢试样,将试样压成鼓形即可停止试验。对于铸铁试样,加载到试样破坏时(主针回摆150左右)立即停止试验,以免试样进一步被压碎。 金属的拉伸实验指导书 一、概述 常温、静载下的轴向拉伸试验是材料力学试验中最基本、应用最广泛的试验。通过拉伸试验,可以全面地测定材料的力学性能,如弹性、塑性、强度、断裂等力学性能指标。这些性能指标对材料力学的分析计算、工程设计、选择材料和新材料开发都有及其重要的作用。 二、实验目的 1、测定低碳钢的屈服强度R el、抗拉强度R m、断后延伸率A11.3和断面收缩率Z 2、测定铸铁的抗拉强度R m 3、观察上述两种材料在拉伸过程中的各种现象,并绘制拉伸图(F─曲线) 4、分析比较低碳钢和铸铁的力学性能特点与试样破坏特征

土的压缩固结试验

试验七 固结综合试验 一、基本原理 (一) 土的压缩性 土在外荷载作用下,其孔隙间的水和空气逐渐被挤出,土的骨架颗粒之间相互挤紧,封闭气泡的体积也将缩小,从而引起土层的压缩变形,土在外力作用下体积缩小的这种特性称为土的压缩性。 土的压缩性主要有两个特点:①土的压缩主要是由于孔隙体积减少而引进的。对于饱和土,土是由颗粒和水组成的,在工程上一般的压力作用下,固体颗粒和水本身的体积压缩量都非常微小,可不予考虑,但由于土中水具有流动性,在外力作用下会沿着土中孔隙排出,从而引起土体积减少而发生压缩;②由于孔隙水的排出而引起的压缩对于饱和粘性土来说是需要时间的,土的压缩随时间增长的过程称为土的固结。 (二) 土的压缩曲线及有关指标 固结试验(亦称压缩试验)是研究土的压缩性的基本的方法。固结试验就是将天然状态下的原状土或人工制备的扰动土,制备成一定规格的土样,然后置于固结仪内,在不同荷载和在完全侧限条件下测定土的压缩变形。 由固结试验可得到土的压缩变形ΔH 与荷载 p 之间的关系,并可进一步得到相应的孔隙比e 与荷载 p 之间的关系 :e--p 曲线或e--lgp 曲线。 图7-1 固结试样中土样孔隙比的变化 如图7-1所示,设土样的初始高度为H 0,初始孔隙比为e 0 ,在荷载p 作用下,土样稳定后的总压缩量为ΔH ,假设土粒体积V s =1(不变) ,根据土的孔隙比的定义e=V v / V s ,则受压前后土粒体积不变,且土样横截面积不变,所以受 ) 17(111000 ?+Δ?=+=+e H H e H e H

压前后试样中土粒所占的高度不变,因此,根据荷载作用下土样压缩稳定后的总于是有: 压缩量ΔH ,即可得到相应的孔隙比e 的计算公式: ) 27()1(00 0?+Δ? =e H H e e 1) 1(0 0?+= w s w G e 式中 ρρ ,其中,G s 为土粒比重,ω0为土样的初始含水 量,ρ0 为土样的初始密度(g/cm 3),ρw 为水的密度(g/cm 3) 。 e ,从而可绘制出土的如此,根据式(7-2)即可得到各级荷载p 下对应的孔隙比e-p 曲线及e-lgp 曲线等。 1. e-p 曲线及有关指标 图7-2 土的压缩曲线 通常将由固结试验得到的直角坐标系绘制成如图(7-2)所示以看出,由于软粘土的压缩性大,当发生压力变化Δp 时,则相应的比由e 1 减小到e 2 ,当压力e-p 关系,采用普通的e-p 曲线。 (1) 压缩系数a 从图(7-2)可孔隙比的变化Δe 也大,因而曲线就比较陡;反之,像密实砂土的压缩性小,当发生相同压力变化Δp 时,相应的孔隙比的变化 Δe 就小,因而曲线比较平缓,因此,土的压缩性的大小可用e-p 曲线的斜量来反映。 如图(7-2)所示,设压力由p 1 增至 p 2 ,相应的孔隙变化范围不大时,可将该压力范围的曲线用割线来代替,并用割线的斜量来表示土在这一段压力

相关主题