搜档网
当前位置:搜档网 › 数字集成电路知识点整理

数字集成电路知识点整理

数字集成电路知识点整理
数字集成电路知识点整理

Digital IC:数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统

第一章引论

1、数字IC芯片制造步骤

设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计)

制版:根据版图制作加工用的光刻版

制造:划片:将圆片切割成一个一个的管芯(划片槽)

封装:用金丝把管芯的压焊块(pad)与管壳的引脚相连

测试:测试芯片的工作情况

2、数字IC的设计方法

分层设计思想:每个层次都由下一个层次的若干个模块组成,自顶向下每个层次、每个模块分别进行建模与验证

SoC设计方法:IP模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore))与设计复用Foundry(代工)、Fabless(芯片设计)、Chipless(IP设计)“三足鼎立”——SoC发展的模式

3、数字IC的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦之类的)

NRE (Non-Recurrent Engineering) 成本

设计时间和投入,掩膜生产,样品生产

一次性成本

Recurrent 成本

工艺制造(silicon processing),封装(packaging),测试(test)

正比于产量

一阶RC网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数

功耗:emmmm自己算

4、EDA设计流程

IP设计系统设计(SystemC)模块设计(verilog)

综合

版图设计(.ICC) 电路级设计(.v 基本不可读)综合过程中用到的文件类型(都是synopsys):

可以相互转化

.db(不可读).lib(可读)

加了功耗信息

.sdb .slib

第二章器件基础

1、保护IC的输入器件以抗静电荷(ESD保护)

2、长沟道器件电压和电流的关系:

3、短沟道器件电压和电流关系

速度饱和:当沿着沟道的电场达到临界值ξC时,载流子的速度由于散射效应(载流子之间的碰撞)而趋于饱和。

ξC取决于掺杂浓度和外加的垂直电场强度

器件在V DS达到V GS --V T 之前就已经进入饱和状态,所以与相应的长沟道器件相比,短沟道器件饱和区围更大

反面整理P63 3.3.2 静态状态下的MOS晶体管相关参数以及公式(尤其是速度饱和)4、MOS管二阶效应

阈值变化:随着器件尺寸的缩小,阈值电压变成与L、W、V DS有关

短沟效应(漏端感应势垒降低(DIBL)):电压控制耗尽区宽度,V DS提高将会导致势垒降低,甚至过高的V DS将会导致源漏短路,称为源漏穿流

窄沟效应:沟道耗尽区并不立即在晶体管边沿终止,而是会向绝缘场氧下面延伸一些,栅电压必须维持这一额外的耗尽电荷才能建立一条导电沟道,在W值较小时将会引起阈值电压升高

亚阈值导通:在V GS接近甚至略小于V T时,I D仍然存在

热载流子效应:

原因:小尺寸器件中的强电场引起高能热电子与晶格碰撞产生电子空穴对,引起衬底电流;电子在强总校电厂的作用下穿过栅氧,引起栅电流。

影响:改变阈值电压、使器件参数变差,特性不稳,电路失效;衬底电流引起噪声以及动态节点漏电。

处理方法:LDD(lightly doped drain):在源漏区与沟道间加一段电阻率较高的轻掺杂区。可以减小热载流子效应,增大源漏端耐压围,但是轻掺杂区会导致器件跨导减

小,漏源电流减小

闩锁效应:寄生双极型晶体管互相提供基极电流,正反馈至短路

第三章互连线

1、MOS IC的三层互连线

上层金属互连线

中层的多晶硅连线

下层的扩散区连线

2、互连线模型:集总RC模型(Elmore延时)

集总RC 模型(考虑导线电阻):导线分段,每段导线的导线电阻集总成一个电阻R,电容集总成一个电容C

第四章反相器

1、再生性:再生性保证一个受干扰的信号在通过若干逻辑级后逐渐收敛回到额定电平中的一个

具备再生性的条件:过渡区增益绝对值大于一

2、扇出系数:输出端连接同类门的最多个数

扇入系数:单个逻辑门能够承受的数字信号输入最大量

3、静态CMOS反相器的特点:

1、输出高电平和低电平分别为VDD和GND。信号电压摆幅等于电源电压,噪声容限

很大;

2、采用无比逻辑,逻辑电平与器件尺寸无关,晶体管可以采用最小尺寸,且翻转时不

会因为尺寸设计原因出现错误,稳定性高

3、输出阻抗小,稳态时在输出和VDD或GND之间总存在一条具有有限电阻的通路,

对噪声和干扰不敏感

4、输入阻抗高,不消耗直流输入电流,理论上可以驱动无限多个门

5、不考虑泄露功耗的情况下,没有静态功耗(CMOS取代NMOS的原因)

4、CMOS反相器静态特性

开关阈值:定义为V M=V out的点,在这一区域由于V GS=V DS,上管下管都是饱和的(长沟短沟分为速度饱和和普通饱和),使通过两个晶体管的电流相等即可得到V M的解析表达式,推导过程见书上P134,反面自己推导一遍。

噪声容限[V IL,V IH]:根据定义,是反相器增益为-1时的输入,但是太难算了,就用了线性近似,推导过程见书上P136,反面自己推导一遍。

5、CMOS反相器动态特性

电容:巴拉巴拉巴拉巴拉一堆公式反正感觉没啥用

传播延时:在输入和输出反转的50%之间的时间,正比于这个电路的下拉电阻和负载电容所形成的时间常数

传播延时性能优化设计:

减小负载电容(自身扩散电容,连线电容,扇出电容)

加大晶体管尺寸

优点:增加了驱动能力(增大充放电电流,降低导通电阻)

缺点:扩散电容增大,从而使负载电容增大

栅电容增加,使前一级的扇出电容增加

提高电源电压

缺点:V DD增加到一定程度,对延时的优化效果不明显

功耗增加

出于可靠性烤炉,V DD具有严格的上限

反相器链的性能优化:要求每一级的尺寸时与其相邻前后两个反相器尺寸的几何平均数(Cg为输入的栅电容)

这一段一定要回头看书看PPT啊!!!!!!!!!!!!!

5、反相器功耗分析(感觉好像都会,回头扫一眼就成,还有能连延时积啥的)

动态功耗:对负载电容充电和放电造成的功耗

短路功耗:开关过程中电源和地之间顺吉纳的直流通路造成的功耗

静态功耗:稳定输出高电平或低电平时的直流功耗,漏电流造成

第六章CMOS组合逻辑门的设计

1、静态CMOS组合逻辑电路

在每一时间(除切换期间)每个门的输出总是通过低阻连至VDD 或GND。

稳态时,门的输出值总是由电路所实现的布尔函数决定。

它不同于动态电路:动态电路把信号值暂时存放在高阻抗电路节点电容上。

2、静态电路类型:

互补CMOS

有比逻辑(伪NMOS和DCVSL)

传输晶体管逻辑(Pass-Transistor Logic)

3、互补CMOS经验规则:

晶体管看作是由其栅端信号控制的开关。

PDN用NMOS器件,PUN用PMOS器件(否则会有阈值损失)

实现N输入的逻辑门需要晶体管数目为2N。

4、互补CMOS静态特性:

高噪声容限

没有静态功耗

直流电压传输特性和噪声容限与数据输入模式有关

5、互补CMOS传播延时(我觉得这里可以考一道速度快慢的定性分析)

e.g.

6、互补CMOS尺寸设计:为了使NAND网的下拉延时与最小尺寸的反相器相同,在PDN 串联网络中的NMOS器件必须设计成两倍宽(同样功能晶体管电容减半),以使NAND下拉网络的等效电阻与反相器相同而PMOS器件可以维持不变。

7、互补CMOS大扇入时的设计技巧:

调整(加大)晶体管尺寸(减小电阻但增大了电容,还会给前级加大负载,只有当CL>>Cint才能用)

逐级加大晶体管尺寸,使影响最大的晶体管电容最小(但可能会使版图设计复杂,晶体管间距不得不加大,导致部电容增加)

重新安排输入(定义:外层输入:接近电源或地的输入,层输入:接近输出端的输入,最迟到达的输入信号应当作为层输入(放在接近输出端处)以避免多次延时)

重组逻辑结构:延时与扇入的平方关系使得输入太多时反转变得极慢,可以将多输入转化为多级

插入缓冲器隔离扇入与扇出(减小电容减小时间常数)

8、组合逻辑链的性能优化

首先我们明确一个概念:驱动能力(带负载能力)就是输出电阻,越小越强

反相器延时:

一般逻辑门的延时:

p-(归一化)本征延时:本征延时与门的类型有关,但它与门的尺寸(晶体管宽度的加倍)无关

g-逻辑努力(logical effort):对于给定的负载,一个门的输入电容和与它具有相同输出电流的反相器的输入电容的比。逻辑努力与门的类型有关,但它与门的尺寸(晶体管宽度的加倍)无关

f-等效扇出(fanout):又称为“电气努力”,对于反相器,有

尺寸计算:并联不变,串联乘以串联的次数。

g=(P网输入管平均尺寸+N网输入管平均尺寸)/3

(输入电容之比)

努力与延时及尺寸关系的具体计算见书

数字集成电路设计_笔记归纳..

第三章、器件 一、超深亚微米工艺条件下MOS 管主要二阶效应: 1、速度饱和效应:主要出现在短沟道NMOS 管,PMOS 速度饱和效应不显著。主要原因是 TH G S V V -太大。在沟道电场强度不高时载流子速度正比于电场强度(μξν=) ,即载流子迁移率是常数。但在电场强度很高时载流子的速度将由于散射效应而趋于饱和,不再随电场 强度的增加而线性增加。此时近似表达式为:μξυ=(c ξξ<),c s a t μξυυ==(c ξξ≥) ,出现饱和速度时的漏源电压D SAT V 是一个常数。线性区的电流公式不变,但一旦达到DSAT V ,电流即可饱和,此时DS I 与GS V 成线性关系(不再是低压时的平方关系)。 2、Latch-up 效应:由于单阱工艺的NPNP 结构,可能会出现VDD 到VSS 的短路大电流。 正反馈机制:PNP 微正向导通,射集电流反馈入NPN 的基极,电流放大后又反馈到PNP 的基极,再次放大加剧导通。 克服的方法:1、减少阱/衬底的寄生电阻,从而减少馈入基极的电流,于是削弱了正反馈。 2、保护环。 3、短沟道效应:在沟道较长时,沟道耗尽区主要来自MOS 场效应,而当沟道较短时,漏衬结(反偏)、源衬结的耗尽区将不可忽略,即栅下的一部分区域已被耗尽,只需要一个较小的阈值电压就足以引起强反型。所以短沟时VT 随L 的减小而减小。 此外,提高漏源电压可以得到类似的效应,短沟时VT 随VDS 增加而减小,因为这增加了反偏漏衬结耗尽区的宽度。这一效应被称为漏端感应源端势垒降低。

4、漏端感应源端势垒降低(DIBL): VDS增加会使源端势垒下降,沟道长度缩短会使源端势垒下降。VDS很大时反偏漏衬结击穿,漏源穿通,将不受栅压控制。 5、亚阈值效应(弱反型导通):当电压低于阈值电压时MOS管已部分导通。不存在导电沟道时源(n+)体(p)漏(n+)三端实际上形成了一个寄生的双极性晶体管。一般希望该效应越小越好,尤其在依靠电荷在电容上存储的动态电路,因为其工作会受亚阈值漏电的严重影响。 绝缘体上硅(SOI) 6、沟长调制:长沟器件:沟道夹断饱和;短沟器件:载流子速度饱和。 7、热载流子效应:由于器件发展过程中,电压降低的幅度不及器件尺寸,导致电场强度提高,使得电子速度增加。漏端强电场一方面引起高能热电子与晶格碰撞产生电子空穴对,从而形成衬底电流,另一方面使电子隧穿到栅氧中,形成栅电流并改变阈值电压。 影响:1、使器件参数变差,引起长期的可靠性问题,可能导致器件失效。2、衬底电流会引入噪声、Latch-up、和动态节点漏电。 解决:LDD(轻掺杂漏):在漏源区和沟道间加一段电阻率较高的轻掺杂n-区。缺点是使器件跨导和IDS减小。 8、体效应:衬底偏置体效应、衬底电流感应体效应(衬底电流在衬底电阻上的压降造成衬偏电压)。 二、MOSFET器件模型 1、目的、意义:减少设计时间和制造成本。 2、要求:精确;有物理基础;可扩展性,能预测不同尺寸器件性能;高效率性,减少迭代次数和模拟时间 3、结构电阻:沟道等效电阻、寄生电阻 4、结构电容: 三、特征尺寸缩小 目的:1、尺寸更小;2、速度更快;3、功耗更低;4、成本更低、 方式: 1、恒场律(全比例缩小),理想模型,尺寸和电压按统一比例缩小。 优点:提高了集成密度 未改善:功率密度。 问题:1、电流密度增加;2、VTH小使得抗干扰能力差;3、电源电压标准改变带来不便;4、漏源耗尽层宽度不按比例缩小。 2、恒压律,目前最普遍,仅尺寸缩小,电压保持不变。 优点:1、电源电压不变;2、提高了集成密度 问题:1、电流密度、功率密度极大增加;2、功耗增加;3、沟道电场增加,将产生热载流子效应、速度饱和效应等负面效应;4、衬底浓度的增加使PN结寄生电容增加,速度下降。 3、一般化缩小,对今天最实用,尺寸和电压按不同比例缩小。 限制因素:长期使用的可靠性、载流子的极限速度、功耗。

数字集成电路复习笔记

数集复习笔记 By 潇然名词解释专项 摩尔定律:一个芯片上的晶体管数目大约每十八个月增长一倍。 传播延时:一个门的传播延时t p定义了它对输入端信号变化的响应有多快。它表示一个信号通过一个门时所经历的延时,定义为输入和输出波形的50%翻转点之间的时间。 由于一个门对上升和下降输入波形的响应时间不同,所以需定义两个传播延时。 t pLH定义为这个门的输出由低至高翻转的响应时间,而t pHL则为输出由高至低翻转 的响应时间。传播延时t p定义为这两个时间的平均值:t p=(t pLH+t pHL)/2。 设计规则:设计规则是指导版图掩膜设计的对几何尺寸的一组规定。它们包括图形允许的最小宽度以及在同一层和不同层上图形之间最小间距的限制与要求。定义设计规则 的目的是为了能够很容易地把一个电路概念转换成硅上的几何图形。设计规则的 作用就是电路设计者和工艺工程师之间的接口,或者说是他们之间的协议。 速度饱和效应:对于长沟MOS管,载流子满足公式:υ= -μξ(x)。公式表明载流子的速度正比于电场,且这一关系与电场强度值的大小无关。换言之,载流子的迁移率 是一个常数。然而在(水平方向)电场强度很高的情况下,载流子不再符合 这一线性模型。当沿沟道的电场达到某一临界值ξc时,载流子的速度将由于 散射效应(即载流子间的碰撞)而趋于饱和。 时钟抖动:在芯片的某一个给定点上时钟周期发生暂时的变化,即时钟周期在每个不同的周期上可以缩短或加长。 逻辑综合:逻辑综合的任务是产生一个逻辑级模型的结构描述。这一模型可以用许多不同的方式来说明,如状态转移图、状态图、电路图、布尔表达式、真值表或HDL描 述。 噪声容限:为了使一个门的稳定性较好并且对噪声干扰不敏感,应当使“0”和“1”的区间越大越好。一个门对噪声的灵敏度是由低电平噪声容限NM L和高电平噪声容限 NM H来度量的,它们分别量化了合法的“0”和“1”的范围,并确定了噪声的 最大固定阈值: NM L =V IL - V OL NM H =V OH - V IH

《数字集成电路基础》试题C

《数字集成电路基础》试题C (考试时间:120分钟) 班级:姓名:学号:成绩: 一、填空题(共30分) 1.三极管有NPN和PNP两种类型,当它工作在放大状态时,发射结____,集电 结______;NPN型三极管的基区是______型半导体,集电区和发射区是______型半导体。 2.把高电压作为逻辑1,低电平作为逻辑0的赋值方法称作_______逻辑赋 值。一种电路若在正逻辑赋值时为与非门,则在负逻辑赋值时为________。 3.四位二进制编码器有____个输入端;____个输出端。 4.将十进制数287转换成二进制数是________;十六进制数是_____ __。 5.根据触发器功能的不同,可将触发器分成四种,分别是____触发器、___ _触发器、____触发器和____触发器。 3=______。 A.发射结和集电结均处于反向偏置 B.发射结正向偏置,集电结反向偏置 C.发射结和集电结均处于正向偏置 2.在下列三个逻辑函数表达式中,____是最小项表达式。 A.B C ) A BC ,B ,A = + Y+ ( A B B ) A B ,A ( C B = B. C Y+ A

C. C AB ABC B C A C B A )D ,C ,B ,A (Y +++??= 3.用8421码表示的十进制数45,可以写成__________ A .45 B. [101101]BCD C. [01000101]BCD D. [101101]2 4.采用OC 门主要解决了_____ A .TTL 与非门不能相与的问题 B. TTL 与非门不能线与的问题 C. TTL 与非门不能相或的问题 5.已知某触发的特性表如下(A 、B 为触发器的输入)其输出信号的逻辑表达式为___ A . Q n+1 =A B. n n 1n Q A Q A Q +=+ C. n n 1n Q B Q A Q +=+ 三、化简下列逻辑函数,写出最简与或表达式:(共20分) 1. BC A C B A C B B A Y 1+?++= 2. Y 2=Σm (0,1,8,9,10,11) 3. Y 3见如下卡诺图

初二物理下册期中知识点问答及知识点

第六章物质的物理属性 1、什么叫做质量?答:物体所含物质的多少叫做物体的质量。质量的物理量符号是m. 2、质量的国际单位和常用单位是什么?如何换算?答:在国际单位制中,质量的单位是千克,千克的单位符号是kg。常用的质量单位还有克(g)、毫克(mg)和吨(t)。它们之间的换算关系是:1t=1000kg, 1kg=1000g, 1g=1000mg。 3、实验室常用什么器材测量物体的质量?答:实验室里常用托盘天平测量物体的质量。 4、托盘天平的使用方法是什么? 答:1、使用天平时,应将天平放在水平工作台上。2、然后,将游码移至标尺左端的“0”刻线处,再调节横梁上的平衡螺母,使指针对准分度盘中央的刻度线。3、测量物体质量时,应将物体放在天平的左盘;用镊子向右盘加减砝码,移动游码在标尺上的位置,使指针对准分度盘的中线;此时右盘中砝码的总质量与标尺示数值之和,即为所测物体的质量。使用托盘天平时 注意事项:1、首先要认真观察天平的最大测量值(称量)和标尺上的分度值(感量),用天平测量物体的质量不能超过天平的量程,往右盘里加减砝码时应轻拿轻放;2、天平与砝码应保持干燥、清洁,不要把潮湿的物品和化学药品直接放在天平左盘里,不要用手直接拿砝码。 5、为什么说质量是物体的物理属性? 答:物体的质量不随物体的形状、物质状态和地理位置的改变而改变,所以质量是物体的物理属性。 6、若被测物体的质量小于标尺上的分度值(即天平的感量),该如何测量? 答:可采测多算少法(累积法)进行测量。(如邮票、大头针等m= m总/n) 7、常见物体质量的大约数值是什么? 答:一张邮票:50mg;一个成人:50kg;一只苹果:140g; 一元硬币:10g;一只鸡:1.5kg;一只鸡蛋:50g;一头大象:6t 8、质量与体积的比值与物质的种类有什么关系? 答:同种物质的不同物体,质量与体积的比值是相同的。 不同物质的不同物体,质量与体积的比值一般是不同的。 9、什么叫物质的密度?计算式及单位是什么? 答:单位体积某种物质的质量叫做这种物质的密度。密度=质量/体积。 ρ=m/V 式中:ρ表示密度,m表示质量,V表示体积。 密度的国际单位是:千克/米3,单位符号是:kg/m3 其它单位有:克/厘米3(g/cm3)、千克/分米3(kg/dm3) 单位换算关系是:1 g/cm3=103 kg/m3 1 g/cm3=1 kg/dm3 10、水的密度及物理意义是什么?答:水的密度为:ρ水=103 kg/m3 其物理意义:1米3水的质量为103千克。 11、为什么说密度是物质的物理属性?答:密度是物质物理属性是因为同种物质的密度相同,不同物质的密度一般不同。 12、ρ=m/V的物理意义是什么?答:(1)同种物质的密度一般不变,是定值(但温度、物态、压强等条件变化时,物质的密度也会发生变化)同种物质的密度不随物体的质量、体积的变化而变化,但质量与体积成正比。 (2)不同物质的密度一般不同,密度是变化的。质量一定时,密度与体积成反比;体积一定时,密度与质量成比。 13、密度有哪些应用?答:(1)ρ=m/V测量和计算密度鉴别物质的种类;(2)m=ρV计算质量(3)V= m/ρ计算体积。 14、量筒(量杯)的作用是什么?如何读数? 答:量筒(量杯)用来直接测量液体的体积和间接测量固体的体积。测量前应观察(1)分度值(2)最大测量值。 读数时,视线应与液面的凹面(或凸面)相平,俯视时读数值偏大,仰视时读数偏小。 15、量筒(量杯)间接测量固体体积的方法是什么? 答:(1)在量筒中倒入适量(1、能使固体全部浸没,2、放入固体后液面不能超过量筒的最大测量值)的水V1;(2)用细线系住固体沿量筒壁轻轻下落到量筒底部,读数为V2,则固体的体积为V固= V2- V1。上述方法为排水法。若固体溶于水则需要用薄膜包上或用排沙法;若固体密度小于水的密度则用针压法或捆绑法。 16、体积、面积、长度的物理量符号及单位有哪些? 答:体积物理量符号:V,国际单位:米3(m3)。体积其它单位及换算关系为:1 m3=103 dm3,1 dm3=103 cm3,1 m3=106 cm3 1 dm3=1升(L),1 L=103毫升(mL), 1 cm3=1 mL 面积的物理量符号:S,国际单位:米2(m2)。其它单位及换算:1 m2=102 dm2, 1 m2=106mm2,1 m2=104 cm2 17、密度表上的信息有哪些? 答:(1)水的密度ρ水=103千克/米3 (2)不同物质的密度一般不同,但也可能相同。ρ冰=ρ蜡=ρ植物油=0.9×103 kg/m3ρ酒精=ρ煤油=0.8×103 kg/m3 (3)同种物质的密度在状态改变时也发生改变 1

数字集成电路复习指南..

1. 集成电路是指通过一系列特定的加工工艺,将晶体管、二极管、MOS管等有源器件和阻、电容、电感等无源器件,按一定电路互连,“集成”在一块半导体晶片(硅或砷化镓)上,封装在一个外壳内,执行特定电路或系统功能的一种器件。 2.集成电路的规模大小是以它所包含的晶体管数目或等效的逻辑门数目来衡量。等效逻辑门通常是指两输入与非门,对于CMOS集成电路来说,一个两输入与非门由四个晶体管组成,因此一个CMOS电路的晶体管数除以四,就可以得到该电路的等效逻辑门的数目,以此确定一个集成电路的集成度。 3.摩尔定律”其主要内容如下: 集成电路的集成度每18个月翻一番/每三年翻两番。 摩尔分析了集成电路迅速发展的原因, 他指出集成度的提高主要是三方面的贡献: (1)特征尺寸不断缩小,大约每3年缩小1.41倍; (2)芯片面积不断增大,大约每3年增大1.5倍; (3)器件和电路结构的改进。 4.反标注是指将版图参数提取得到的分布电阻和分布电容迭加到相对应节点的参数上去,实际上是修改了对应节点的参数值。 5.CMOS反相器的直流噪声容限:为了反映逻辑电路的抗干扰能力,引入了直流噪声容限作为电路性能参数。直流噪声容限反映了电流能承受的实际输入电平与理想逻辑电平的偏离范围。 6. 根据实际工作确定所允许的最低输出高电平,它所对应的输入电平定义为关门电平;给定允许的最高输出低电平,它所对应的输入电平为开门电平 7. 单位增益点. 在增益为0和增益很大的输入电平的区域之间必然存在单位增益点,即dV out/dVin=1的点 8. “闩锁”现象 在正常工作状态下,PNPN四层结构之间的电压不会超过Vtg,因 此它处于截止状态。但在一定的外界因素触发下,例如由电源或 输出端引入一个大的脉冲干扰,或受r射线的瞬态辐照,使 PNPN四层结构之间的电压瞬间超过Vtg,这时,该寄生结构中就 会出现很大的导通电流。只要外部信号源或者Vdd和Vss能够提供 大于维持电流Ih的输出,即使外界干扰信号已经消失,在PNPN四 层结构之间的导通电流仍然会维持,这就是所谓的“闩锁”现象 9. 延迟时间: T pdo ——晶体管本征延迟时间; UL ——最大逻辑摆幅,即最大电源电压; Cg ——扇出栅电容(负载电容); Cw ——内连线电容; Ip ——晶体管峰值电流。

数字集成电路--电路、系统与设计(第二版)复习资料

第一章 数字集成电路介绍 第一个晶体管,Bell 实验室,1947 第一个集成电路,Jack Kilby ,德州仪器,1958 摩尔定律:1965年,Gordon Moore 预言单个芯片上晶体管的数目每18到24个月翻一番。(随时间呈指数增长) 抽象层次:器件、电路、门、功能模块和系统 抽象即在每一个设计层次上,一个复杂模块的内部细节可以被抽象化并用一个黑匣子或模型来代替。这一模型含有用来在下一层次上处理这一模块所需要的所有信息。 固定成本(非重复性费用)与销售量无关;设计所花费的时间和人工;受设计复杂性、设计技术难度以及设计人员产出率的影响;对于小批量产品,起主导作用。 可变成本 (重复性费用)与产品的产量成正比;直接用于制造产品的费用;包括产品所用部件的成本、组装费用以及测试费用。每个集成电路的成本=每个集成电路的可变成本+固定成本/产量。可变成本=(芯片成本+芯片测试成本+封装成本)/最终测试的成品率。 一个门对噪声的灵敏度是由噪声容限NM L (低电平噪声容限)和NM H (高电平噪声容限)来度量的。为使一个数字电路能工作,噪声容限应当大于零,并且越大越好。NM H = V OH - V IH NM L = V IL - V OL 再生性保证一个受干扰的信号在通过若干逻辑级后逐渐收敛回到额定电平中的一个。 一个门的VTC 应当具有一个增益绝对值大于1的过渡区(即不确定区),该过渡区以两个有效的区域为界,合法区域的增益应当小于1。 理想数字门 特性:在过渡区有无限大的增益;门的阈值位于逻辑摆幅的中点;高电平和低电平噪声容限均等于这一摆幅的一半;输入和输出阻抗分别为无穷大和零。 传播延时、上升和下降时间的定义 传播延时tp 定义了它对输入端信号变化的响应有多快。它表示一个信号通过一个门时所经历的延时,定义为输入和输出波形的50%翻转点之间的时间。 上升和下降时间定义为在波形的10%和90%之间。 对于给定的工艺和门的拓扑结构,功耗和延时的乘积一般为一常数。功耗-延时积(PDP)----门的每次开关事件所消耗的能量。 一个理想的门应当快速且几乎不消耗能量,所以最后的质量评价为。能量-延时积(EDP) = 功耗-延时积2 。 第三章、第四章CMOS 器件 手工分析模型 ()0 12' 2 min min ≥???? ??=GT DS GT D V V V V V L W K I 若+-λ ()DSAT DS GT V V V V ,,m in min = 寄生简化:当导线很短,导线的截面很大时或当 所采用的互连材料电阻率很低时,电感的影响可 以忽略:如果导线的电阻很大(例如截面很小的长 铝导线的情形);外加信号的上升和下降时间很慢。 当导线很短,导线的截面很大时或当所采用的互 连材料电阻率很低时,采用只含电容的模型。 当相邻导线间的间距很大时或当导线只在一段很短的距离上靠近在一起时:导线相互间的电容可 以被忽略,并且所有的寄生电容都可以模拟成接 地电容。 平行板电容:导线的宽度明显大于绝缘材料的厚 度。 边缘场电容:这一模型把导线电容分成两部分: 一个平板电容以及一个边缘电容,后者模拟成一 条圆柱形导线,其直径等于该导线的厚度。 多层互连结构:每条导线并不只是与接地的衬底 耦合(接地电容),而且也与处在同一层及处在相邻层上的邻近导线耦合(连线间电容)。总之,再多层互连结构中导线间的电容已成为主要因素。这一效应对于在较高互连层中的导线尤为显著,因为这些导线离衬底更远。 例4.5与4.8表格 电压范围 集总RC 网络 分布RC 网络 0 → 50%(t p ) 0.69 RC 0.38 RC 0 → 63%(τ) RC 0.5 RC 10% → 90%(t r ) 2.2 RC 0.9 RC 0 → 90% 2.3 RC 1.0 RC 例4.1 金属导线电容 考虑一条布置在第一层铝上的10cm 长,1μm 宽的铝线,计算总的电容值。 平面(平行板)电容: ( 0.1×106 μm2 )×30aF/μm2 = 3pF 边缘电容: 2×( 0.1×106 μm )×40aF/μm = 8pF 总电容: 11pF 现假设第二条导线布置在第一条旁边,它们之间只相隔最小允许的距离,计算其耦合电 容。 耦合电容: C inter = ( 0.1×106 μm )×95 aF/μm2 = 9.5pF 材料选择:对于长互连线,铝是优先考虑的材料;多晶应当只用于局部互连;避免采用扩散导线;先进的工艺也提供硅化的多晶和扩散层 接触电阻:布线层之间的转接将给导线带来额外的电阻。 布线策略:尽可能地使信号线保持在同一层上并避免过多的接触或通孔;使接触孔较大可以降低接触电阻(电流集聚在实际中将限制接触孔的最大尺寸)。 采电流集聚限制R C , (最小尺寸):金属或多晶至n+、p+以及金属至多晶为 5 ~ 20 Ω ;通孔(金属至金属接触)为1 ~ 5 Ω 。 例4.2 金属线的电阻 考虑一条布置在第一层铝上的10cm 长,1μm 宽的铝线。假设铝层的薄层电阻为0.075Ω/□,计算导线的总电阻: R wire =0.075Ω/□?(0.1?106 μm)/(1μm)=7.5k Ω 例4.5 导线的集总电容模型 假设电源内阻为10k Ω的一个驱动器,用来驱动一条10cm 长,1μm 宽的Al1导线。 电压范围 集总RC 网络 分布RC 网络 0 → 50%(t p ) 0.69 RC 0.38 RC 0 → 63%(τ) RC 0.5 RC 10% → 90%(t r ) 2.2 RC 0.9 RC 0 → 90% 2.3 RC 1.0 RC 使用集总电容模型,源电阻R Driver =10 k Ω,总的集总电容C lumped =11 pF t 50% = 0.69 ? 10 k Ω ? 11pF = 76 ns t 90% = 2.2 ? 10 k Ω ? 11pF = 242 ns 例4.6 树结构网络的RC 延时 节点i 的Elmore 延时: τDi = R 1C 1 + R 1C 2 + (R 1+R 3) C 3 + (R 1+R 3) C 4 + (R 1+R 3+R i ) C i 例4.7 电阻-电容导线的时间常数 总长为L 的导线被分隔成完全相同的N 段,每段的长度为L/N 。因此每段的电阻和电容分别为rL/N 和cL/N R (= rL) 和C (= cL) 是这条导线总的集总电阻和电容()()()N N RC N N N rcL Nrc rc rc N L DN 2121 (22) 22 +=+=+++?? ? ??=τ 结论:当N 值很大时,该模型趋于分布式rc 线;一条导线的延时是它长度L 的二次函数;分布rc 线的延时是按集总RC 模型预测的延时的一半. 2 rcL 22=RC DN = τ 例4.8 铝线的RC 延时.考虑长10cm 宽、1μm 的Al1导线,使用分布RC 模型,c = 110 aF/μm 和r = 0.075 Ω/μm t p = 0.38?RC = 0.38 ? (0.075 Ω/μm) ? (110 aF/μm) ? (105 μm)2 = 31.4 ns Poly :t p = 0.38 ? (150 Ω/μm) ? (88+2?54 aF/μm) ? (105 μm)2 = 112 μs Al5: t p = 0.38 ? (0.0375 Ω/μm) ? (5.2+2?12 aF/μm) ? (105 μm)2 = 4.2 ns 例4.9 RC 与集总C 假设驱动门被模拟成一个电压源,它具有一定大小的电源内阻R s 。 应用Elmore 公式,总传播延时: τD = R s C w + (R w C w )/2 = R s C w + 0.5r w c w L 2 及 t p = 0.69 R s C w + 0.38 R w C w 其中,R w = r w L ,C w = c w L 假设一个电源内阻为1k Ω的驱动器驱动一条1μm 宽的Al1导线,此时L crit 为2.67cm 第五章CMOS 反相器 静态CMOS 的重要特性:电压摆幅等于电源电压 → 高噪声容限。逻辑电平与器件的相对尺寸无关 → 晶体管可以采用最小尺寸 → 无比逻辑。稳态时在输出和V dd 或GND 之间总存在一条具有有限电阻的通路 → 低输出阻抗 (k Ω) 。输入阻抗较高 (MOS 管的栅实际上是一个完全的绝缘体) → 稳态输入电流几乎为0。在稳态工作情况下电源线和地线之间没有直接的通路(即此时输入和输出保持不变) → 没有静态功率。传播延时是晶体管负载电容和电阻的函数。 门的响应时间是由通过电阻R p 充电电容C L (电阻R n 放电电容C L )所需要的时间决定的 。 开关阈值V M 定义为V in = V out 的点(在此区域由于V DS = V GS ,PMOS 和NMOS 总是饱和的) r 是什么:开关阈值取决于比值r ,它是PMOS 和NMOS 管相对驱动强度的比 DSATn n DSATp p DD M V k V k V V = ,r r 1r +≈ 一般希望V M = V DD /2 (可以使高低噪声容限具有相近的值),为此要求 r ≈ 1 例5.1 CMOS 反相器的开关阈值 通用0.25μm CMOS 工艺实现的一个CMOS 反相器的开关阈值处于电源电压的中点处。 所用工艺参数见表3.2。假设V DD = 2.5V ,最小尺寸器件的宽长比(W/L)n 为1.5 ()()()()()()()() V V L W V V V V k V V V V k L W L W M p DSATp Tp M DSATp p DSATn Tn M DSATn n n p 25.125.55.15.35.320.14.025.1263.043.025.10.163.01030101152266==?==----?-???----=---= 分析: V M 对于器件比值的变化相对来说是不敏感 的。将比值设为3、2.5和2,产生的V M 分别为 1.22V 、1.18V 和 1.13V ,因此使PMOS 管的宽度小于完全对称所要求的值是可以接受的。 增加PMOS 或NMOS 宽度使V M 移向V DD 或GND 。不对称的传输特性实际上在某些设计中是所希望的。 噪声容限:根据定义,V IH 和V IL 是dV out /dV in = -1(= 增益)时反相器的工作点 逐段线性近似V IH = V M - V M /g V IL = V M + (V DD - V M )/g 过渡区可以近似为一段直线,其增益等于 在开关阈值V M 处的增益g 。它与V OH 及V OL 线的交点 用来定义V IH 和V IL 。点。

初中地理问答题25个知识点

中考地理简答题的答题模式 1、生态、环境问题 1、水土流失问题我国典型地区:黄土高原、南方低山丘陵地 区 (黄土高原为例)产生的原因: (1)自然原因:黄土土质疏松、降水集中,多暴雨。坡度大流速快、植被缺失。 (2)人为原因:植被的破坏;不合理的耕作制度;开矿。 治理的措施:多植树勤挡土,水土保持是基础。 2、荒漠化问题(选修) 我国典型的地区:西北地区产生的原因:(1)自然原因:地表覆盖着深厚的疏松沙质沉积物;大风日数多而且集中;处内陆地区,气候干旱降水少。 (2)人为原因:过度樵采;过度放牧;过度开垦。 治理措施:制定草场保护的法律、法规,加强管理;控制载畜量;营造“三北防护林”建设;退耕还林、还牧;建设人工草场;推广轮牧;禁止采伐等。 3、干旱缺水问题 我国典型地区:华北地区、西北地区: 产生原因(华北地区):(1)自然原因:温带季风气候,全年降水少,河流径流量小;降水变率大;春季蒸发旺盛。(2)人为原因:人口稠密、工农业发达,需水量大;水污染严重;浪费多,利用率低;春季春种用水量大。 治理措施:南水北调;修建水库;控制人口数量,提高素质;减少水污染;节约用水,提高利用率;限制高耗水工业的发展;发展节水农业;采用滴灌、喷灌农业灌溉技术,提高利用率;实行水价调节,树立节水意识;海水淡化等。 思考:我国东北地区为何没有形成春旱?(春汛) 4、地面下沉和海水倒灌 我国典型地区:北方广大地区和南方城市;产生的原因:过度 抽取地下水 治理措施:控制抽取地下水;实行雨季回灌 5、赤潮 我国典型地区:珠江口、杭州湾、渤海等。多发季节:夏季。 5 —10 月产生的原因:(1)自然原因:气温高;静水;静风;海域相对圭封 闭。 (2)人为原因:沿岸地区人口稠密、经济发达,排入海洋的工业 和生活污水多;农业生产过程中大量使用化肥、农药;由于海洋开 发程度高和养殖业规模的扩大,严重的污染了养殖水 域。 6、酸雨分布:西欧、北美、日本;我国南方地区 成因:燃烧煤、石油、天然气等矿物燃料。 危害:河湖水酸化,影响鱼类;土壤酸化,危害森林及农作物;腐 蚀建筑物和文物古迹;危害人体健康。 根本途径:开发新能源 7、沼泽的保护(选修)我国典型地区:三江平原。 沼泽的形成:①纬度高,气温低,蒸发量小②地下冻土层形成不透 水层③地势低平,地表径流排泄不畅,土壤中水分积聚过多 开发利用的关键:排水。 意义:是蓄水池,也是水源地。①调节气候,保护和改善生态 环境②是一些珍禽的栖息地。 8、洪涝灾害 我国典型地区:东北;黄河、长江中下游地区;淮河流域;珠 江流域等 产生的原因:(1)自然原因:夏季风的强弱变化(副高强:南旱北 涝;副高弱:南涝北旱);台风的影响;河道弯曲(荆江河段); (2)人为原因:滥砍滥伐,造成水土流失加剧,河床抬升;围湖造 田;不合理水利工程建设(渭河流域)治理措施:植树造林,建设 防护林体系;退耕还湖;修建水利工程;裁弯取直,加固大堤;修 建分洪区;建立洪水预报预警系统等。 9、沙尘暴现象(选修) 我国典型地区:西北、华北地区 产生的原因:(1)自然原因:气候干旱,降水少;春季大风日数 多;地表植被稀少等(2)人为原因:过度放牧;过度樵采; 过度开 垦 治理措施:制定草场保护的法律、法规,加强管理;控制载畜量; 营造“三北防护林”建设;退耕还林、还牧;建设人工草 场;推广轮牧;禁止采伐等 10、台风多发生夏秋季节,主要发生海域为:西北太平洋台风灾害 由强风、特大暴雨、风暴潮造成 台风对我国的有利方面:①带来丰沛降水,缓解长江中下游的伏 旱,②缓解高温酷暑天气 如何减小台风损失:加强台风的监测和预报(气象卫星跟踪、沿海 雷达监测) 11、寒潮 时空分布考虑源地、冬季风强弱、地形地势的阻挡等因素,我国冬 半年常发,影响范围大,除滇南、青藏高原、台湾、海南及四川盆 地外。 灾害特点:降温辐度大、风力强、影响范围广、出现降温、大风、 暴雪、冰害等灾害性天气。 寒潮的利:冻杀害虫;大雪缓解春旱 12、地震: 形成原因:位于板块的交界处,地壳活动剧烈。 减轻灾害的措施:积极开展防灾、减灾的宣传教育,提高公众的环 保和减灾意识;建立灾害监测预报体系;加强地质灾害的管理,建 立健全减灾工作的政策法规体系;提高建筑物的抗震强度;加强国 际合作等。 13、西南地区地质灾害严重形成原因: 1)自然原因:山区面积广大,岩石破碎,风化严重;干湿季 分明、暴雨集中;(2)人为原因:对植被的破坏。 治理措施:恢复植被 14、河流的治理措施 上游:治理原则是调洪,做法是修水库、植树造林;中游:治理原 则是分洪、蓄洪,做法是修水库,修建分洪、蓄洪工程;下游:治 理原则是泄洪、束水,做法是加固大堤,清淤疏浚河道,开挖河 道。 15、河流洪涝灾害的成因分析 自然原因(主要从三个方面考虑:水文特征、气候特征) 人为原因(主要从两个方面考虑:植被破坏、围湖造田)。 例如,长江洪灾的原因: (一)自然原因: 1.水系特征:(1)流域广,支流多;(2)中上游植被破坏严 重,含沙量增大; (3)中下游多为平原,河道弯曲,水流缓慢,水流不畅。

数字集成电路教学大纲

《数字集成电路》课程教学大纲 课程代码:060341001 课程英文名称:digital integrated circuits 课程总学时:48 讲课:44 实验:4 上机:0 适用专业:电子科学与技术 大纲编写(修订)时间:2017.05 一、大纲使用说明 (一)课程的地位及教学目标 数字集成电路是为电子科学与技术专业开设的学位课,该课程为必修专业课。课程主要讲授CMOS数字集成电路基本单元的结构、电气特性、时序和功耗特性,以及数字集成电路的设计与验证方法、EDA前端流程等。在讲授基本理论的同时,重在培养学生的设计思维以及解决实际问题的能力。通过本课程的学习,学生将达到以下要求: 1.掌握CMOS工艺下数字集成电路基本单元的功能、结构、特性; 2.掌握基于HDL设计建模与仿真、逻辑综合、时序分析;熟悉Spice模型; 3.具备将自然语言描述的问题转换为逻辑描述的能力; 4. 具有解决实际应用问题的能力。 (二)知识、能力及技能方面的基本要求 1.基本知识:CMOS数字集成电路设计方法与流程;CMOS逻辑器件的静态、动态特性和Spice 模型;数字集成电路的时序以及互连线问题;半导体存储器的种类与性能;数字集成电路低功耗解决方法以及输入输出电路;数字集成电路的仿真与逻辑综合。 2.基本理论和方法:在掌握静态和动态CMOS逻辑器件特性基础上,理解CMOS数字集成电路的特性和工作原理;掌握真值表、流程图/状态机、时序图的分析方法和逻辑设计的基本思想。 3.基本技能:掌握器件与系统的建模仿真方法;具备逻辑描述、逻辑与时序电路设计能力;熟悉电路验证与综合软件工具。 (三)实施说明 1.教学方法:课堂讲授中要重点对基础概念、基本方法和设计思路的讲解;采用启发式教学,培养学生思考问题、分析问题和解决问题的能力;引导和鼓励学生通过实践和自学获取知识,培养学生的自学能力;增加习题和讨论课,并在一定范围内学生讲解,调动学生学习的主观能动性;注意培养学生提高利用网络资源、参照设计规范及芯片手册等技术资料的能力。讲课要联系实际并注重培养学生的创新能力。 2.教学手段:本课程属于技术基础课,在教学中采用电子教案、CAI课件及多媒体教学系统等先进教学手段,以确保在有限的学时内,全面、高质量地完成课程教学任务。 3.计算机辅助设计:要求学生采用电路建模语言(SPICE/HDL)和仿真模拟工具软件进行电路分析与设计验证;采用逻辑综合工具软件进行电路综合;采用时序分析工具进行时序验证。(四)对先修课的要求 本课程主要的先修课程有:大学物理、电路、线性电子线路、脉冲与逻辑电路、EDA技术与FPGA应用、微机原理及应用,以及相关的课程实验、课程设计。 (五)对习题课、实践环节的要求 1.对重点、难点章节(如:MOS反相器静态特性/开关特性和体效应、组合与时序MOS电路、动态逻辑电路、数字集成电路建模与仿真验证、数字集成电路逻辑综合)应安排习题课,例题的选择以培养学生消化和巩固所学知识,用以解决实际问题为目的。 2.课后作业要少而精,内容要多样化,作业题内容必须包括基本概念、基本理论及分析设

#《数字集成电路设计》复习提纲

《数字集成电路设计》复习提纲(1-7章) 2011-12 1. 数字集成电路的成本包括哪几部分? ● NRE (non-recurrent engineering) costs 固定成本 ● design time and effort, mask generation ● one-time cost factor ● Recurrent costs 重复性费用或可变成本 ● silicon processing, packaging, test ● proportional to volume ● proportional to chip area 2. 数字门的传播延时是如何定义的? 一个门的传播延时tp 定义了它对输入端信号变化的响应有多快。 3. 集成电路的设计规则(design rule)有什么作用? ? Interface between designer and process engineer ? Guidelines for constructing process masks ? Unit dimension: Minimum line width ? scalable design rules: lambda parameter (可伸缩设计规则,其不足:只能在有限 的尺寸范围内进行。) ? absolute dimensions (micron rules,用绝对尺寸来表示。) 4. 什么是MOS 晶体管的体效应? 5. 写出一个NMOS 晶体管处于截止区、线性区、饱和区的判断条件,以及各工作区的源漏电流表达式(考虑短沟效应即沟道长度调制效应,不考虑速度饱和效应) 注:NMOS 晶体管的栅、源、漏、衬底分别用G 、S 、D 、B 表示。 6. MOS 晶体管的本征电容有哪些来源? 7. 对于一个CMOS 反相器的电压传输特性,请标出A 、B 、C 三点处NMOS 管和PMOS 管各自处于什么工作区? V DD 8. 在CMOS 反相器中,NMOS 管的平均导通电阻为R eqn ,PMOS 管的平均导通电阻为R eqp ,请写出该反相器的总传播延时定义。 9. 减小一个数字门的延迟的方法有哪些?列出三种,并解释可能存在的弊端。 ? Keep capacitances small (减小CL ) ? Increase transistor sizes(增加W/L) ? watch out for self-loading! (会增加CL ) ? Increase VDD (????) V out V in 0.5 11.522.5

数字集成电路必备考前复习总结

Digital IC:数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路 或系统 第一章引论 1、数字IC芯片制造步骤 设计:前端设计(行为设计、体系结构设计、结构设计)、后端设计(逻辑设计、电路设计、版图设计) 制版:根据版图制作加工用的光刻版 制造:划片:将圆片切割成一个一个的管芯(划片槽) 封装:用金丝把管芯的压焊块(pad)与管壳的引脚相连 测试:测试芯片的工作情况 2、数字IC的设计方法 分层设计思想:每个层次都由下一个层次的若干个模块组成,自顶向下每个层次、每个模块分别进行建模与验证 SoC设计方法:IP模块(硬核(Hardcore)、软核(Softcore)、固核(Firmcore))与设计复用Foundry(代工)、Fabless(芯片设计)、Chipless(IP设计)“三足鼎立”——SoC发展的模式 3、数字IC的质量评价标准(重点:成本、延时、功耗,还有能量啦可靠性啦驱动能力啦 之类的) NRE (Non-Recurrent Engineering) 成本 设计时间和投入,掩膜生产,样品生产 一次性成本 Recurrent 成本 工艺制造(silicon processing),封装(packaging),测试(test) 正比于产量 一阶RC网路传播延时:正比于此电路下拉电阻和负载电容所形成的时间常数 功耗:emmmm自己算 4、EDA设计流程 IP设计系统设计(SystemC)模块设计(verilog) 综合 版图设计(.ICC) 电路级设计(.v 基本不可读)综合过程中用到的文件类型(都是synopsys版权): 可以相互转化 .db(不可读).lib(可读) 加了功耗信息

《数字集成电路基础》试题D

《数字集成电路基础》试题D (考试时间:120分钟) 班级: 姓名: 学号: 成绩: 一、填空题(共30分) 1. 当PN 结外加正向电压时,PN 结中的多子______形成较大的正向电流。 2. NPN 型晶体三极管工作在饱和状态时,其发射结和集电结的外加电压分别处于_ _____偏置和_______偏置。 3. 逻辑变量的异或表达式为:_____________________B A =⊕。 4. 二进制数A=1011010;B=10111,则A -B=_______。 5. 组合电路没有______功能,因此,它是由______组成。 6. 同步RS 触发器的特性方程为:Q n+1 =______,其约束方程为:______。 7. 将BCD 码翻译成十个对应输出信号的电路称为________,它有___个 输入端,____输出端。 8. 下图所示电路中,Y 1 Y 3 =______。 二、选择题(共 20分) 1. 四个触发器组成的环行计数器最多有____个有效状态。 A.4 B. 6 C. 8 D. 16 2. 逻辑函数D C B A F +=,其对偶函数F * 为________。 A .( )()D C B A ++ B. ()()D C B A ++ C. ()()D C B A ++ 3. 用8421码表示的十进制数65,可以写成______。 A .65 B. [1000001]BCD C. [01100101]BCD D. [1000001]2 1 A B 3

4. 用卡诺图化简逻辑函数时,若每个方格群尽可能选大,则在化简后的最简表达式 中 。 A .与项的个数少 B . 每个与项中含有的变量个数少 C . 化简结果具有唯一性 5. 已知某电路的真值表如下,该电路的逻辑表达式为 。 A .C Y = B. A B C Y = C .C AB Y += D .C C B Y += 三、化简下列逻辑函数,写出最简与或表达式:(共20分) 1. 证明等式:AB B A B A B A +?=+ 2. Y 2=Σm (0,1,2,3,4,5,8,10,11,12) 3. Y 3=ABC C AB C B A C B A +++? 四、分析设计题 (共 30分)

知识问答题库

知识问答题库 题库一 1、网络用语中,用哪两个相同的字母称呼男孩子?GG 2、通常衣服上会用哪个字母表示“小号”的衣服?S 3、“京巴”“泰迪”都是哪一种动物的种类名称?狗 4、罗马数字中的“Ⅶ”代表哪个阿拉伯数字?7 5、中国少年先锋队的制度中三道杠的负责人称为大队长,两道杠的负责人称之为什么?中队长 6、在旧人教版英语课文的文本中有一对来自美国的可爱双胞胎姐妹,她们分别是lucy 和谁?Lily 7、歌词“吹个泡泡你还没到,真希望天突然下冰雹”是出自梁咏琪的哪首歌曲?《口香糖》 8、歌词“我的小时候吵闹任性的时候,我的外婆总会唱歌哄我”出自孙燕姿演唱的哪首歌曲?《天黑黑》 9、清朝同治皇帝即位后出现的“两宫皇太后垂帘听政”现象是指的哪两位皇太后?慈禧、慈安 10、公车上书是哪位皇帝在位期间康有为发起的联名上书运动?光绪 11、2006年正式宣布退役,现任中国女子乒乓球队教练的是哪位著名运动员?孔令辉 12、2012年伦敦奥运会上为男子自由体操摘得冠军也获得了其个人第五枚奥运金牌的是哪位运动员?邹凯 13、断手足、去眼、烷耳、饮暗药是源自吕后用来对付戚夫人的哪一种酷刑?人彘 14、哪一位丞相建议秦始皇“焚书坑儒”?李斯 15、《红处方》是哪位著名女作家的代表作?毕淑敏 16、美国作家鲍姆创作的多萝西的历险故事,有“美国的《西游记》”之称的是哪本书?《绿野仙踪》 17、生活中我们常喝的铝制听装饮料又俗称为什么罐?易拉罐 18、我国企业对所售商品实行的“三包政策”指的是“包修”、“包换”和什么?包退 19、1912年元旦,孙中山在江苏省哪个城市就认中华民国临时大总统宣告中华民国成立?南京

典型件结合知识点问答

典型件结合知识点问答 1、光滑圆柱结合精度设计应从哪几方面开始? 答:圆柱结合的精度设计实际上就是公差与配合的选用,圆柱结合的精度设计包括配合制、公差等级及配合的选用。 1)配合制的选择 基孔制和基轴制是两种平行的配合制。基孔制配合能满足要求的,用同一偏差代号按基轴制形成的配合,也能满足使用要求。所以,配合制的选择与功能要求无关,主要是考虑加工的经济性和结构的合理性。 从制造加工方面考虑,两种基准制适用的场合不同;从加工工艺的角度来看,对应用最广泛的中小直径尺寸的孔,通常采用定尺寸刀具(如钻头、铰刀、拉刀等)加工和定尺寸量具(如塞规、心轴等)检验。而一种规格的定尺寸刀具和量具,只能满足一种孔公差带的需要。对于轴的加工和检验,一种通用的外尺寸量具,也能方便地对多种轴的公差带进行检验。由此可见:对于中小尺寸的配合,应尽量采用基孔制配合。 当孔的尺寸增大到一定的程度,采用定尺寸的刀具和量具来制造,将逐渐变得不方便也不经济。这时如都用通用工具制造孔和轴,则选择哪种基准制都一样。 标准规定:应优先选用基孔制。 下列特殊情况下,由于结构和工艺的影响,采用基轴制更为合理: (1)用冷拉光轴作轴时。冷拉圆型材,其尺寸公差可达IT7~IT9,能够满足农业机械、纺织机械上的轴颈精度要求,在这种情况下采用基轴制,可免去轴的加工。 (2)采用标准件时。例:滚动轴承为标准件,它的内圈与轴颈配合无疑应是基孔制,而外圈与外壳孔的配合应是基轴制。 (3)一轴与多孔相配合,且配合性质要求不同时。 2)公差等级的选择 公差等级选择的基本原则是:在满足使用性能的前提下,尽量选择较低的精度等级。 (1)应遵循工艺等价的原则,即相互结合的零件,其加工的难易程度应基本相当。 (2)相配合的零、部件的精度应相匹配。如:与齿轮孔相配合的轴的精度就受齿轮精度的制约;与滚动轴承相配合的外壳孔和轴的精度应当与滚动轴承的精度相匹配。 (3)过盈、过渡和较紧的间隙配合,精度等级不能太低。一般孔的公差等级应不低于IT8级,轴的不低于IT7级。这是因为公差等级过低,使过盈配合的最大过盈过大,材料容易受到损坏;使过渡配合不能保证相配的孔、轴既装卸方便又能实现定心的要求;使间隙配合产生较大的间隙,不能满足较紧配合的要求。 (4)在非配合制的配合中,当配合精度要求不高,为降低成本,允许相配合零件的公差等级相差2~3级,。 3)配合种类的选择 配合种类的选择主要就是根据零件的功能要求,确定配合的类型及非配合制的基本偏差代号。选择的基本方法还是类比法、计算法和试验法三种。类比法是选择配合种类的主要方法。应用类比法选择时,要考虑以下因素: (1)配合件的工作情况 选择配合的类型时,应考虑配合件间有无相对运动、定心精度高低、配合件受力情况、装配情况等。 (2)各种基本偏差形成配合的特点 间隙配合有A~H(a~h)共十一种,其特点是利用间隙贮存润滑油及补偿温度变形、安装误差、弹性变形等所引起的误差。生产中应用广泛,不仅用于运动配合,加紧固件后也可用于传递力矩。不同基本偏差代号与基准孔(或基准轴)分别形成不同间隙的配合。主要

相关主题