搜档网
当前位置:搜档网 › 中国科学大学随机过程(孙应飞)复习题及答案

中国科学大学随机过程(孙应飞)复习题及答案

中国科学大学随机过程(孙应飞)复习题及答案
中国科学大学随机过程(孙应飞)复习题及答案

(1) 设}0),({≥t t X 是一个实的零均值二阶矩过程,其相关函数为

t s s t B t X s X E ≤-=),()}()({,且是一个周期为T 的函数,即0),()(≥=+τττB T B ,求方差函数)]()([T t X t X D +-。

解:由定义,有:

)(2)0()0()}()({2)0()0()]}

()()][()({[2)]

([)]([)]()([=-+=+-+=+-+--++=+-T B B B T t X t X E B B T t EX T t X t EX t X E T t X D t X D T t X t X D

(2) 试证明:如果}0),({≥t t X 是一独立增量过程,且0)0(=X ,那么它必是一个马

尔可夫过程。

证明:我们要证明:

n t t t <<<≤? 210,有

}

)()({})(,,)(,)()({11112211----=≤=====≤n n n n n n n x t X x t X P x t X x t X x t X x t X P

形式上我们有:

}

)()(,,)(,)({}

)()(,,)(,)(,)({}

)(,,)(,)({}

)(,,)(,)(,)({})(,,)(,)()({1122221111222211112211112211112211--------------========≤=

======≤=====≤n n n n n n n n n n n n n n n n n n n n x t X x t X x t X x t X P x t X x t X x t X x t X x t X P x t X x t X x t X P x t X x t X x t X x t X P x t X x t X x t X x t X P

因此,我们只要能证明在已知11)(--=n n x t X 条件下,)(n t X 与2

,,2,1,)(-=n j t X j 相互独立即可。

由独立增量过程的定义可知,当2,,2,1,1-=<<<-n j t t t a n n j 时,增量

)0()(X t X j -与)()(1--n n t X t X 相互独立,由于在条件11)(--=n n x t X 和0)0(=X 下,即

有)(j t X 与1)(--n n x t X 相互独立。由此可知,在11)(--=n n x t X 条件下,)(n t X 与

2,,2,1,)(-=n j t X j 相互独立,结果成立。

(3) 设随机过程}0,{≥t W t 为零初值(00=W )的、有平稳增量和独立增量的过程,

且对每个0>t ,),(~2

t N W t σμ,问过程}0,{≥t W t 是否为正态过程,为什么?

解:任取n t t t <<<≤? 210,则有:

n k W W W k

i t t t i i k ,,2,1][1

1 =-=∑=-

由平稳增量和独立增量性,可知))(,0(~121----i i t t t t N W W i i σ并且独立 因此),,,(1121---n n t t t t t W W W W W 是联合正态分布的,由

?

???

???

??--??????? ?

?=??????? ??-1121211110

011001n n n t t t t t t t t W W W W W W W W 可知是正态过程。

(4) 设}{t B 为为零初值的标准布朗运动过程,问次过程的均方导数过程是否存在?并

说明理由。

解:标准布朗运动的相关函数为:

},m in{),(2t s t s R B σ=

如果标准布朗运动是均方可微的,则),(/

t t R B 存在,但是:

20/0/),(),(lim ),(0

)

,(),(lim

),(σ=?-?+==?-?+=+→?-+→?+t

t t R t t t R t t R t

t t R t t t R t t R B

B t B B B t B

故),(/

t t R B 不存在,因此标准布朗运动不是均方可微的。

(5) 设t N ,0≥t 是零初值、强度0>λ的泊松过程。写出过程的转移函数,并问在均

方意义下,0,0

≥=

?t ds N Y t

s

t 是否存在,为什么?

解:泊松过程的转移率矩阵为:

??

????

??

??

?

?----= λλλλ

λλ

λλ

0000

Q

其相关函数为:st t s t s R N 2

},min{),(λλ+=,由于在t ?,),(t t R N 连续,故均

方积分存在。

(6) 在一计算系统中,每一循环具有误差的概率与先前一个循环是否有误差有关,以0

表示误差状态,1表示无误差状态,设状态的一步转移矩阵为:

??

?

???=??????=5.05.025.075.01110

0100

p p p p P

试说明相应齐次马氏链是遍历的,并求其极限分布(平稳分布)。

解:由遍历性定理可知此链是遍历的,极限分布为)3/1,3/2(。

(7) 设齐次马氏链{}{

},4,3,2,1,0,=≥S n X n 一步转移概率矩阵如下: ??????

? ??=002/12/1002/12/12/12/1002/12/100P

(a )写出切普曼-柯尔莫哥洛夫方程(C -K 方程); (b )求n 步转移概率矩阵;

(c )试问此马氏链是平稳序列吗? 为什么?

解:(a )略

(b )??

?====偶数

奇数

n P n P P n P n

2

)( (c )此链不具遍历性

(8) 设0,)

1()()

(≥-=t X t Y t N ,其中}0);({≥t t N 为强度为0>λ的Poission 过程,

随机变量X 与此Poission 过程独立,且有如下分布:

0,2/1}0{,4/1}{}{>=====-=a X P a X P a X P

问:随机过程0),(≥t t Y 是否为平稳过程?请说明理由。

由于:0)}({=t Y E

{

}{}{

}

{

}{}

{}

1222)(220

)(1220

1212)()(2)()(2

)()()(22)

()(2)()(22122!)]([)1(2

})()({)()()1(2)

1(2)1(2)1()1(),(121212*********t t e a e a e n t t a n t N t N P n t N t N E a E a E a E X E X E t t R t t n t t n n

n t N t N t N t N t N t N t N t N t N t N t N Y -===--==-=--=-=-=-=-?=---∞

=--∞=---+++∑∑τλλτ

λλ

故)}({t Y 是平稳过程。

(9) 设0,2≥+=t Yt X X t ,其中X 与Y 独立,都服从),0(2

σN

(a )此过程是否是正态过程?说明理由。 (b )求此过程的相关函数,并说明过程是否平稳。

证明:(a )任取 n t t t N n <<<≤∈ 210,,则有:

???? ???

?????? ??=??????? ?

?+++=??????? ??Y X t t t Yt X Yt X Yt X X X X n n t t t n 212121222212121 由于X 与Y 独立,且都服从),0(2

σN ,因此可得()τ

Y X

服从正态分布,由上式可知随

机向量 (

)

τ

n t t t X X X 2

1

服从正态(高斯)分布,所以过程0,2≥+=t Yt X X t 是正

态(高斯)过程。 (b )由:

0}{2}{}{=+=Y tE X E X E t

2

21222121222121221214}{4}{}{)(2}{}

{4}{)(2}{]}

2][2{[}{),(21σσt t Y E t t Y E X E t t X E Y E t t XY E t t X E Y t X Y t X E X X E t t R t t X +=+++=+++=++==

由于相关函数不是时间差的函数,因此此过程不是平稳过程。 (10) 设t N ,0≥t 是零初值、强度1=λ的泊松过程。

(a )求它的概率转移函数}{),,,(i N j N P j i t s p s t ===; (b )令0,≥-=t t N X t t ,说明?=

1

dt X Y t

存在,并求它的二阶矩。

解:(a ))

()!

()]([}{),,,(s t i j s t e i j s t i N j N P j i t s p -----====λλ

(b )先求相关函数:

)21(},min{)})({(),(2λλλ-++=--=st st s t s N t N E s t R s t X

对任意的t ,在),(t t 处),(t t R X 连续,故t X 均方连续,因此均方可积,?=

1

dt X Y t

存在。

{}{}

?

??????===????????????=101

101010102102

),(}{dtds

s t R

dtds

X X E ds X dt X E dt X E Y E X

s t s t t

将),(s t R X 代入计算积分即可。

由1=λ,得:

},min{)21(},min{)})({(),(2s t st st s t s N t N E s t R s t X =-++=--=λλλ

{}{

}

3

1

},min{),(}{1

10

1101

101

101010102102

=

+=====??????????

??=?????

??

??????ds s dt ds t dt dtds s t dtds s t R dtds X X E ds X dt X E dt X E Y E t

t

X s t s t t

(11) 设一口袋中装有三种颜色(红、黄、白)的小球,其数量分别为3、4、3。现在不

断地随机逐一摸球,有放回,且视摸出球地颜色计分:红、黄、白分别计1、0、-1分。第一次摸球之前没有积分。以n Y 表示第n 次取出球后的累计积分, ,1,0=n (a )n Y , ,1,0=n 是否齐次马氏链?说明理由。

(b )如果不是马氏链,写出它的有穷维分布函数族;如果是,写出它的一步转移概率ij p 和两步转移概率)2(ij p 。

(c )令}0,0;m in{0>==n Y n n τ,求}5{0=τP 。

解:(a )是齐次马氏链。由于目前的积分只与最近一次取球后的积分有关,因此此链具有马氏性且是齐次的。状态空间为:},2,1,0,1,2,{ --=S 。

(b )???

?

??

?

-==+=====+其他

,

01,3.0,4.01,3.0}{1

i j i j i j i Y j Y P p n n ij

?????

?

????

?

+=-=??=?++=??+====+其他

,

02,3.01,4.03.02,3.024.01

,

4.03.022,

3.0}{)2(22222

i j i j i

j i j i j i Y Y P p n n ij

(c )即求首达概率,注意画状态转移图。

03096.0]4.03.04.03.03[2}5{3240=?+???==τP

(12) 考察两个谐波随机信号)(t X 和)(t Y ,其中:

)cos()(),cos()(t B t Y t A t X c c ωφω=+=

式中A 和c ω为正的常数;φ是[]ππ,-均匀分布的随机变量,B 是标准正态分布的

随机变量。

(a )求)(t X 的均值、方差和相关函数;

(b )若φ与B 独立,求)(t X 与)(t Y 的互相关函数。

解:(a )0)}({=t X E

212

2121cos 2

)}()({),(t t A t X t X E t t R XX -===τωτ

,2

)}({2

A t X D =

(b )0)}()({),(2121==t Y t X E t t R XY

(13) 令谐波随机信号:),cos()(φω-=t A t X c 式中c ω为固定的实数;φ是[]π2,0均

匀分布的随机变量,考察两种情况: (a )幅值A 为一固定的正实数;

(b )幅值A 为一与φ独立,分布密度函数为

0,)

2/(2

22

≥-a e a

a

σσ

的随机变量;

试问谐波随机信号在两种情况下是平稳的吗?

(a )如12题(b )略

(14) 设}0);({≥t

t N 是一强度为λ的Poission 过程,记t

d t N d t X )

()(=

,试求随机过程)(t X 的均值和相关函数。

解:利用导数过程相关函数与原过程相关函数的关系即可得:

()λλ==='//

)()()(t t m t m X X

)(}),m in{(),(),(222

2s t t s st s

t s t s t R s t R X X -+=+???=???='λδλλλ

(15) 研究下列随机过程的均方连续性,均方可导性和均方可积性。当均方可导时,试求

均方导数过程的均值函数和相关函数。

(a )B At t X +=)(,其中B A ,是相互独立的二阶矩随机变量,均值为b a ,,方差为2

221,σσ;

(b )C Bt At t X ++=2

)(,其中C B A ,,是相互独立的二阶矩随机变量,均值为

c b a ,,,方差为232

2

21,,σσσ。 略

(16) 求下列随机过程的均值函数和相关函数,从而判定其均方连续性和均方可微性。

(a )0,1)(>??

? ??=t t tW t X ,其中)(t W 是参数为1的Wienner 过程。

(b )0),()(2

>=t t W t X ,其中)(t W 是参数为2

σ的Wienner 过程。

解:(a )0)}1({)}1

({)(===t

W tE t tW E t m X

},min{}1

,1min{)}1()1({)}1()1({),(2t s t s st t W s W stE t tW s sW E t s R X σ====

t t t R X 2),(σ= 连续,故均方连续,均方可积。

(b )t t EW t DW t W E t m X 2

2

2

)]([)()}({)(σ=+==

2443)(),(s s t s t s R σσ+-= 均方连续,均方可积。

(17) 讨论Wienner 过程和Poission 过程的均方连续性、均方可导性和均方可积性。

解:略。

(18) 设有平稳随机过程)(t X ,它的相关函数为2

22)(ταστ-=e R X ,其中σα,为常数,

求dt

t dX a t Y )

()(=(a 为常数)的自协方差函数和方差函数。 解:略。

(19) 设有实平稳随机过程)(t X ,它的均值为零,相关函数为)(τX R , 若

?=t

ds s X t Y 0

)()(,求)(t Y 的自协方差函数和方差函数。

解:0=Y m

??-==t

X s Y Y du v u R dv t s R t s C 0

)(),(),(

???-=-=t

X t X t Y dx x R x t du v u R dv t D 0

)()(4)()(

(20) 设{}0),(1≥t t N 和{}0),(2≥t t N 是参数分别为1λ和2λ的时齐Poission 过程,证

明在)(1t N 的任一到达时间间隔,)(2t N 恰有k 个事件发生的概率为:

,2,1,0,212

211=???

?

??++=

k p k

k λλλλλλ

证明:令X 为)(1t N 的任一到达时间间隔并且)(~1λEx X ,即X 的分布密度为:

???<≥=-0,

00,)(11t t e t f t X λλ

由此可知:

应用随机过程学习总结

应用随机过程学习总结 一、预备知识:概率论 随机过程属于概率论的动态部分,即随机变量随时间不断发展变化的过程,它以概率论作为主要的基础知识。 1、概率空间方面,主要掌握sigma代数和可测空间,在随机过程中由总体样本空间所构成的集合族。符号解释: sup表示上确界, inf表示下确界。 本帖隐藏的内容 2、数字特征、矩母函数与特征函数:随机变量完全由其概率分布来描述。其中由于概率分布较难确定,因此通常计算随机变量的数字特征来估算分布总体,而矩母函数和特征函数便用于随机变量的N阶矩计算,同时唯一的决定概率分布。 3、独立性和条件期望:独立随机变量和的分布通常由卷积来表示,对于同为分布函数的两个函数,卷积可以交换顺序,同时满足结合律和分配率。条件期望中,最重要的是理解并记忆E(X) = E[E(X|Y)] = intergral(E(X|Y=y))dFY(y)。 二、随机过程基本概念和类型 随机过程是概率空间上的一族随机变量。因为研究随机过程主要是研究其统计规律性,由Kolmogorov定理可知,随机过程的有限维分布族是随机过程概率特征的完整描述。同样,随机过程的有限维分布也通过某些数值特征来描述。 1、平稳过程,通常研究宽平稳过程:如果X(t1)和X(t2)的自协方差函数 r(t1,t2)=r(0,t-s)均成立,即随机过程X(t)的协方差函数r(t,s)只与时间差 t-s有关,r(t) = r(-t)记为宽平稳随机过程。 因为一条随机序列仅仅是随机过程的一次观察,那么遍历性问题便是希望将随即过程的均值和自协方差从这一条样本路径中估计出来,因此宽平稳序列只需满足其均值遍历性原理和协方差遍历性原理即可。 2、独立增量过程:若X[Tn]– X[T(n-1)]对任意n均相互独立,则称X(t)是独立增量过程。若独立增量过程的特征函数具有可乘性,则其必为平稳增量过程。 兼有独立增量和平稳增量的过程称为平稳独立增量过程,其均值函数一定是时间t的线性函数。

概率论与随机过程考点总结

概率论与随机过程考点总 结 This manuscript was revised by the office on December 10, 2020.

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞-=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞ ===0 )()(k k k k z p z E z g !) 0()(k g p k k = )1()('g X E = 2''")]1([)1()1()(g g g X D -+= 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2σ=DX 指数分布 ???<≥=-0,00,)(x x e x f x λλ λ1=EX 21 λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X

电子科大随机信号分析随机期末试题答案

电子科技大学2014-2015学年第 2 学期期 末 考试 A 卷 一、设有正弦随机信号()cos X t V t ω=, 其中0t ≤<∞,ω为常数,V 是[0,1)均匀 分布的随机变量。( 共10分) 1.画出该过程两条样本函数。(2分) 2.确定02t πω=,134t πω=时随机信号()X t 的 一维概率密度函数,并画出其图形。(5 分) 3.随机信号()X t 是否广义平稳和严格平 稳?(3分) 解:1.随机信号()X t 的任意两条样本函 数如题解图(a)所示: 2.当02t πω=时,()02X πω=,()012P X πω??==????, 此时概率密度函数为:(;)()2X f x x πδω =

当34t πω=时, 3()42X πω=-,随机过程的一维 概率密度函数为: 3. ()[]1cos cos 2E X t E V t t ωω==???? 均值不平稳, 所以()X t 非广义平稳,非严格平稳。 二、设随机信号()()sin 2X n n πφ=+与 ()()cos 2Y n n πφ=+,其中φ为0~π上均 匀分布随机变量。( 共10分) 1.求两个随机信号的互相关函数 12(,)XY R n n 。(2分) 2.讨论两个随机信号的正交性、互不 相关性与统计独立性。(4分) 3.两个随机信号联合平稳吗?(4分) 解:1.两个随机信号的互相关函数 其中()12sin 2220E n n ππφ++=???? 2. 对任意的n 1、n 2 ,都有12(,)0XY R n n =, 故两个随机信号正交。

又 故两个随机信号互不相关, 又因为 故两个随机信号不独立。 3. 两个随机信号的均值都平稳、相关函数都与时刻组的起点无关,故两个信号分别平稳,又其互相关函数也与时刻组的起点无关,因而二者联合平稳。 三、()W t 为独立二进制传输信号,时隙长度T 。在时隙内的任一点 ()30.3P W t =+=????和 ()30.7P W t =-=????,试求( 共10分) 1.()W t 的一维概率密度函数。(3分) 2.()W t 的二维概率密度函数。(4分) 3.()W t 是否严格平稳?(3分)

随机过程知识点汇总

第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量,分布函数 离散型随机变量的概率分布用分布列分布函数 连续型随机变量的概率分布用概率密度分布函数 2.n维随机变量 其联合分布函数 离散型联合分布列连续型联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量连续型随机变量 方差:反映随机变量取值的离散程度 协方差(两个随机变量): 相关系数(两个随机变量):若,则称不相关。 独立不相关 4.特征函数离散连续 重要性质:,,, 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 二项分布 泊松分布均匀分布略 正态分布 指数分布 6.N维正态随机变量的联合概率密度 ,,正定协方差阵 二.随机过程的基本概念 1.随机过程的一般定义 设是概率空间,是给定的参数集,若对每个,都有一个随机变量与之对应,则称随机变量族是上的随机过程。简记为。 含义:随机过程是随机现象的变化过程,用一族随机变量才能刻画出这种随机现象的全部统计规律性。另一方面,它是某种随机实验的结果,而实验出现的样本函数是随机的。 当固定时,是随机变量。当固定时,时普通函数,称为随机过程的一个样本函数或轨道。 分类:根据参数集和状态空间是否可列,分四类。也可以根据之间的概率关系分类,如独立增量过程,马尔可夫过程,平稳过程等。 2.随机过程的分布律和数字特征 用有限维分布函数族来刻划随机过程的统计规律性。随机过程的一维分布,二维分布,…,维分布的全体称为有限维分布函数族。随机过程的有限维分布函数族是随机过程概率特征的完整描述。在实际中,要知道随机过程的全部有限维分布函数族是不可能的,因此用某些统计特征来取代。(1)均值函数表示随机过程在时刻的平均值。 (2)方差函数表示随机过程在时刻对均值的偏离程度。 (3)协方差函数且有 (4)相关函数(3)和(4)表示随机过程在时刻,时的线性相关程度。

概率论与随机过程考点总结定稿版

概率论与随机过程考点 总结 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?=ρ 若0=ρ,则称Y X ,不相 关。 独立?不相关?0=ρ

4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞ -=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞ ===0 )()(k k k k z p z E z g !) 0()(k g p k k = )1()('g X E = 2''")]1([)1()1()(g g g X D -+= 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2σ=DX 指数分布 ???<≥=-0,00,)(x x e x f x λλ λ1=EX 21 λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X T n a a a a ),,,(21 =,T n x x x x ),,,(21 =,n n ij b B ?=)(正定协方差阵 3.随机向量的变换 二.随机过程的基本概念 1.随机过程的一般定义

随机过程学习总结

随机过程学习报告 通过这一段时间以来的学习,我认识到我们的生活中充满了随机过程的实例,在生活中我们经常需要了解在一定时间间隔[0,t)内某随机事件出现次数的统计规律,如到某商店的顾客数;某电话总机接到的呼唤次数;在电子技术领域中的散粒噪声和脉冲噪声;已编码信号的误码数等。在我们的专业学习——通信工程中,研究数字通信中已编码信号的误码流,数模变换中对信号进行采样等也都会应用到随机过程的知识,因此这门课程的学习是非常重要的。 一、认识泊松过程与复合泊松过程的区别 泊松过程是一类很重要的随机过程,随机质点流描述的随机现象十分广泛,下面我就通过运用泊松过程的知识解答一道书本中的实际应用题目: 设移民到某地区定居的户数是一泊松过程,平均每周有两户定居,即λ=2。若每户的人口数是随机变量,一户4人的概率是1/6,一户3人的概率是1/3,一户两人的概率是1/3,一户一人的概率是1/6,且每户的人口数是相互独立的,①5周内移民到该地区定居的人口数是否为泊松过程?②求上述随机过程的数学期望与方差。 分析:这道题目中的问题就是复合泊松过程的实际应用,这类过程具有泊松过程的一部分性质,不同的地方就在于随机质点流的到达不必再满足每次只能到一个的标准,这就将随机过程的研究与实际相融合,生活中的大部分过程其实是不可能满足每次到达一个这样的苛刻要求的,比如调查到达商场购物的人数等问题时,实际去商场购物时人们大多都是与好朋友结伴出行而不可能存在每个人都是独自来购物的现象,所以引入复合泊松过程是十分有必要的。 解:设[0,t)时间内到该地定居的户数为N(t),则{N(t),t>=0}是一泊松过程,X(n)为第n 户移民到该地定居的家庭人口数,{X(0)=0,X(n),n=1,2,3···}是独立同分布随机变量列,Y(t)为[0,t)时间内定居到该地的人数。 则Y(t)=∑=) (0 )n (X t N n t>=0 为一复合泊松过程, )()(υ?n X =4γi e *1/6+3γi e *1/3+2γi e *1/3+γi e *1/6 )()t (υ?Y =)1)((t )1(-γ?λX e 由特征函数的唯一性可知,Y(t)不是泊松过程。 E[X(n)]=4*1/6+3*1/3+2*1/3+1*1/6=5/2 E[)(n X 2 ]=16*1/6+9*1/3+4*1/3+1*1/6=43/6 则E[Y(t)]=λt*E[X(1)]=t*5; D[Y(t)]=λt*E[)(1X 2 ]=t*43/3; 则五周内定居到该地的人数数学期望为:5*5=25 方差为:5*43/3=215/3

概率论与随机过程考点总结

概率论与随机过程考点 总结 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑=k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞-=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞ ===0 )()(k k k k z p z E z g !) 0()(k g p k k = )1()('g X E = 2''")]1([)1()1()(g g g X D -+= 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2σ=DX 指数分布 ???<≥=-0,00,)(x x e x f x λλ λ1=EX 21 λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X

电子科技大学随机信号分析期末考试题

电子科技大学20 -20 学年第 学期期 考试 卷 课程名称:_________ 考试形式: 考试日期: 20 年 月 日 考试时长:____分钟 课程成绩构成:平时 10 %, 期中 10 %, 实验 %, 期末 80 % 本试卷试题由___2__部分构成,共_____页。 一、填空题(共20分,共 10题,每题2 分) 1. 设随机过程0()cos(),X t A t t ω=+Φ-∞<<∞,其中0ω为常数,A Φ和是相互独立的随机变量, []01A ∈,且均匀分布,Φ在[]02π,上均匀分布,则()X t 的数学期望为: 0 2. 已知平稳随机信号()X t 的自相关函数为2()2X R e ττ-=,请写出()X t 和(2)X t +的协方差12-e 3. 若随机过程()X t 的相关时间为1τ,()Y t 的相关时间为2τ,12ττ>,则()X t 比()Y t 的相关 性要__大___,()X t 的起伏特性比()Y t 的要__小___。 4. 高斯随机过程的严平稳与___宽平稳_____等价。 5. 窄带高斯过程的包络服从___瑞利___分布,相位服从___均匀___分布,且在同一时刻其包络和相 位是___互相独立___的随机变量。 6. 实平稳随机过程的自相关函数是___偶____(奇、偶、非奇非偶)函数。 7. 设)(t Y 是一均值为零的窄带平稳随机过程,其单边功率谱密度为)(ωY F ,且0()Y F ωω-为一偶函 数,则低频过程)()(t A t A s c 和是___正交___。

二、计算题(共80分) 1. (16分)两随机变量X 和Y 的联合概率密度函数为(,)=XY f x y axy ,a 是常数,其中0,1x y ≤≤。求: 1) a ; 2) X 特征函数; 3) 试讨论随机变量X 和Y 是否统计独立。 解:因为联合概率密度函数需要满足归一性,即 (2分) 11 00 1 1 1(,)124 XY f x y dxdy Axydxdy A xdx ydy A ∞∞ -∞-∞= ===?? ????(分) 所以4A = (1分) X 的边缘概率密度函数: 1 ()4201X f x xydy x x ==≤≤? (2分) 所以特征函数 1 1 02 ()2()2122 12j X X j x X j x j x j x j j E e f x e dx xe dx e xe j j e j e ωωωωωωω φωωωωω∞ -∞??=?? ==?? =-??????= --??? ?(分) (分)(分) 容易得1 ()4201Y f y xydx y y ==≤≤? 则有 (,)()()XY X Y f x y f x f y = (2分) 因此X 和Y 是统计独立。 (2分) 2. (12分)设随机过程()0xt X t e t -=<<∞,其中x 在(]0,2π均匀分布,求: 1) 求均值()X m t 和自相关函数(,)X R t t τ+;

电子科技大学随机信号分析期末测验题

电子科技大学随机信号分析期末测验题

————————————————————————————————作者:————————————————————————————————日期:

电子科技大学20 -20 学年第 学期期 考试 卷 课程名称:_________ 考试形式: 考试日期: 20 年 月 日 考试时长:____分钟 课程成绩构成:平时 10 %, 期中 10 %, 实验 %, 期末 80 % 本试卷试题由___2__部分构成,共_____页。 题号 一 二 三 四 五 六 七 八 九 十 合计 得分 一、填空题(共20分,共 10题,每题2 分) 1. 设随机过程0()cos(),X t A t t ω=+Φ-∞<<∞,其中0ω为常数,A Φ和是相互独立的随机变量, []01A ∈,且均匀分布,Φ在[]02π,上均匀分布,则()X t 的数学期望为: 0 2. 已知平稳随机信号()X t 的自相关函数为2()2X R e ττ-=,请写出()X t 和(2)X t +的协方差12-e 3. 若随机过程()X t 的相关时间为1τ,()Y t 的相关时间为2τ,12ττ>,则()X t 比()Y t 的相关性 要__大___,()X t 的起伏特性比()Y t 的要__小___。 4. 高斯随机过程的严平稳与___宽平稳_____等价。 5. 窄带高斯过程的包络服从___瑞利___分布,相位服从___均匀___分布,且在同一时刻其包络和相 位是___互相独立___的随机变量。 6. 实平稳随机过程的自相关函数是___偶____(奇、偶、非奇非偶)函数。 7. 设)(t Y 是一均值为零的窄带平稳随机过程,其单边功率谱密度为)(ωY F ,且0()Y F ωω-为一偶函数, 则低频过程)()(t A t A s c 和是___正交___。 得 得

(完整版)随机过程知识点汇总

第一章随机过程 的基本概念与基本类型 一.随机变量及其分布 X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x) p k f (t)dt 分布函数 k x X 的概率分布用概率密度 f (x) F(x) 分布函数 连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,) 其联合分布函数 1 2 n 1 1 2 离散型 联合分布列 连续型联合概率密度 3.随机变量 的数字特征 数学期望:离散型随机变量 X EX x p k k X EX xf (x)dx 连续型随机变量 2 DX E(X EX) 2 EX (EX) 2 方差: 反映随机变量取值 的离散程度 协方差(两个随机变量 X ,Y ): B E[( X EX)(Y EY)] E(XY) EX EY XY B XY 相关系数(两个随机变量 X,Y ): 0,则称 X ,Y 不相关。 若 XY DX DY 独立 不相关 itX g(t) E(e ) itx e p k 连续 g(t) k e itx f (x)dx 4.特征函数 离散 g(t) 重要性质: g(0) 1, g(t) 1 g( t) g(t) , , g (0) i EX k k k 5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布 P( X 1) p,P( X 0) q EX p DX pq P(X k) C p q n k k k EX np DX n p q n k 泊松分布 P( X k) e k! EX DX 均匀分布略 ( x a)2 1 2 N(a, ) f (x) 2 2 2 EX a 正态分布 e DX 2

随机过程知识点总结

第一章: 考试范围1.3,1.4 1、计算指数分布的矩母函数. 2、计算标准正态分布)1,0(~N X 的矩母函数. 3、计算标准正态分布)1,0(~N X 的特征函数. 第二章: 1. 随机过程的均值函数、协方差函数与自相关函数 2. 宽平稳过程、均值遍历性的定义及定理 3. 独立增量过程、平稳增量过程,独立增量是平稳增量的充要条件 1、设随机过程()Z t X Yt =+,t -∞<<∞.若已知二维随机变量(,)X Y 的协方差矩阵为2122σρρσ?????? ,求()Z t 的协方差函数. 2、设有随机过程{(),}X t t T ∈和常数a ,()()()Y t X t a X t =+-,t T ∈,计算()Y t 的自相关函数(用(,)X R s t 表示). 3、设12()cos sin X t Z t Z t λλ=+,其中212,~(0,)Z Z N σ是独立同分布的随机变量,λ为实数,证明()X t 是宽平稳过程. 4、设有随机过程()sin cos Z t X t Y t =+,其中X 和Y 是相互独立的随机变量,它们都分别以0.5和0.5的概率取值-1和1,证明()Z t 是宽平稳过程. 第三章: 1. 泊松过程的定义(定义3.1.2)及相关概率计算 2. 与泊松过程相联系的若干分布及其概率计算 3. 复合泊松过程和条件泊松过程的定义 1、设{(),0}N t t ≥是参数3λ=的Poisson 过程,计算: (1). {(1)3}P N ≤; (2). {(1)1,(3)3}P N N ==; (3). {(1)2(1)1}P N N ≥≥. 2、某商场为调查顾客到来的客源情况,考察了男女顾客来商场的人数. 假设男女顾客来商场的人数分别独立地服从每分钟2人与每分钟3人的泊松过程. (1).试求到某时刻t 时到达商场的总人数的分布;

概率论与随机过程考点总结

第一章随机过程的基本概念与基本类型

一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑= k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数?∞-= x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X = 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤== 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑= k k p x EX 连续型随机变量X ?∞∞-=dx x xf EX )( 方差:222)()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?=ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞-=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 母函数:∑∞===0)()(k k k k z p z E z g !)0()(k g p k k = )1()('g X E = 2''")]1([)1()1()(g g g X D -+= 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = n p q DX = 泊松分布 !)(k e k X P k λλ-== λ=EX λ=DX 均匀分布略 正态分布),(2σa N 22 2)(21 )(σσπa x e x f --= a EX = 2 σ=DX 指数分布 ???<≥=-0, 00,)(x x e x f x λλ λ1=EX 21λ=DX 6.N维正态随机变量),,,(21n X X X X =的联合概率密度),(~B a N X

随机过程知识点汇总

2 0 — 1分布 P(X 1) P,P(X 0) q EX DX pq 二项分布 P(X k) C : EX np DX npq 泊松分布 P(X k) k! EX DX 均匀分布略 正态分布 N(a, 2) f(x) (X a)2 2 2 EX DX 第一章随机过程的基本概念与基本类型 一.随机变量及其分布 1 .随机变量X ,分布函数F(x) P(X X) 离散型随机变量 X 的概率分布用分布列 P k P(X x k )分布函数 F(x) P k 连续型随机变量 X 的概率分布用概率密度 f(x) 分布函数F(x) X f(t)dt 2. n 维随机变量 X (X 1,X 2, ,X n ) 其联合分布函数 F (X ) F (X 1,X 2, , X n ) P(X 1 X [ , X 2 X 2 , , X n X n ,) 离散型 联合分布列 连续型联合概率密度 3 .随机变量的数字特征 数学期望:离散型随机变量 X EX X k P k 连续型随机变量 X EX xf (x)dx 2 2 2 方差:DX E(X EX) EX (EX) 反映随机变量取值的离散程度 协方差(两个随机变量 X,Y ): B XY E[(X EX )(Y 相关系数(两个随机变量 X, Y ) : XY t _ ____________________________________ VDX v'DY 独立 不相关 5 ?常见随机变量的分布列或概率密度、期望、方差 B XY EY)] E(XY) EX EY 则称X,Y 不相关。 4 ?特征函数 g(t) E(e ItX ) 离散 g(t) e ItX k p k 连续 g(t) e ltx f (x)dx 重要性质:g(0) 1 , g(t) 1 , g( t) g(t) , g (0) EX k

《概率论与随机过程》课程自学内容小结

上海大学2015~2016学年秋季学期本科生 课程自学报告 课程名称:《概率论与随机过程》 课程编号:07275061 报告题目:大数定律和中心极限定理在彩票选号的应用学生姓名: 学号: 任课教师: 成绩: 评阅日期:

随机序列在通信加密的应用 2015年10月10日 摘 要:大数定律与中心极限定理是概率论中很重要的定理,较多文献给出了不同条件下存在的大数定律和中心极限订婚礼,并利用大数定律与中心极限定理得到较多模型的收敛性。但对于他们的适用范围以及在实际生活中的应用涉及较少。本文通过介绍大数定律与中心极限定理,给出了其在彩票选号方面的应用,使得数学理论与实际相结合,能够让读者对大数定律与中心极限定理在实际生活中的应用价值有更深刻的理解。 1. 引言 在大数定律与中心极限定理是概率论中很重要的定理,起源于十七世纪,发展到现在,已经深入到了社会和科学的许多领域。从十七世纪到现在,很多国家对这两个公式有了多方面的研究。长期以来,在大批概率论统计工作者的不懈努力下,概率统计的理论更加完善,应用更加广泛,如其在金融保险业的应用,在现代数学中占有重要的地位。 本文主要通过对大数定律与中心极限定理的分析理解,研究探讨了其在彩票选号中的应用,并给出了案例分析,目的旨在给出大数定律与中心极限定理应用对实际生活的影响,也对大数定律与中心极限定理产生更深刻的理解。 2. 自学内容小结与分析 2.1 随机变量的特征函数 在对随机变量的分析过程中,单单由数字特征无法确定其分布函数,所以引入特征函数。特征函数反映随机变量的本质特征,可唯一的确定随机变量的分布函数、随机变量X 的特征函数定义为: 定义1 ][)()(juX jux e E dx e x p ju C == ? +∞ ∞ - (1) 性质1 两两相互独立的随机变量之和的特征函数等于各个随机变量的特征函数之积。 性质1意味着在傅立叶变换之后,时域的卷积变成频域的相乘,这是求卷积的简便方法。类比可知求独立随机变量之和的分布的卷积,可化为乘法运算,这样就简便了计算,提高了运算效率。 性质2 求矩公式:0)(|) ()(][=-=u n u x n n n du C d j X E (2) 性质3 级数展开式:!)(][!|)()()(0 00n ju X E n u du u C d u C n n n n n n n n X ∑∑∞==∞ === (3) 2.2 大数定律与中心极限定理 定义2 大数定律:设随机变量相互独立,且具有相同的μ=)(k X E 和,...2,1,)(2==k X D k σ,则0∈>?,有 11lim 1=? ?? ???<∈-∑=∞ →n k k n X n P μ (4) 这验证了人们的猜想:大量随机现象的平均结果一般也具有稳定性。

电子科技大学随机信号分析期末考试题

电子科技大学20 -20 学年第 学期期 考试 卷 课程名称:_________ 考试形式: 考试日期: 20 年 月 日 考试时长:____分钟 课程成绩构成:平时 10 %, 期中 10 %, 实验 %, 期末 80 % 本试卷试题由___2__部分构成,共_____页。 一、填空题(共20分,共 10题,每题2 分) 1. 设随机过程0()cos(),X t A t t ω=+Φ-∞<<∞,其中0ω为常数,A Φ和是相互独立的 随机变量,[]01A ∈, 且均匀分布,Φ在[]02π,上均匀分布,则()X t 的数学期望为: 0 2. 已知平稳随机信号()X t 的自相关函数为2()2X R e ττ-=,请写出()X t 和(2)X t +的协方差12-e 3. 若随机过程()X t 的相关时间为1τ,()Y t 的相关时间为2τ,12ττ>,则()X t 比()Y t 的相关性要__大___,()X t 的起伏特性比()Y t 的要__小___。 4. 高斯随机过程的严平稳与___宽平稳_____等价。 5. 窄带高斯过程的包络服从___瑞利___分布,相位服从___均匀___分布,且在同一时刻其包络和相位是___互相独立___的随机变量。 6. 实平稳随机过程的自相关函数是___偶____(奇、偶、非奇非偶)函数。 7. 设)(t Y 是一均值为零的窄带平稳随机过程,其单边功率谱密度为)(ωY F ,且

0()Y F ωω-为一偶函数,则低频过程)()(t A t A s c 和是___正交___。 二、计算题(共80分) 1. (16 分)两随机变量X 和Y 的联合概率密度函数为(,)=XY f x y axy ,a 是常数,其中 0,1x y ≤≤。求: 1)a ; 2)X 特征函数; 3)试讨论随机变量X 和Y 是否统计独立。 解:因为联合概率密度函数需要满足归一性,即 (2分) 所以4A = (1分) X 的边缘概率密度函数: 1 ()4201X f x xydy x x ==≤≤? (2 分) 所以特征函数 容易得 1 0()4201Y f y xydx y y ==≤≤? 则有 (,)()()XY X Y f x y f x f y = (2 分) 因此X 和Y 是统计独立。 (2分) 2. (12 分)设随机过程()0xt X t e t -=<<∞,其中x 在(]0,2π均匀分布,求: 1) 求均值()X m t 和自相关函数(,)X R t t τ+; 2) 判断是否广义平稳; 解: 因为()X m t 和(,)X R t t τ+均随时间变化,所以不是广义平稳; (2)分 3. (12 分)设一个积分电路的输入与输出之间满足关系式:()()t t T Y t X u du -=?其中T 为积分时间常数,如输入随机过程()X t 是平稳随机过程,且已知其功率谱密度为

概率统计与随机过程 知识点总结--最终版

《概率统计与随机过程》知识总结 第1章 随机事件及其概率 一、随机事件与样本空间 1、随机试验 我们将具有以下三个特征的试验称为随机试验,简称试验, (1)重复性:试验可以在相同的条件下重复进行; (2)多样性:试验的可能结果不止一个,并且一切可能的结果都已知; (3)随机性:在每次试验前,不能确定哪一个结果会出现。 随机试验一般用大写字母E 表示,随机试验中出现的各种可能结果称为试验的基本结果。 2、样本空间 随机试验E 的所有可能结果组成的集合称为试验的样本空间,记为S ,样本空间中的元素,即E 的每个基本结果,称为样本点。 3、随机事件 称随机试验E 的样本空间S 的子集为E 的随机事件,简称事件。 随机事件通常利用大写字母A 、B 、C 等来表示。 在一次试验中,当且仅当这一子集(事件)中的某个样本点出现时,称这一事件发生。 特别地,将只含有一个样本点的事件称为基本事件; 样本空间S 包含所有的样本点,它在每次试验中都发生,称S 为必然事件; 事件?(S ??)不包含任何样本点,它在每次试验中都不发生,称?为不可能事件。 4、随机事件间的关系及运算 (1)包含关系:若B A ?,则称事件A 包含事件B ,也称事件B 含在事件A 中,它表示:若事件B 发生必导致事件A 发生。 (2)相等关系:若B A ?且A B ?,则称事件A 与事件B 相等,记为A B =。 (3)事件的和:称事件{|A B x x A ?=∈或}x B ∈为事件A 与事件B 的和事件。 事件A B ?发生意味着事件A 发生或事件B 发生,即事件A 与事件B 至少有一件发生。 类似地,称1 n i i A =?为n 个事件12n A A A ?、、 、的和事件,称1 i i A ∞ =?为可列个事件12 A A ?、、的和事件。 (4)事件的积:称事件{|A B x x A ?=∈且}x B ∈为事件A 与事件B 的积事件。 事件A B ?发生意味着事件A 发生且事件B 发生,即事件A 与事件B 都发生。 A B ?简记为AB 。 类似地,称1 n i i A =?为n 个事件12n A A A ?、、 、的积事件,称1 i i A ∞ =?为可列个事件12 A A ?、、的积事件。 (5)事件的差:称事件{|A B x x A -=∈且}x B ?为事件A 与事件B 的差事件。 事件A B -发生意味着事件A 发生且事件B 不发生。(A B AB A AB -==-) (6)互不相容(互斥关系):若A B ?=?,则称事件A 与事件B 互不相容,又称事件A 与事件B 互斥。事件A 与B 互不相容意味着事件A 与B 不可能同时发生。 (7)互逆关系(对立关系):若A B S ?=且A B ?=?,则称事件A 与事件B 互为逆事

随机过程知识点汇总

第一章 随机过程的基本概念与基本类型 一.随机变量及其分布 1.随机变量X , 分布函数)()(x X P x F ≤= 离散型随机变量X 的概率分布用分布列 )(k k x X P p == 分布函数∑=k p x F )( 连续型随机变量X 的概率分布用概率密度)(x f 分布函数? ∞ -=x dt t f x F )()( 2.n 维随机变量),,,(21n X X X X Λ= 其联合分布函数),,,,(),,,()(221121n n n x X x X x X P x x x F x F ≤≤≤==ΛΛ 离散型 联合分布列 连续型 联合概率密度 3.随机变量的数字特征 数学期望:离散型随机变量X ∑= k k p x EX 连续型随机变量X ?∞ ∞-=dx x xf EX )( 方差:2 2 2 )()(EX EX EX X E DX -=-= 反映随机变量取值的离散程度 协方差(两个随机变量Y X ,):EY EX XY E EY Y EX X E B XY ?-=--=)()])([( 相关系数(两个随机变量Y X ,):DY DX B XY XY ?= ρ 若0=ρ,则称Y X ,不相关。 独立?不相关?0=ρ 4.特征函数)()(itX e E t g = 离散 ∑=k itx p e t g k )( 连续 ?∞ ∞ -=dx x f e t g itx )()( 重要性质:1)0(=g ,1)(≤t g ,)()(t g t g =-,k k k EX i g =)0( 5.常见随机变量的分布列或概率密度、期望、方差 0-1分布 q X P p X P ====)0(,)1( p EX = pq DX = 二项分布 k n k k n q p C k X P -==)( np EX = npq DX = 泊松分布 ! )(k e k X P k λλ -== λ=EX λ=DX 均匀分布略 正态分布),(2 σa N 2 22)(21)(σσ πa x e x f -- = a EX = 2 σ=DX

电子科技大学2016年博士随机过程考试大纲

电子科技大学2016年博士随机过程考试大纲 考试科目2003随机过程考试形式笔试(闭卷) 考试时间180分钟考试总分100分 一、总体要求 要求考生全面系统地掌握随机过程的有关理论,并且能灵活运用,具备较强的分析问题与解决问题的能力。 二、内容 1.随机变量的数字特征 1)理解概率空间、 2)掌握随机变量数字特征的黎曼—斯蒂阶积分定义 3)掌握条件数学期望概念及性质 4)会应用全数学期望公式 2.随机向量的特征函数 1)掌握随机向量的特征函数概念及基本性质 2)掌握特征函数的反演公式及惟一性定理,并会应用 3.随机过程基本概念 1)理解随机过程的数学定义 2)理解过程的样本函数概念及随机过程的二元理解 4.随机过程的存在性定理 1)充分理解随机过程的存在性定理的数学及工程意义, 2)能用随机过程的分布函数族和特征函数族表述随机过程 5.随机过程的数字特征 1)会计算随机过程的均值函数、方差函数 2)会计算相关函数及互相关函数,协方差函数 6.随机过程的概率特征 1)掌握二阶矩过程、独立过程、正交过程、独立增量过程 2)掌握平稳增量过程、平稳独立增量过程的概念 7.正态过程 1)理解正态过程(退化和非退化)定义 2)掌握其有限维分布函数族和数字特征 3)掌握正态过程的性质 4)了解正态过程的工程应用 8.维纳过程 1)维纳过程的数学定义及性质:增量正态性、平稳独立增量性、零初值性 2)维纳过程的非平稳性 3)维纳过程的工程意义 9.齐泊松过程及复合泊松过程 1)齐次泊松过程的定义及性质:零初值性、平稳增量性 2)泊松随机点发生的稀有性 3)齐次泊松过程的有关随机变量:等待时间、到达时间间隔的分布、到达时间的条件分布. 4)了解复合泊松过程及应用 10.二阶矩随机过程的均方极限

相关主题