搜档网
当前位置:搜档网 › LED背光的结构及发光原理

LED背光的结构及发光原理

维公司培训资

料(保密)LED 背光的结构及发光原理

?所谓LED 电视,就是使用LED 作为背光源的液晶电视,和传统液晶电视在技术原理上差别不大,只是采用的背光不同,传统液晶电视是CCFL 光源,LED 电视则采用LED 光源。

?

50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED 是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED 的抗震性能好。?

发光二极管的核心部分是由p 型半导体和n 型半导体组成的晶片,在p 型半导体和n 型半导体之间有一个过渡层,称为p-n 结。在某些半导体材料的PN 结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN 结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED 。当它处于正向工作状态时(即两端加上正向电压),电流从LED 阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。

维公司培训资料(保密)LED 光源的特点

?LED 是点光源,CCFL 是线光源.

?电压:LED 使用低压电源,供电电压在6-50V 之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。?效能:消耗能量较同光效的白炽灯减少80% ,与CCFL 相当.?适用性:体积很小,每个单元LED 小片是3-5mm 的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境。?寿命:10万小时,光衰为初始的50%。?响应时间:其白炽灯的响应时间为毫秒级,LED 灯的响应时间为纳秒级。?对环境无污染:无有害金属汞。

?

颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿蓝橙多色发光。如小电流时为红色的LED ,随着电流的增加,可以依次变为橙色,黄色,最后为绿色。

?

价格:LED 的价格比较昂贵

赛维公司培训资料(保密)LED 光源

PK CCFL 光源

?寿命,都超过10年,远大于整机寿命.

?节能,发光效率相近,都是高效节能的绿色光源.但由于CCFL 是散射光源,而LED 有较高的指向性,因此LED 的利用效率更高,用于LCD 背光时,可以采用端面照明,更加节能.?LED 有更好的色域,色彩表现力优于CCFL.?抗震性,LED 优于CCFL.但CCFL 没有灯丝,抗震性也足够优秀.?调光特性. LED 灯的响应时间为纳秒级,通过PWM 方式可以方便地调光,不影响光色和寿命,亮度调整范围明显优于CCFL.?CCFL 需要较大的光学辅助件,LED 亮度均匀,端面发光,光学辅助件简单,体积小,在直下式背光系统中.可以明显降低厚度.目前直下式(海信/Sharp 采用)约5.5CM,侧入式约3CM

?LED 驱动使用低压电源,十分安全.价格便宜,故障低,优于CCFL.?环保,没有汞,也没有射线发出,没有CCFL 的屏闪的现象.?LED 的抗震性能相当出色.

?LED 目前发展迅速,性价比飞速提高,有望取代CCFL

维公司培训资料(保密)直下式PK 侧入式

?

据国家广播电视产品质量监督检验中心专家介绍,目前LED 光源技术在液晶电视领域的应用主要有三种方式:直下式三原色RGB-LED 光源、直下式白色LED 光源和侧入式白色LED 光源。“直下式RGB-LED 光源技术在综合显示优势中绝对第一,但是价格成本也是最高的,目前还不具有市场普及的可能。目前市场上销售的LED 电视普遍是采用直下式白色LED 光源和侧入式白色LED 光源的产品。三星、SONY 采用的是侧入式白光LED 技术,而夏普、海信则采用了直下式白光LED 技术。”

?直下式:强调画质表现优异

?

采用直下式LED 技术的企业认为,直下式LED 技术在画面调控上的优势要出色于侧入式LED 技术,而且侧入式LED 电视价格虚高。“两种方式相比,‘直下式’对画质的表现更加完美。”以55英寸的LED 电视为例,直下式产品将3000多个LED 灯均匀地分布在了面板的背后,使得背光可以均匀传达到整个

屏幕上,画面细节更加细腻逼真。而侧入式则是在面板的边框处安装了400多个LED 灯,使光源从侧面照出。这虽然可以最大限度地降低厚度,但是由于减少了近7倍的LED 灯数量,因此容易使画面亮度以“X”的形态减少(即四周比中央位置要亮)。

?

此外,采用了直下式的LED 电视还把LED 背光划分为若干单元格,在显示黑色的时候,直接关掉其对应LED 区域的光,就能够表现出非常完美的黑色。因此,采用直下式LED 技术的企业认为直下式LED 背光可以更准确地呈现图像,并展现出优秀的色彩和明暗对比效果。

赛维公司培训资料(保密)直下式PK 侧入式

?侧入式:强调超薄节能领先

?

“相比直下式背光源技术而言,侧入式背光源技术对企业整体系统设计和集成能力要求更高。另外,从制造成本来看,采用侧入式白光LED 技术要考虑整机(主机电源、电路、屏幕电源和散热等)轻薄化的需要,往往造成多方面的成本增加,因此其整机成本高于直下式白光LED 产品。”三星电视技术人员对于价格虚高作出这样的解释。?更加纤薄的体积成为侧入式LED 电视最大的亮点。据记者了解,目前市面上侧入式LED 电视最薄的产品厚度仅为2.99cm ,而直下式LED 最薄的产品厚度为5.5cm 。?

“轻薄”到底重要不重要?有家电行业专家表示,消费者更在乎电子产品的“轻薄”特性,因为这是显而易见的产品品质提升,是一个品牌和企业研发能力和制造技术的最终直观体现,产品外观的每一寸减小都意味着技术的提升。此外,侧入式LED 电视相对而言更加节能。以52英寸LED 电视为例,侧入式LED 的开机功耗仅为186.5W ,而直下式LED 的开机功耗高达304W 。

?

对于液晶电视来说,其独特的利用液晶分子的排列变化对外部光线进行控制的成像原理,决定了液晶面板是影响显示效果优劣的关键。因此,在选购电视时,关键指标还是看这台产品是否是选用高品质的面板,LED 不起绝对作用!

维公司培训资料(保密)LED 驱动注意的问题

?LED 是单向导电器件,要用直流电流或单向脉冲电流.

?LED 内部有PN 结,具有势垒电势,通常大功率白光LED 的压降为3-4V ?LED 的PN 结具有负温度特性,必须采用限流措施.?为保证LED 发光恒定,光色正常,一般应保证恒流供电,不能用电压源供电.?二极管不能直接并联使用.

赛维公司培训资料(保密)?海信LED 液晶电视机卖点?

?

1.绚丽关键还是在画质对比度更高

为符合LED 光源技术的点光源发光,海信采用独创的背光分区智控技术,使电视画面对比度得到显著提高,达到40000:1以上,使得亮场、暗场层次分明,画面层次感更加突出;色域范围更广

色彩表现力有效增强,色域范围大大扩展,呈现出栩栩如生、绚丽缤纷的高品质画面效果;背光分区智控

能够根据画面内容的特点来控制背光源,彻底解决了普通液晶电视无法克服的漏光等瓶颈问题。2.节能寿命更长久采用背光分区智控方式将液晶屏幕虚拟划分为192个区域,对每个区域所输入的信号场景亮暗进

行主动调节,使电视画面对比度得到显著提高,达到40000:1的同时,为使产品更加节能、延长背光源使用寿命,当电视画面大面积全黑的情况下,背光分区智控技术会自动关闭无需使用的部分背光源,只有显示内容的区域背光源才处于打开状态。在显著提高画面对比度的同时使液晶电视功耗锐降30%,大大增强其使用寿命,最高可达10万小时,即使每天使用10个小时,也可使用

20年以上。3.环保更绿色更有益海信LED 液晶电视典雅晶透的外观工艺,一次成型,采用的模具符合RoHs 环保标准的免喷涂材

质制成,可回收;同时,LED 光源辐射极低,不含铅和汞等有害物质,是名副其实的绿色环保产品,为您带去不言而喻的长久益处。4.纤薄“画质”与“薄”的完美结合

为了实现背光分区智控,使电视画质更完美,海信LED 液晶电视特别采用直下式设计的背光模组,这样对于产品厚度就有科学的限制:如果单纯的为了减少产品厚度,使光源(不论是CCFL 或LED )太接近上方光学膜,则易产生Mura (光不均匀)情形,所以背光源与光学膜间需维持一定距离;采用直下式背光源,都需要更长的混光空间。如果单纯的追求产品的厚度,给电视带来是颜色不真实、亮度、对比度都比较低的现象,这样LED 就失去了本身特性的优势。

维公司

培训

资料(

保密)海信LED 背视图

维公司

培训

资料(

保密)海信LED 模组结构

维公司

培训

资料(

保密)LED 背光分区

?

电视机内部有两块驱动板,每块驱动板有六路输出。每路输出可以控制8个LED 灯带。一共可以对2×6×8=96个灯带进行分别控制。

?

采用背光分区智控方式将液晶屏幕虚拟划分为192个区域,对每个区域所输入的信号场景亮暗进行主动调节,使电视画面对比度得到显著提高,达到40000:1??

维公司培训资料(保密)LED 驱动控制板连接端子

?JP0,连接动态控制板。3、CPU 电源,4、CPU 时钟,5、CPU 数据输入。6-11、六

个芯片控制。?JP1-JP6,连接六组LED 灯带。5,6为输入LED 正端,1-4,7-10分别为8路LED

的输出,负端。

?JP7,24V 电源输入。

维公司

培训

资料(

保密)海信LED 驱动电路

赛维公司培训

料(保密)由QE2等元件组成的

升压(Boost )型DC/DC 变换器

?

QE2导通时,D5反偏截止,L5储能。

?QE2截止时,储能电感L5电流减小,感应储左正右负的电压,D5正偏。该电压与输入电源+24V 串联,一起给负载

及滤波电容提供能量。?电源可以实现升压;输出电压Uo =Ui ÷(1-q ),Ui 为输入电压,

?实测47寸为27V ?q 为占空比q =Ton ÷(Ton+Toff)

?RCS5为电流取样,RovE1和RovE2构成分压电路,防止当LED 灯带开路时,造成输出电压过高时,使QE2截止,保护。?31、SWOUT ,开关输出。?29、CS ,输出电流检定

维公司培训资料(

密)由QE1构成的加载开关

?我们假设没有QE1,以短路线代替,在LED 不需要亮的时候,由于LED 存在一定的电

阻,24V 将经过L5、D5给LED 供电,造成能量损失,甚至造成LED 微亮。这显然是我们不想看见的。?当LOADSW 低电平时,RLDE1产生左负右正的电压,给QE1提供GS 偏置,QE1导通,QE2组成的BOOST 电路正常工作。当LOADSW 截止时,QE1的GS 等电位,截止,BOOST 电路停止工作。

维公司

培训

资料(

保密)LED 驱动控制芯片简介

?

BD9202是日本日本罗姆半导体公司生产的带有DC/DC 直流变换器,8路恒流源的LED 驱动专用芯片。含有一个4线的通用接口,可以对各路进行1024阶的亮度控制。?

有完备的保护功能,最大可以输出150MA 的电流。可以输出60V 左右的高压,支持多种LED 连接方式。

维公司培训资料(

保密)多个芯片复用时的连接方式

通用控制接口

?BD9202的9-13脚是芯片通用接口,可用外置的CPU 对其进行控制。?接线方式:一定数量的芯片的CPUDI (数据输入)和CPUCLK (时钟输入)直接相连。每个芯片的CS (芯片选择)则分别单独连接。

?采用MST6U29作CPU ,实现芯片的分别控制。

维公司培训

资料(保密)BD9202部分引脚功能

?4、CP1和5、CP2,滤波器电容连接,接27pF 电容。?15、VREG 相位校正,接2.2uF 电容?16、VREF 基准电压输出,约5V

?17、ISET 恒流源电流设定,Rset =191K ,决定LED 灯的电流,约55mA ,也就是LED 的发光强度。?18、VSET 灯调制电压输入,本机接VREF ,与17脚共同设定灯的亮度。?19、测试端子,接悬空?27、BRT 接51K 电阻,设定通用控制接口工作频率约600KHz 。?28、RT 接100K 电阻,设定PWM 逻辑控制电路工作频率为304KHz 。

?39、COMP 误差放大输出。外接滤波网络。?

41、EN 芯片使能,接悬空

维公司培训资料(保密)BD9202保护引脚功能

?34、UVLO ,电源低压检测,输入电压在1.9-2.9V 之间,超出则保护。

?30、OVT ,超压保护,正常0.5-2.0V ,超出则保护。通过外接电阻取样,可以使LED 的工作电压不超过60V 。?6、7故障检测输出。?LED E1-E8,LED 电流检测,内置恒流源电路,使LED 电流保持在55MA ,亮度恒定。?调光依靠PWM 控制。

维公司

培训

资料(

保密)

维公司

培训

资料(

保密)动态控制板原理框图

LED发光二极管原理(图文)讲解学习

LED发光二极管原理(图文)半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用(一)LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P 区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性 1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。(3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发

LED发光机理(精)

LED发光二极管的发光机理详细图解 LED发光二极管的发光机理 1.p-n结电子注入发光 图1、图2表示p-n结未知电压是构成一定的势垒;当加正向偏置时势垒下降,p区和n区的多数载流子向对方扩散。由于电子迁移率μ比空穴迁移率大得多,出现大量电子向P区扩散,构成对P区少数载流子的注入。这些电子与价带上的空穴复合,复合时得到的能量以光能的形式释放。这就是P-N结发光的原 理。 P-N结发光的原理图1 P-N结发光的原理图2 发光的波长或频率取决于选用的半导体材料的能隙Eg。如Eg的单位为电子伏(eV), Eg=hv/q=h c/(λq) λ=hc/(qEg)=1240/Eg (nm) 半导体可分为置接带隙和间接带隙两种,发光二极管大都采用直接带隙材料,这样可使电子直接从导带跃迁到价带与空穴复合而发光,有很高的效率。反之,采用间接带隙材料,其效率就低一些。下表列举 了常用半导体材料及其发射的光波波长等参数。

3.异质结注入发光 为了提高载流子注入效率,可以采用异质结。图4表示未加偏置时的异质结能级图,对电子和空穴具有不同高度的势垒。图5表示加正向偏置后,这两个势垒均减小。但空垒的势垒小得多,而且空穴不断从P区向n区扩散,得到高的注入效率。N区的电子注入P区的速率却较小。这样n区的电子就越迁到价带与注入的空穴复合,而发射出由n型半导体能隙所决定的辐射。由于p取得能隙大,光辐射无法把点自己发到导带,因此不发生光的吸收,从而可直接透射处发光二极管外,减少了光能的损失。 图4 图5 发光二极管与半导体二极管同样加正向电压,但效果不同。发光二极管把注入的载流子转变成光子,辐射出光。一般半导体二极管注入的载流子构成正向电流。应严格加以区别。

白光LED发光原理及其参数介绍

白光LED发光原理及其参数介绍 时间:2009-08-09 12:15:31 来源:未知作者:admin 阅读:432 次 白光是一种组合光,白光LED可以分为单芯片、双芯片和三芯片等,以下将按这一分类来介绍,还将介绍照明用白光LED的一些技术指标。 白光LED发光原理 单芯片 InGaN(蓝)/YAG荧光粉 这是一种目前较为成熟的产品,其中1W的和5W的Lumileds已有批量产品。这些产品采用芯片倒装结构,提高发光效率和散热效果。荧光粉涂覆工艺的改进,可将色均匀性提高10倍。实验证明,电流和温度的增加使LED光谱有些蓝移和红移,但对荧光光谱影响并不大。寿命实验结果也较好,Φ5的白光LED在工作1.2万小时后,光输出下降80%,而这种功率LED在工作1.2万小时后,仅下降10%,估计工作5万小时后下降30%。这种称为Luxeon的功率LED最高效率达到44.3lm/w,最高光通量为187lm,产业化产品可达120lm,Ra为75-80。 InGaN(蓝)/红荧光粉+绿荧光粉 Lumileds公司采用460nmLED配以SrGa2S4:Eu2+(绿色)和SrS:Eu2+(红色)荧光粉,色温可达到3000K-6000K的较好结果,Ra达到82-87,较前述产品有所提高。 InGaN(紫外)/(红+绿+蓝)荧光粉 Cree、日亚、丰田等公司均在大力研制紫外LED。Cree公司已生产出50mW、 385nm—405nm的紫外LED;丰田已生产此类白光LED,其Ra大于等于90,但发光效率还不够理想;日亚于最近制得365nm、1mm2、4.6V、500mA的高功率紫外LED,如制成白色LED,会有较好效果。https://www.sodocs.net/doc/3312558615.html, ZnSe和OLED白光器件也有进展,但离产业化生产尚远。 双芯片 可由蓝LED+黄LED、蓝LED+黄绿LED以及蓝绿LED+黄LED制成,此种器件成本比较便宜,但由于是两种颜色LED形成的白光,显色性较差,只能在显色性要求不高的场合使用。

LED灯及其发光原理

LED灯及其发光原理 一、LED的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好 LED结构图如下图所示 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p 型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料

的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 二、LED光源的特点 1. 电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2. 效能:消耗能量较同光效的白炽灯减少80% 3. 适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制 备成各种形状的器件,并且适合于易变的环境 4. 稳定性:10万小时,光衰为初始的50% 5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6. 对环境污染:无有害金属汞 7. 颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红

led灯的结构及发光原理(精)

led灯的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。 led灯结构图如下图所示 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料的PN 结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 二、什么是led光源,led光源的特点 1. 电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2. 效能:消耗能量较同光效的白炽灯减少80% 3. 适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境 4. 稳定性:10万小时,光衰为初始的50%

5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6. 对环境污染:无有害金属汞 7.颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色 8. 价格:LED的价格比较昂贵,较之于白炽灯,几只LED的价格就可以与一只白炽灯的价格相当,而通常每组信号灯需由上300~500只二极管构成。 三、单色光led灯的种类及其发展历史 最早应用半导体P-N结发光原理制成的LED光源问世于20世纪60年代初。当时所用的材料是GaAsP,发红光(λp=650nm),在驱动电流为20毫安时,光通量只有千分之几个流明,相应的发光效率约0.1流明/瓦。 70年代中期,引入元素In和N,使LED产生绿光(λp=555nm),黄光(λp=590nm)和橙光(λp=610nm),光效也提高到1流明/瓦。 到了80年代初,出现了GaAlAs的LED光源,使得红色LED的光效达到10流明/瓦。 90年代初,发红光、黄光的GaAlInP和发绿、蓝光的GaInN两种新材料的开发成功,使LED的光效得到大幅度的提高。在2000年,前者做成的LED在红、橙区(λp=615nm)的光效达到100流明/瓦,而后者制成的LED在绿色区域(λp=530nm)的光效可以达到50流明/瓦。 四、单色光LED的应用 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12 英寸的红色交通信号灯为例,在美国本来是采用长寿命,低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。 汽车信号灯也是LED光源应用的重要领域。1987年,我国开始在汽车上安装高位刹车灯,由于LED响应速度快(纳秒级),可以及早让尾随车辆的司机知道行驶状况,减少汽车追尾事故的发生。 另外,LED灯在室外红、绿、蓝全彩显示屏,匙扣式微型电筒等领域都得到了应用。 五、白光led灯的开发 对于一般照明而言,人们更需要白色的光源。1998年发白光的led灯开发成功。这种led灯是将GaN芯片和钇铝石榴石(YAG)封装在一起做成。GaN芯片发蓝光(λp=465nm,Wd=30nm),高温烧结制成的含

LED发光原理、光源特点及应用

LED发光原理、光源特点及应用 一、LED的结构及发光 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。在某些半导体材料的PN 结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 二、LED光源的特点 1.电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2.效能:消耗能量较同光效的白炽灯减少80% 3.适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境 4.稳定性:10万小时,光衰为初始的50% 5.响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级 6.对环境污染:无有害金属汞 7.颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色

LED 照明灯原理

led照明灯原理图 led照明灯原理图 LED是发光二极体( Light Emitting Diode, LED)的简称,也被称作发光二极管,这种半导体组件发展以来一般是作为指示灯、显示板,但目前随着技术增加,已经能作为光源使用,它不但能够高效率地直接将电能转化为光能,而且拥有最长达数万小时~10 万小时的使用寿命,同时具备不若传统灯泡易碎,并能省电,同时拥有环保无汞、体积小、可应用在低温环境、光源具方向性、造成光害少与色域丰富等优点。 随着白光LED的出现与更多科技的导入,目前在家用电器及笔记本电脑的指示灯、汽车防雾灯、室内照明等照明设备日渐蓬勃,LED的应用越来越普遍。 LED的发明 在1955年时,美国无线电公司(Radio Corporation of America)的Rubin Braunstein发现了砷化鎵(GaAs)与及其他半导体合金的红外线放射作用,而1962年美国通用电气公司(GE)的Nick Holonyak Jr则开发出可见光的LEDLED。不过,LED

真正的起飞是在1990年代白光LED出现后,才开始渐渐被重视,而应用面越来越广。 LED的发光原理 LED是一种可以将电能转化为光能的电子零件,并同时具备二极体的特性,也就是具备一正极一负极,LED最特别的地方在于只有从正极通电才是会发光,故一般给予直流电时,LED会稳定地发光,但如果接上交流电,LED会呈现闪烁的型态,闪亮的频率依据输入交流电的频率而定。LED的发光原理是外加电压,让电子与电洞在半导体内结合后,将能量以光的形式释放。目前全球产业所发展出的不同种类LED能够发出从红外线到蓝之间不同波长的光线,而业界也有紫色~紫外线的LED,近年来LED最吸引人的发展是在蓝光LED上涂上萤光粉,将蓝光转化成白光的白光LED产品。LED之所以被称为世纪新光源,原因在于LED具备点光源与固态光源的特性,能够节省能源、高耐震、寿命长、体积小响应快速、并且色彩饱和度高。 LED的顏色:

GaN基LED发光原理及参数要点

2.1GaN基LED发光原理 大部分LED是利用MOCVD在衬底材料上异质外延而成,目前比较成熟的衬底材料是蓝宝石和碳化硅,硅基和ZnO基等其他衬底材料尚未成熟。LED外延片的结构主要包括MIS结、P-N结、双异质结和量子阱几种,当前绝大多数LED均是量子阱结构的。外延片的基本结构如图1-2所示。 目前使用的大部分灯具是白炽钨丝灯或者采取气体放电,而半导体发光二极管(LED)的发光原理则迥然不同。发光二极管自发性(Spontaneous)的发光是由于电子与空穴的复合而产生的。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在近PN结面数μm以内产生。

理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即 λ=1240/Eg 电子由导带向价带跃迁时以光的形式释放能量,大小为禁带宽度Eg,单位为电子伏特(eV。由光的量子性可知,hf= Eg [h为普朗克常量,f为频率,据f=c/λ,可得λ=hc/Eg,当λ的单位用um, Eg单位用电子伏特(eV)时,上式为λ=1.24um·ev/Eg ],若若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间 发光效率与材料是否为直接带隙(Direct Bandgap)有关,图 1.1(a)是直接带隙材料。这些材料的导带最低点与价带的最高点在同一K空间。所以电子与空穴可以有效地再复合(Recombination)而发光。而图 1.1(b)的材料均属于间接带隙(IndirectBandgap),其带隙及导带最低点与价带最高点不在同一K空间,以致电子与空穴复合时除了发光外,还需要产生声子(Phonon)的配合,所以发光效率低[7]。目前发光二极管用的都是直接带隙的材料。 2.2 大功率LED基本参数及性能指标 1.极限参数的意义 (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义 (1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,其

LED发光原理

一、LED的结构及发光原理 50年前人们已经了解半导体材料可产生光线的基本知识,第一个商用二极管产生于1960年。LED是英文light emitting diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用,所以LED的抗震性能好。 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n 型半导体之间有一个过渡层,称为p-n结。在某┌氲继宀牧系腜N结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。PN结加反向电压,少数载流子难以注入,故不发光。这种利用注入式电致发光原理制作的二极管叫发光二极管,通称LED。当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。 二、LED光源的特点 1. 电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场所。 2. 效能:消耗能量较同光效的白炽灯减少80%。 3. 适用性:很小,每个单元LED小片是3-5mm的正方形,所以可以制备成各种形状的器件,并且适合于易变的环境。 4. 稳定性:10万小时,光衰为初始的50% 。 5. 响应时间:其白炽灯的响应时间为毫秒级,LED灯的响应时间为纳秒级。 6. 对环境污染:无有害金属汞。 7. 颜色:改变电流可以变色,发光二极管方便地通过化学修饰方法,调整材料的能带结构和带隙,实现红黄绿兰橙多色发光。如小电流时为红色的LED,随着电流的增加,可以依次变为橙色,黄色,最后为绿色。 8. 价格:LED的价格比较昂贵,较之于白炽灯,几只LED的价格就可以与一只白炽灯的价格相当,而通常每组信号灯需由上300~500只二极管构成。 三、单色光LED的种类及其发展历史 最早应用半导体P-N结发光原理制成的LED光源问世于20世纪60年代初。当时所用的材料是GaAsP,发红光(λp=650nm),在驱动电流为20毫安时,光通量只有千分之几个流明,相应的发光效率约0.1流明/瓦。 70年代中期,引入元素In和N,使LED产生绿光(λp=555nm),黄光(λp=590nm)和橙光(λp=610nm),光效也提高到1流明/瓦。 到了80年代初,出现了GaAlAs的LED光源,使得红色LED的光效达到10流明/瓦。 90年代初,发红光、黄光的GaAlInP和发绿、蓝光的GaInN两种新材料的开发成功,使LED的光效得到大幅度的提高。在2000年,前者做成的LED在红、橙区(λp=615nm)的光效达到100流明/瓦,而后者制成的LED在绿色区域(λp=530nm)的光效可以达到50流明/瓦。 四、单色光LED的应用 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12英寸的红色交通信号灯为例,在美国本来是采用长寿命,低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds 公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。 汽车信号灯也是LED光源应用的重要领域。1987年,我国开始在汽车上安装高位刹车

白光LED发光原理及技术指标

白光是一种组合光,白光LED可以分为单芯片、双芯片和三芯片等,以下将按这一分类来介绍,还将介绍照明用白光LED的一些技术指标。 白光LED发光原理 单芯片 InGaN(蓝)/YAG荧光粉 这是一种目前较为成熟的产品,其中 1W的和5W的Lumileds已有批量产品。这些产品采用芯片倒装结构,提高发光效率和散热效果。荧光粉涂覆工艺的改进,可将色均匀性提高10倍。实验证明,电流和温度的增加使LED光谱有些蓝移和红移,但对荧光光谱影响并不大。寿命实验结果也较好,Φ5的白光LED在工作1.2万小时后,光输出下降80%,而这种功率LED在工作1.2万小时后,仅下降10%,估计工作5万小时后下降30%。这种称为Luxeon的功率LED最高效率达到44.3lm/w,最高光通量为187lm,产业化产品可达120lm,Ra为75-80。 InGaN(蓝)/红荧光粉+绿荧光粉 Lumileds公司采用460nmLED配以SrGa2S4:Eu2+(绿色)和SrS:Eu2+(红色)荧光粉,色温可达到3000K-6000K的较好结果,Ra达到82-87,较前述产品有所提高。 InGaN(紫外)/(红+绿+蓝)荧光粉 Cree、日亚、丰田等公司均在大力研制紫外LED。Cree公司已生产出50mW、385nm—405nm的紫外LED;丰田已生产此类白光LED,其Ra大于等于90,但发光效率还不够理想;日亚于最近制得365nm、1mm2、4.6V、500mA的高功率紫外LED,如制成白色LED,会有较好效果。 ZnSe和OLED白光器件也有进展,但离产业化生产尚远。 双芯片 可由蓝 LED+黄LED、蓝LED+黄绿LED以及蓝绿LED+黄LED制成,此种器件成本比较便宜,但由于是两种颜色LED形成的白光,显色性较差,只能在显色性要求不高的场合使用。 三芯片 (蓝色+绿色+红色)LED Philips公司用470nm、540nm和610nm的LED芯片制成Ra大于80的器件,色温可达3500K。如用470nm、525nm和635nm的LED芯片,则缺少黄色调,Ra 只能达到20或30。

发光LED的原理及特性详解(精)

发光LED的原理及特性详解 (一)LED发光原理 -Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向 有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性 1.极限参数的意义 1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义 1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,其波长大体按图2所示。由图可见,该发光管所发之光中某一波长λ0的光强最大,该波长为峰值波长。 2)发光强度IV:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。由于一般LED的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。 3)光谱半宽度Δλ:它表示发光管的光谱纯度.是指图3中1/2峰值光强所对应两波长之间隔. 4)半值角θ1/2和视角:θ1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。半值角的2倍为视角(或称半功率角)。 3给出的二只不同型号发光二极管发光强度角分布的情况。中垂线(法线)AO的坐标为相对发光强度(即发光强度与最大发光强度的之比)。显然,法线方向上的相对发光强度为1,离开法线方向的角度越大,相对发光强度越小。

LED车灯的构造与发光原理介绍

LED车灯的构造与发光原理介绍 汽车灯作为夜间行车的照明灯具,可谓是不可缺少的。随着LED的发展,已经越来越多的汽车厂商将LED车灯作为汽车灯的首选。LED汽车灯是指车内外光源均采用 LED 技术,用作外部与内部照明。外部照明设备涉及热极限与EMC问题,同时还有卸载负载测试的许多复杂标准。可广泛使用LED汽车灯来营造车内环境。 LED车灯的构造: 单个的LED是由金线、LED芯片、反射环、阴极导线、塑料导线、阳极导线组成。 发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为pn结。 在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。pn结加反向电压,少数载流子难以注入,故不发光。这种利用注入式发光原理制作的二极管叫发光二极管,通称LED。 LED的发光过程包括三部分: 正向偏压下的载流子注入、复合辐射和光能传输。 微小的半导体晶片被封装在洁净的环氧树脂物中,当电子经过该晶片时,带负电的电子移动到带正电的空穴区域并与之复合,电子和空穴消失的同时产生光子。 电子和空穴之间的能量(带隙)越大,产生的光子的能量就越高。光子的能量反过来与光的颜色对应,在可见光的频谱范围内,蓝色光、

紫色光携带的能量最多,橘色光、红色光携带的能量最少。由于不同的材料具有不同的带隙,从而能够发出不同颜色的光。 当它处于正向工作状态时(即两端加上正向电压),电流从LED阳极流向阴极时,半导体晶体就发出从紫外到红外不同颜色的光线,光的强弱与电流有关。打个比方,LED就像一个汉堡,可以发光的材料是夹层中的“肉饼”,而上下的电极就是夹肉的面包。而通过对其中发光材料的研究,人们逐渐开发出各种光色、光效率越来越高的LED元件,但是无论怎么变化,LED总的发光原理和结构都没有发生太大的变化。 LED灯的优点: (1)节能:是由发光二极管直接把电能转化为光能,耗电仅相当于传统灯的1/10,能更好的降低油耗,护汽车电路不被过高的负载电流烧坏。 (2)环保:光谱中没有紫外线和红外线,发热量小,也没有辐射,眩光小,而且废弃物可回收,不含汞元素,没有污染,可以安全触摸,属于典型的绿色照明光源。 (3)寿命长:灯体内没有松动的部分,不存在灯丝发光易烧、热沉积、光衰等缺点,在恰当的电流和电压下,使用寿命可达8~10万 h,比传统光源寿命长10 倍以上。(有一次更换,终身使用的特点)(4)高亮度,耐高温。(电能直接转换为光能,发热量小,可用手触摸) (5)体积小:设计者可以随意变换灯具模式,令汽车造型多样化。汽车厂商青睐LED,完全是LED本身的优点所决定的。

LED发光二极管的工作原理(精)

LED发光二极管的工作原理、应用、分类及检测 半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用 (一)LED发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向 截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,

再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性 1.极限参数的意义 (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义 (1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,其波长大体按图2所示。由图可见,该发光管所发之光中某一波长λ0的光强最大,该波长为峰值波长。 (2)发光强度IV:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。由于一般LED的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。 (3)光谱半宽度Δλ:它表示发光管的光谱纯度.是指图3中1/2峰值光强所对应两波长之间隔. (4)半值角θ1/2和视角:θ1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。半值角的2倍为视角(或称半功率角)。 图3给出的二只不同型号发光二极管发光强度角分布的情况。中垂线(法线)AO的坐标为相对发光强度(即发光强度与最大发光强度的之比)。显然,法线方向上的相对发光强度为1,离开法线方向的角度越大,相对发光强度越小。由此图可以得到半值角或视角值。

LED基本工作原理

LED部分基本工作原理 1 LED的原理概述 发光二极管主要由 PN 结芯片、电极和光学系统组成。其发光体--晶片的尺寸一般为 8.9.10.12..13.14mil (1mil=0.0254 毫米),目前市面上晶片尺寸越来越大,超过40mil。其发光过程包括三部分:正向偏压下的载流子注入、复合辐射和光能传输。当电子经过该晶片时,带负电的电子移动到带正电的空穴区域并与之复合,电子和空穴消失的同时产生光子。电子和空穴之间的能量(带隙)越大,产生的光子的能量就越高。光子的能量反过来与光的颜色对应,可见光的频谱范围内,蓝色光、紫色光携带的能量最多,桔色光、红色光携带的能量最少。由于不同的材料具有不同的带隙,从而能够发出不同颜色的光。 2 发光二极管的伏安特性 顺向电压(VFv.s.顺向电流(IF; 逆向电压(VRv.s.逆向电流(IR; LED是电流驱动元件,非电压驱动元件;

测试时,VR =5V时,IR <10μA也就是说:IR =10μA时, VR>5V; 电流从正极PIN脚流入,经金线流至芯片正极(P极),再流至芯片P/N结,从而激发芯片发光(芯片为P/N结处发光),再流至N结,至杯底后经短脚流出,而形成一完整的封闭电路 通常芯片设计时考虑其正常工作电流为 20mA ,因此,使用发光二极管及生产测试时,通过发光二极管的电流均为 20mA ,此电流称为正向电流( If )。 伏安特性曲线图 LED光电特性参数 1 、三要素 LED的VF,IV,λd(x,y称为其光电特性三要素; IV是指在一定正向电流下的亮度; λd是指其主波长;波长决定了发光的颜色。X,Y是指在CIE光谙图中色度坐标系统中的坐标值。可見光的波段从紫光(約 380nm 到紅光(770nm 不可見光的波長紅外線長於 770nm 紫外線短於 380nm。 VF顺向电压

LED发光原理及特点(精)

LED发光原理及特点LED(Light Emitting Diode),即发光二极管。是一种半导体固体发光器件。它是利用固体半导体芯片作为发光材料。当两端加上正向电压,半导体中的少数截流子和多数截流子发生复合,放出过剩的能量而引起光子发射,直接发出红、橙、黄、绿、青、蓝、紫、白色的光。 多变幻:LED光源可利用LED在电流瞬间通断发光无余辉和红、绿、蓝三基色原理,并发挥我们多年对LED显示屏控制技术的研究,采用LED显示屏控制技术实现色彩和图案的多变化,是一种可随意控制的"动态光源"。高节能:直流驱动,超低功耗(单管0.03-0.06瓦)电光功率达90%以上,同样照明效果比传统光源节能80%以上。寿命长:LED为固体冷光源,环氧树脂封装,因此无灯丝发光易烧、热沉积等缺点。工作电压低,使用寿命可达5万到10万小时,比传统光源寿命长5倍以上。利环保:冷光源、眩光小,无辐射,不含汞元素,使用中不发出有害物质。高新尖:与传统光源比,LED光源融合了计算机、网络、嵌入式控制等高新技术,具有在线编程、无限升级、灵活多变的特点。 光源术语光通量(lm):光源每秒钟发出可见光量之总和。例如一个100瓦(w)的灯泡可产生1500流明(lm),一支40瓦(w)的日光灯可产生3500lm的光通量。发光强度(cd):光源在单位立体角度内发出的光通量,也就是光源所发出的光通量在空间选定方向上分布的密度。光强的单位是坎特拉(cd),也称烛光。如:一单位立体角度内发出1流明(lm)的光称为1坎特拉(cd)。色温(k):以绝对温度(k=℃+273.15)K来表示,即将一黑体加热,温度升到一定程度时,颜色逐渐由深红-浅红-橙红-黄-黄白-白-蓝白-蓝变化。当某光源与黑体的颜色相同时,我们将黑体当时的绝对温度称为该光源的色温。如:当黑体加热呈现深红时温度约为550℃,即色温为550℃ + 273 = 823K。光效(lm/w):光源发出的光通量除以所消耗的功率。它是衡量光源节能的重要指标。显色性(ra):光源对物体本身颜色呈现的程度称为显色性。也就是颜色的逼真程度。国际照明委员会CIE把太阳的显色指数(ra)定为100。各类光源的显色指数各不相同,如:白炽灯ra≥90,荧光灯ra=60~90。平均寿命:光源在正常使用过程中,其中有50%的光源损坏时的时间。 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光。 P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm) Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。

LED的发光原理

LED的发光原理 LED手电筒 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP (磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N 特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1 所示。假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 LED的调光控制 传统上,LED的调光是利用一个DC信号或滤液PWM对LED中的正向电流进行调节来完成的。减小LED电流将起到调节LED光输出强度的作用,然而,正向电流的变化也会改变LED的彩色,因为LED的色度会随着电流的变化而变化。许多应用(例如汽车和LCD TV背光照明)都不能允许LED发生任何的色彩漂移。在这些应用中,由于周围环境中存在不同的光线变化,而且人眼对于光强的微小变化都很敏感,因此宽范围调光是必需的。通过施加一个PWM信号来控制LED亮度的做法允许不改变彩色的情况下完成LED的调光。人们常说的真正彩色(True Color)PWM调光是利用一个PWM信号来调节LED的亮度。调节LED亮度有三种常用方法: (1)使用SET电阻,在LED驱动控制IC引脚RSET两端并联不同的转换电阻,使用一个直流电压设置LED驱动控制IC引脚RSET的电流,从而改变LED 的正向工作电流,达到调节ALED发光亮度的目的。 (2)采用PWM技术,利用PWM控制信号,通过控制LED的正向工作电流的占空比来调节ALED的发光亮度。 (3)线性调节最简便的方法是在LED驱动控制C中使用外部SET电阻来实现LED的调光控制。虽然,这种调光控制方法有效,但却缺乏灵活性,无法让用户改变光强度。线性调节则会降低效率,并引起白光LED朝向黄色光谱的色彩偏移。可能是轻微的偏移,但可在敏感应用中检测出。采用数字或叫PWM 的LED调光控制法以大于100HZ的开关工作频率,以脉宽调制的方法改变LED 驱动电流的脉冲占空比来实理LED的调光控制,选用大于100HZ开关调光控制频率主要是为了避免人眼感觉到调光闪烁现象,在LED的PWM调光控制下,LED的发光亮度正比于PWM的脉冲占空比,在这种调光控制方法下,可以在高度调光比范围内保持LED的发光颜色不变,采用PWM的LED调光控制的调

LED芯片的发光原理与分类

LED芯片的发光原理与分类 一、LED历史 50年前人们已经了解半导体材料可产生光线的基本知识,1962年,通用电气公司的尼克何伦亚克(NickHolonyakJr.)开发出第一种实际应用的可见光发光二极管。LED是英文light emitTIng diode(发光二极管)的缩写,它的基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,即固体封装,所以能起到保护内部芯线的作用,所以LED的抗震性能好。 最初LED用作仪器仪表的指示光源,后来各种光色的LED在交通信号灯和大面积显示屏中得到了广泛应用,产生了很好的经济效益和社会效益。以12英寸的红色交通信号灯为例,在美国本来是采用长寿命、低光效的140瓦白炽灯作为光源,它产生2000流明的白光。经红色滤光片后,光损失90%,只剩下200流明的红光。而在新设计的灯中,Lumileds 公司采用了18个红色LED光源,包括电路损失在内,共耗电14瓦,即可产生同样的光效。汽车信号灯也是LED光源应用的重要领域。 二、LED芯片原理 LED(Light EmitTIng Diode),发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P型半导体,在它里面空穴占主导地位,另一端是N型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个P-N结。当电流通过导线作用于这个晶片的时候,电子就会被推向P区,在P区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED发光的原理。而光的波长也就是光的颜色,是由形成P-N结的材料决定的。

相关主题