搜档网
当前位置:搜档网 › B样条曲线图片版

B样条曲线图片版

三次样条插值作业题

例1 设)(x f 为定义在[0,3]上的函数,有下列函数值表: 且2.0)('0=x f ,1)('3-=x f ,试求区间[0,3]上满足上述条件的三次样条插值函数)(x s 本算法求解出的三次样条插值函数将写成三弯矩方程的形式: ) ()6()() 6()(6)(6)(211123 13 1j j j j j j j j j j j j j j j j x x h h M y x x h h M y x x h M x x h M x s -- + -- + -+ -= +++++其中,方程中的系数 j j h M 6, j j h M 61+,j j j j h h M y )6(2- , j j j j h h M y ) 6(211++- 将由Matlab 代码中的变量Coefs_1、Coefs_2、Coefs_3以及Coefs_4的值求出。 以下为Matlab 代码: %============================= % 本段代码解决作业题的例1 %============================= clear all clc % 自变量x 与因变量y ,两个边界条件的取值 IndVar = [0, 1, 2, 3]; DepVar = [0, 0.5, 2, 1.5]; LeftBoun = 0.2; RightBoun = -1; % 区间长度向量,其各元素为自变量各段的长度 h = zeros(1, length(IndVar) - 1); for i = 1 : length(IndVar) - 1 h(i) = IndVar(i + 1) - IndVar(i); end % 为向量μ赋值

三次样条插值方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

三次样条插值方法的应用 一、问题背景 分段低次插值函数往往具有很好的收敛性,计算过程简单,稳定性好,并且易于在在电子计算机上实现,但其光滑性较差,对于像高速飞机的机翼形线船体放样等型值线往往要求具有二阶光滑度,即有二阶连续导数,早期工程师制图时,把富有弹性的细长木条(即所谓的样条)用压铁固定在样点上,在其他地方让他自由弯曲,然后沿木条画下曲线,称为样条曲线。样条曲线实际上是由分段三次曲线并接而成,在连接点即样点上要求二阶导数连续,从数学上加以概括就得到数学样条这一概念。下面我们讨论最常用的三次样条函数及其应用。 二、数学模型 样条函数可以给出光滑的插值曲线(面),因此在数值逼近、常微分方程和偏微分方程的数值解及科学和工程的计算中起着重要的作用。 设区间[]b ,a 上给定有关划分b x x n =<<<= 10x a ,S 为[]b ,a 上满足下面条件的函数。 ● )(b a C S ,2∈; ● S 在每个子区间[]1,+i i x x 上是三次多项式。 则称S 为关于划分的三次样条函数。常用的三次样条函数的边界条件有三种类型: ● Ⅰ型 ()()n n n f x S f x S ''0'',==。 ● Ⅱ型 ()()n n n f x S f x S ''''0'''',==,其特殊情况为()()0''''==n n x S x S 。 ● Ⅲ型 ()() 3,2,1,0,0==j x S x S n j j ,此条件称为周期样条函数。 鉴于Ⅱ型三次样条插值函数在实际应用中的重要地位,在此主要对它进行详细介绍。 三、算法及流程 按照传统的编程方法,可将公式直接转换为MATLAB 可是别的语言即可;另一种是运用矩阵运算,发挥MATLAB 在矩阵运算上的优势。两种方法都可以方便地得到结果。方法二更直观,但计算系数时要特别注意。这里计算的是方法一的程序,采用的是Ⅱ型边界条件,取名为spline2.m 。 Matlab 代码如下: function s=spline2(x0,y0,y21,y2n,x) %s=spline2(x0,y0,y21,y2n,x) %x0,y0 are existed points,x are insert points,y21,y2n are the second

贝塞尔曲线和B样条曲线(优质参考)

§4.3 贝塞尔曲线和B 样条曲线 在前面讨论的抛物样条和三次参数样条曲线,他们的共同特点是:生成的曲线通过所有给定的型值点。我们称之为“点点通过”。但在实际工作中,往往给出的型值点并不是十分精确,有的点仅仅是出于外观上的考虑。在这样的前提下,用精确的插值方法去一点点地插值运算就很不合算;另外,局部修改某些型值点,希望涉及到曲线的范围越小越好,这也是评价一种拟合方法好坏的指标之一。 针对以上要求,法国人Bezier 提出了一种参数曲线表示方法,称之为贝塞尔曲线。后来又经Gorgon, Riesenfeld 和Forrest 等人加以发展成为B 样条曲线。 一、 贝塞尔曲线 贝塞尔曲线是通过一组多边折线的各顶点来定义。在各顶点中,曲线经过第一点和最后一点,其余各点则定义曲线的导数、阶次和形状。第一条和最后一条则表示曲线起点和终点的切线方向。 1.数学表达式 n+1个顶点定义一个n 次贝塞尔曲线,其表达式为: )()(0,t B p t p n i n i i ∑== 10≤≤t ),...,2,1,0(n i p i =为各顶点的位置向量,)(,t B n i 为伯恩斯坦基函数 i n i n i t t n i n t B ---= )1()! 1(!! )(, 2.二次贝塞尔曲线 需要3个顶点,即210,,p p p ,将其代入曲线表达式: 2,222,112,00)(B p B p B p t p ++=

220202,021)1() 1()! 02(!0! 2t t t t t B +-=-=--= - 21212,122)1(2)1()! 12(!1! 2t t t t t t B -=-=--= - 22222,2)1()! 22(!2! 2t t t B =--= - 221202)22()21()(p t p t t p t t t p +-++-= [ ] ?? ?? ? ???????????????--=2102 0010221211p p p t t 10≤≤t 2102)21(2)1(2)(tp p t p t t p +-+-=' )(222)0(0110p p p p p -=+-=' 0)0(p p = )(222)1(1221p p p p p -=+-=' 2)1(p p = 当2 1 = t 时: 21021041214141)412212()412121(21p p p p p p p ++=+?-?++?-=?? ? ?? )](2 1 [21201p p p ++= 02210212)2121(2)121(221p p p p p p -=?+?-+-=?? ? ??'

关于三次样条插值函数的学习报告(研究生)资料

学习报告—— 三次样条函数插值问题的讨论 班级:数学二班 学号:152111033 姓名:刘楠楠

样条函数: 由一些按照某种光滑条件分段拼接起来的多项式组成的函数;最常用的样条函数为三次样条函数,即由三次多项式组成,满足处处有二阶连续导数。 一、三次样条函数的定义: 对插值区间[,]a b 进行划分,设节点011n n a x x x x b -=<< <<=,若 函数2()[,]s x c a b ∈在每个小区间1[,]i i x x +上是三次多项式,则称其为三次样条函数。如果同时满足()()i i s x f x = (0,1,2)i n =,则称()s x 为()f x 在 [,]a b 上的三次样条函数。 二、三次样条函数的确定: 由定义可设:101212 1(),[,] (),[,]()(),[,] n n n s x x x x s x x x x s x s x x x x -∈??∈?=???∈?其中()k s x 为1[,]k k x x -上的三次 多项式,且满足11(),()k k k k k k s x y s x y --== (1,2,,k n = 由2()[,]s x C a b ∈可得:''''''()(),()(),k k k k s x s x s x s x -+-+== 有''1()(),k k k k s x s x -++= ''''1()(),(1 ,2,,1)k k k k s x s x k n -+ +==-, 已知每个()k s x 均为三次多项式,有四个待定系数,所以共有4n 个待定系数,需要4n 个方程才能求解。前面已经得到22(1)42n n n +-=-个方程,因此要唯一确定三次插值函数,还要附加2个条件,一般上,实际问题通常对样条函数在端点处的状态有要求,即所谓的边界条件。 1、第一类边界条件:给定函数在端点处的一阶导数,即 ''''00(),()n n s x f s x f == 2、第二类边界条件:给定函数在端点处的二阶导数,即

B样条曲线与曲面

四、B 样条曲线与曲面 Bezier 曲线具有很多优越性,但有二点不足: 1)特征多边形顶点数决定了它的阶次数,当n 较大时,不仅计算量增大,稳定性降低,且控制顶点对曲线的形状控制减弱; 2)不具有局部性,即修改一控制点对曲线产生全局性影响。 1972年Gordon 等用B 样条基代替Bernstein 基函数,从而改进上述缺点。 B样条曲线的数学表达式为: ∑=+?= n k n k k i n i u N P u P 0 ,,) ()( 在上式中,0 ≤ u ≤ 1; i= 0, 1, 2, …, m 所以可以看出:B样条曲线是分段定义的。如果给定 m+n+1 个顶点 Pi ( i=0, 1, 2,…, m+n),则可定义 m+1 段 n 次的参数曲线。 在以上表达式中: N k,n (u) 为 n 次B 样条基函数,也称B样条分段混合函数。其表达式为: ∑ -=+--+??-=k n j n j n j n k j k n u C n u N 0 1,)()1(!1)( 式中:0 ≤ u ≤1 k = 0, 1, 2, …, n 1.均匀B 样条曲线 1 一次均匀B 样条曲线的矩阵表示 空间n+1个顶点 i P (i = 0,1,…,n )定义n 段一次(k =0,1,n=1)均匀B 样条曲线,即每 相邻两个点可构造一曲线段P i (u ),其定义表达为: []10 ;,...,1 0111 1)(1≤≤=??? ?????????-=-u n i u u P i i i P P =(1-u )P i -1 + u P i = N 0,1(u )P i -1 + N 1,1(u )P i 第i 段曲线端点位置矢量:i i i i P P P P ==-)1(,)0(1,且一次均匀B 样条曲线就是控制多边 形。

三次样条拟合范例

1设计目的、要求 对龙格函数2 2511 )(x x f += 在区间[-1,1]上取10=n 的等距节点,分别作多项式插值、三次样条插值和三次曲线拟合,画出)(x f 及各逼近函数的图形,比较各结果。 2设计原理 (1) 多项式插值:利用拉格朗日多项式插值的方法,其主要原理是拉格朗日多项 式,即: 01,,...,n x x x 表示待插值函数的1n +个节点, ()()n n j k k j j k L x y l x y ===∑,其中0,1,...,j n =; 011011()...()()...() ()()...()...()...() k k n k k k k k k k n x x x x x x x x l x x x x x x x x x -+-+----= ---- (2) 三次样条插值:三次样条插值有三种方法,在本例中,我们选择第一边界条 件下的样条插值,即两端一阶导数已知的插值方法: 00'()'S x f = '()'n n S x f = (3)三次曲线拟合:本题中采用最小二乘法的三次多项式拟合。最小二乘拟合是 利用已知的数据得出一条直线或者曲线,使之在坐标系上与已知数据之间的距离的平方和最小。在本题中,n= 10,故有11个点,以这11个点的x 和 y 值为已知数据,进行三次多项式拟合,设该多项式为 23432xi i i i p a a x a x ax =+++,该拟合曲线只需2[]xi i p y -∑的值最小即可。 3采用软件、设备 计算机、matlab 软件

4设计内容 1、多项式插值: 在区间[]1,1-上取10=n 的等距节点,带入拉格朗日插值多项式中,求出各个节点的插值,并利用matlab 软件建立m 函数,画出其图形。 在matlab 中建立一个lagrange.m 文件,里面代码如下: %lagrange 函数 function y=lagrange(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end 建立一个polynomial.m 文件,用于多项式插值的实现,代码如下: %lagrange 插值 x=[-1:0.2:1]; y=1./(1+25*x.^2); x0=[-1:0.02:1]; y0=lagrange(x,y,x0); y1=1./(1+25*x0.^2); plot(x0,y0,'--r') %插值曲线 hold on %原曲线 plot(x0,y1,'-b') 运行duoxiangshi.m 文件,得到如下图形:

三次样条函数

计算方法实验报告 1、实验题目 三次样条插函数。 2、实验内容 三次样条插值是建立在Hermite 插值的基础上的。Hermite 插值是在一个区间上的插值,而三次样条插则是建立多个区间上插值,构造一个具有二阶光滑度的曲线,在求出给定点上对应的函数。本实验就是建立一个能根据三次样条插值函数求根的程序。 3、算法思想 给定一个区间,并把它分成n 等份,并且给出了每个结点对就的横坐标和纵坐标。利用程序输出给定插值点对应的值。横坐标设为:X 0, X 1, X 2, X 3, …X n 纵坐标为Y 0, Y 1, Y 2, …Y n ,设插点为u 。则令h k =X k+1-X k ,λk =1-+k k k h h h , μk =11--+k k k h h h , g k =3(1 11--+-+-k k k k k k k k h y y h y y λμ), 其中k=1,2,…,n-1 再根据第一类边界条件则可以确定公式6.16,再根据6.17解出方程中的m 向量,最后代入公式6.8求解。 4、源程序清单 #include #define N 21/*最大结点个数减一*/ void sanCi() { /*定义过程数据变量*/ float x[N],y[N],h[N]; /*横纵坐标及区间长度*/ float rr[N],uu[N],gg[N]; /*计算m 用的中间数组rr 、uu 、gg 分别对应:λ、μ、g 数组*/

float aa[N],bb[N],tt[N]; /*矩阵分解时用到的中间变量aa、bb、tt分别对应:α、β数组以及A=LU时中间矩阵*/ float mm[N]; /*最后要用到的系数m*/ int n,k,kv,chose; /* n为实际结点个数,k为下标,kv为最后确定k的值*/ float s,u; /*最后计算u对应的值*/ printf("请输入区间段数:"); scanf("%d",&n); /*输入结点个数*/ /*输入所有横坐标:*/ printf("输入所有横坐标:"); for(k=0; k<=n; k++) scanf("%f",&x[k]); /*输入对应纵坐标:*/ printf("输入对应纵坐标:"); for(k=0; k<=n; k++) scanf("%f",&y[k]); for(k=0; k

样条函数(三次样条)

样条插值是一种工业设计中常用的、得到平滑曲线的一种插值方法,三次样条又是其中用的较为广泛的一种。 1. 三次样条曲线原理 假设有以下节点 1.1 定义 样条曲线是一个分段定义的公式。给定n+1个数据点,共有n个区间,三次样条方程满足以下条件: a. 在每个分段区间(i = 0, 1, …, n-1,x递增),都是一个三次多项式。 b. 满足(i = 0, 1, …, n ) c. ,导数,二阶导数在[a, b]区间都是连续的,即曲线是光滑的。 所以n个三次多项式分段可以写作: ,i = 0, 1, …, n-1 其中ai, bi, ci, di代表4n个未知系数。 1.2 求解 已知: a. n+1个数据点[xi, yi], i = 0, 1, …, n b. 每一分段都是三次多项式函数曲线 c. 节点达到二阶连续 d. 左右两端点处特性(自然边界,固定边界,非节点边界) 根据定点,求出每段样条曲线方程中的系数,即可得到每段曲线的具体表达式。 插值和连续性: , 其中i = 0, 1, …, n-1 微分连续性:

, 其中i = 0, 1, …, n-2 样条曲线的微分式: 将步长带入样条曲线的条件: a. 由(i = 0, 1, …, n-1)推出 b. 由(i = 0, 1, …, n-1)推出 c. 由(i = 0, 1, …, n-2)推出 由此可得: d. 由(i = 0, 1, …, n-2)推出 设,则 a. 可写为:

,推出 b. 将ci, di带入可得: c. 将bi, ci, di带入(i = 0, 1, …, n-2)可得: 端点条件 由i的取值范围可知,共有n-1个公式,但却有n+1个未知量m 。要想求解该方程组,还需另外两个式子。所以需要对两端点x0和xn的微分加些限制。选择不是唯一的,3种比较常用的限制如下。 a. 自由边界(Natural) 首尾两端没有受到任何让它们弯曲的力,即。具体表示为和 则要求解的方程组可写为: b. 固定边界(Clamped) 首尾两端点的微分值是被指定的,这里分别定为A和B。则可以推出

B样条曲线矩阵

五、B样条曲线的矩阵表示 1)二阶B样条曲线 设空间P0 P1, …., P n为n+1个控制点,节点矢量为其中每相邻两个控制点之间可以构造出一段二阶B样条曲线。其中的第j=i-1段二阶B样条曲线P j(t)的矩阵表示为: ; 其中,。 对于二阶均匀B样条曲线,其矩阵表示与非均匀B样条曲线的相同: 。 2)三阶B样条曲线 给定节点矢量为,n+1个控制点为P0,P1, …., P n。其中每相邻三个点可构造出一段二次的B样条曲线。其中的第j(=i-2)段三阶B样条曲线P j(u)的矩阵表示为: ; 其中, 。 对于三阶均匀B样条曲线,其矩阵表示为 。 三阶均匀B样条曲线的端点位置、一阶导数和二阶导数矢量分别为: P i,3(0)=(P i+P i+1)/2,

P i,3(1)=(P i+1+P i+2)/2; P'i,3(0)= P i+1-P i, P'i,3(1)=P i+2-P i+1, P'i,3(1)=P'i+1,3(0); P''i,3(t)=P i-2P i+1+P i+2 , 三阶均匀B样条曲线的首末点通过相应边的中点;首末点的切矢方向与相应边重合;二阶导数矢量等于该曲线的两条边矢量P i+1-P i和P i+2-P i+1所构成的对角线矢量。 三阶均匀B样条曲线段为抛物线,两相邻曲线段之间为一阶连续。 3)四阶B样条曲线 设节点矢量为,控制点为P0P1, …., P n,其中每相邻四个点可构造出一段三次的B样条曲线。其中的第j(=i-3)段三次B样条曲线P i(u)的矩阵表示为: ;。 其中, , m =-m2,2/3- m3,3-(t i+1-t i)2/[(t i+2-t i)(t i+2-t i-1)],m r,j是第r行第j列的元素。 3,2 第j(=i-3)段三次均匀B样条曲线P j(t)的矩阵表示: 。 三次均匀B样条曲线的端点位置、一阶导数和二阶导矢量分别为: P (0)=(P i+4P i+1+P i+2)/6, i,4 P (1)=(P i+1+4P i+2+P i+3)/6; i,4 P' (0)=(P i+2-P i)/2, i,4 P' (1)= (P i+3-P i+1)/2, i,4 P' (1)= P'i+1,3(0); i,3

Matlab程序三次样条插值函数

已知一组数据点,编写一程序求解三次样条插值函数满足 并针对下面一组具体实验数据 求解,其中边界条件为. 解:Matlab计算程序为: clear clc x=[0.25 0.3 0.39 0.45 0.53] y=[0.5000 0.5477 0.6245 0.6708 0.7280] n=length(x); for i=1:n-1 h(i)=x(i+1)-x(i); end for i=1:n-2 k(i)=h(i+1)/(h(i)+h(i+1)); u(i)=h(i)/(h(i)+h(i+1)); end for i=1:n-2 gl(i)=3*(u(i)*(y(i+2)-y(i+1))/h(i+1)+k(i)*(y(i+1)-y(i))/h(i)); end g0=3*(y(2)-y(1))/h(1); g00=3*(y(n)-y(n-1))/h(n-1); g=[g0 gl g00]; g=transpose(g) k1=[k 1]; u1=[1 u]; Q=2*eye(5)+diag(u1,1)+diag(k1,-1) m=transpose(Q\g) syms X; for i=1:n-1 p1(i)=(1+2*(X-x(i))/h(i))*((X-x(i+1))/h(i))^2*y(i); p2(i)=(1-2*(X-x(i+1))/h(i))*((X-x(i))/h(i))^2*y(i+1); p3(i)=(X-x(i))*((X-x(i+1))/h(i))^2*m(i); p4(i)=(X-x(i+1))*((X-x(i))/h(i))^2*m(i+1);

三次样条函数程序

a = [1.0000 0.5000 0.2500 0.0500 0.0100 0.0050 0.0010]; b = [100.0000 97.8000 94.5000 79.0000 32.8000 23.0000 13.2000]; xx= [ 1.0000 0.0500 0.0020]; yy=interp1(a,b,xx,'pchip'); %plot绘图 plot(a,b,'o',a,b); hold on xxx=1:-0.01:0.001; yspline=interp1(a,b,xxx,'spline'); ypchip=interp1(a,b,xxx,'pchip'); ycubic=interp1(a,b,xxx,'cubic'); plot(xxx,yspline, '--bo'); hold on plot(xxx,ypchip,'-rs'); hold on plot(xxx,ycubic, '-kx'); grid on xlabel('土壤粒径(毫米)'); ylabel('颗粒累积百分数(%)'); title('土壤颗粒级配曲线') hold off 三种三次样条插值函数比较 批量转换程序: a = [2 1.0000 0.5000 0.2500 0.0500 0.0100 0.0050 0.0010]; b = [100.4 100 99 97.6 87.2 36.2 24.8 10 100.5 100 99.1 97.9 88 38 25 10.2 100.6 100 99.4 98.6 90 41.3 28.5 12.5 100.5 100 99.4 98.7 89.6 41 28.9 14.1

B-spline Curves(B样条曲线)

Motivation Consider designing the profile of a vase. The left figure below is a Bézier curve of degree 11; but, it is difficult to bend the "neck" toward the line segment P4P5. Of course, we can add more control points near this segment to increase the weight to that region. However, this will increase the degree of the curve. In many cases, it is not worth to use such a high degree polynomial. As discussed in a previous page about the derivatives of a Bézier curve, we can join two Bézier curves together. As long as the last leg of the first curve and the first leg of the second have the same direction, we can at least achieve G1 continuity because the tangent vectors have the same direction but may have different length (i.e., if the lengths are the same, it becomes C1 continuous). The middle figure above uses this idea. It has three Bézier curve segments of degree 3 with joining points marked with yellow rectangles. This shows that with multiple low degree Bézier curve segments satisfying the G1 continuous condition, we still can design complex shapes. But, maintaining this G1continuous condition may be tedious and undesirable. Is it possible that we still can use lower degree curve segments without worrying about the G1 continuous condition? B-spline curves are generalizations of Bézier curves and are developed to answer this question. The right figure above is a B-spline curve of degree 3 defined by 8 control points. In fact, there are five Bézier curve segments of degree 3 joining together to form the B-spline curve defined by the control points. In the above, those little dots subdivide the B-spline curve into Bézier curve segments. One can move control points for modifying the shape of the curve

相关主题