搜档网
当前位置:搜档网 › lbb 矩阵理论课件5

lbb 矩阵理论课件5

第五章矩阵分析(改)

第五章 矩阵分析 本章将介绍矩阵微积分的一些内容.包括向量与矩阵序列的收敛性、矩阵的三种导数和矩阵微分与积分的概念,简要介绍向量与矩阵范数的有关知识. §5.1 向量与矩阵的范数 从计算数学的角度看,在研究计算方法的收敛性和稳定性问题时,范数起到了十分重要的作用. 一、向量的范数 定义1 设V 是数域F 上n 维(数组)向量全体的集合,x 是定义在V 上的一个实值函数,如果该函数关系还满足如下条件: 1)非负性 对V 中任何向量x ,恒有0x ≥,并且仅当0=x 时,才有 x =0; 2)齐次性 对V 中任意向量x 及F 中任意常数k ,有;x k kx = 3)三角不等式 对任意V y x ∈,,有 y x y x +≤+, 则称此函数x (有时为强调函数关系而表示为?) 为V 上的一种向量范数. 例1 对n C 中向量()T n x x x x ,,,21 =,定义 2 22212 n x x x x +++= 则2x 为n C 上的一种向量范数[i x 表示复数i x 的模]. 证 首先,2n x C 是上的实值函数,并且满足

1)非负性 当0x ≠时,0x >;当0x =时,0x =; 2)齐次性 对任意k C ∈及n x C ∈,有 22||||||kx k x = =; 3)三角不等式 对任意复向量1212(,, ,),(,, ,)T T n n x x x x y y y y ==,有 222 221122||||||||()n n x y x y x y x y +=++++ ++ 2221122()()()n n x y x y x y ≤++++ ++ 2 21 1 1 ||2||||||n n n i i i i i i i x x y y ====++∑∑∑(由Cauchy-ВуНЯКОВСКИЙ 不等式) 222222 2 22||||2||||||||||||(||||||||),x x y y x y ≤++=+ 因此 222||||||||||||x y x y +≤+ 所以 2||||x 确为n C 上的一种向量范数 例2 对n C [或n R ]上向量12(,,,)T n x x x x =定义 112||||||||||n x x x x =+++, 1max i i n x x ∞ ≤≤=, 则1||||x 及x ∞都是n C [或n R ]上的向量范数,分别称为1-范数和∞-范数. 证 仅对后者进行证明. 1)非负性 当0x ≠时,max 0i i x x ∞ =>,又显然有00∞=; 2)齐次性 对任意向量()T n x x x x ,,,21 =及复数k ,

中科院矩阵分析_第五章

第五章 特征值的估计及对称矩阵的极性 本章主要讨论数值代数中的三个特殊理论, 即 特征值的估计 广义特征值问题 实对称矩阵(一般是Hermite 矩阵)特征值的 极小极大原理,其次也涉及到一些特征值 和奇异值的扰动问题,最后简要地介绍矩阵 直积的一些性质及其在线性矩阵方程求解 方面的应用。这几方面的内容,在矩阵的 理论研究与实际应用当中都有着相当重要 的作用。 5.1特征值的估计 一、特征值的界 首先给出直接估计矩阵特征值模的上界的 一些方法 定理5.1 设A=(a rs )∈R n×n ,令 M=||2 1 max ,1sr rs n s r a a -≤≤ λ若表示A 任一特征值,则λ的虚部Im(λ) 满足不等式 2 ) 1(|)Im(|-≤n n M λ |Im(λ)|≤||A -A T ||2 / 2 |Im(λ)|≤||A -A T ||1 ?/2. 证明:设x+i ?y 为对应于λ的A 的特征向量, 则 A(x+i ?y)=(α+β?i)(x+i ?y) 其中λ=α+β?i.显然x,y 为实向量,且x,y 为 线性无关的 向量。 经整理A(x,y)=(x,y)B, 其中B=??? ? ??-αββα 。 从而(x,y)T A(x,y)=(x,y)T (x,y)B 展开有

???? ??Ay y Ax y Ay x Ax x T T T T =α????? ??y y y x y x x x T T T T + β???? ? ? ?--x y y y x x y x T T T T (求等式两边矩阵的对角元之和,可得 α(x T x +y T y )=x T Ax +y T Ay (1) 等式两边矩阵的左上角单元减去右下角单元 可得: β(x T x +y T y )=x T (A -A T )y 1). 记B=A -A T ,则 |x T By|≤||x||2 ?||B||2?||y||2 从而 |β|≤||x||2 ?||B||2?||y||2 /((||x ||2)2 +(||y ||2)2) 利用ab /(a 2+b 2)≤1/2 可得 |β|≤||B||2 /2. 2). 由于|x T By|≤||Bx||1 ?||y||∞≤||B||1?||x||1 ?||y||∞ 从而 |β|≤||B||1 ?||x||1 ?||y||∞ /((||x ||2)2 +(||y ||2)2) 易证明 ||x||1 ?||y||∞ /((||x ||2)2 +(||y ||2)2) /2. (显然,不妨假设(||x ||2)2 +(||y ||2)2=1, 设||y ||∞=t =cos(α), 则y 必为t ? e j 的形式(为什么?), 从而极值转化为求解如下最大值问题: max ||x||1, 满足约束(||x ||2)2=1-t 2 这样有均值不等式||x||1 x ||2 = -t 2)1/2, 从而我们需要求解t (1-t 2)1/2的最大值,设t =cos(α) 可得t (1-t 2)1/2的最大值为1/2. 从而得证。) 因此 |β|≤||B||1 3). 由于b ii =0, i =1,2,…,n , b ij = -b ji , 因此 |x T By|2=| 1 1()n ij i j j i i j i b x y x y -=>??-∑∑|2 ≤(2M )2 2 1||n i j j i i j i x y x y =>??- ??? ∑∑ (利用(a 1+a 2+…+a n )2≤ n ((a 1)2+(a 2)2+…+(a n )2) ≤(2M )2 (n (n -1)/2) 21||n i j j i i j i x y x y =>??- ??? ∑∑

线性变换和矩阵

§3 线性变换和矩阵 一、线性变换关于基的矩阵 设V 是数域P 上n 维线性空间.n εεε,,,21 V 的一组基,现在建立线性变换与矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21 线性表出,即有关系式 n n x x x εεεξ+++= 2211 (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标.由于线性变换保持线性关系不变,因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++ 2211) =1x A (1ε)+2x A (2ε)+…+n x A (n ε) (2) 上式表明,如果知道了基n εεε,,,21 的像,那么线性空间中任意一个向量ξ的像也就知道了,或者说 1. 设n εεε,,,21 是线性空间V 的一组基,如果线性变换?与?在这组基上的作用相同,即 A i ε= B i ε, ,,,2,1n i = 那么A = B . 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出,基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21 是线性空间V 的一组基,对于任意一组向量n ααα,,,21 一定有一个线性变换?使 A i ε=i α .,,2,1n i = 定理1 设n εεε,,,21 是线性空间V 的一组基,n ααα,,,21 是V 中任意n 个向量.存在唯一的线性变换?使

A i ε=i α .,,2,1n i = 定义2 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,A 是V 中的一个线性变换.基向量的像可以被基线性表出: ?? ? ?? ? ?+++=+++=+++=. , , 22112222112212211111n nn n n n n n n n a a a A a a a A a a a A εεεεεεεεεεεε 用矩阵表示就是 A (n εεε,,,21 )=(A (1ε),A ?(2ε),…, A (n ε)) =A n ),,,(21εεε (5) 其中 ??? ??? ? ??=nn n n n n a a a a a a a a a A 212222111211 矩阵A 称为线性变换A 在基n εεε,,,21 下的矩阵. 例 1 设m εεε,,,21 是n )(m n >维线性空间V 的子空间W 的一组基,把它扩充为V 的一组基n εεε,,,21 .指定线性变换A 如下 ?? ?+====. ,,1,0,,,2,1,n m i A m i A i i i εεε 如此确定的线性变换A 称为子空间W 的一个投影.不难证明 A 2=A 投影A 在基n εεε,,,21 下的矩阵是

矩阵理论与应用(张跃辉)(上海交大)第二章参考答案

第二章习题及参考解答 注:第27题(2)(3)错(可将“证明”改为证明或否定),第28题可不布置。第50题(含)以后属于附加内容,没有参考解答。 1.证明子空间判别法:设U是线性空间V的一个非空子集.则U是子空间??对任 意λ∈F,α,β∈U,有α+β∈U与λα∈U. 证明:必要性是显然的,下证充分性。设U关于加法“+”与数乘均封闭。则U中加法“+”的结合律与交换律以及数乘与“+”的分配律、1α=α均自动成立,因为U?V.由 于U关于数乘封闭,而0=0α∈U,?α=?1α∈U,因此U是子空间。 2.证明子空间的下述性质。(1)传递性:即若U是V的子空间,W是U的子空间,则W 也是V的子空间; (2)任意多个(可以无限)子空间的交集仍是子空间,且是含于这些子空间的最大子空间; 特别,两个子空间U与W的交U∩W仍是子空间. 证明:(1)由子空间判别法立即可得。 (2)由子空间判别法可知任意多个(可以无限)子空间的交集仍是子空间,且若某个子空 间含于所有这些子空间,则该子空间必然含于这些子空间的交。 3.(1)设V是线性空间,U与W是V的两个子空间.证明: dim(U+W)=(dim U+dim W)?dim(U∩W). (2)设V是有限维线性空间.证明并解释下面的维数公式: dim V=max{m|0=V0?V1?···?V m?1?V m=V,V i是V i+1的真子空间} 证明:(1)设dim U=s,dim W=t,dim(U∩W)=r.任取U∩W的一组基α1,α2,···,αr.由于U∩W是U与W的公共子空间,故U∩W的基是U与W的线性无关的向量组,因此 可以扩充成U或W的基.设 α1,α2,···,αr,βr+1,βr+2,···,βs(0.0.1) 与 α1,α2,···,αr,γr+1,γr+2,···,γt(0.0.2) 分别是U与W的基.我们证明 α1,α2,···,αr,βr+1,βr+2,···,βs,γr+1,γr+2,···,γt(0.0.3) 是U+W的一组基.为此需要证明该向量组线性无关,且U+W的任何向量均可由这些向量 线性表示. 设 k1α1+k2α2+···+k rαr+b r+1βr+1+···+b sβs+c r+1γr+1+···+c tγt=0.(0.0.4) 12

矩阵论在电路中的应用

矩阵论在电路分析中的应用 随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析、优化理论、微分方程、概率统计、控制论、力学、电子学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学等领域,矩阵理论和方法也有着十分重要的应用。当今电子计算机及计算技术的迅速发展为矩阵理论的应用开辟了更广阔的前景。因此,学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。全国的工科院校已普遍把“矩阵论”作为研究生的必修课。 对于电路与系统专业的研究生,矩阵论也显得尤为重要。本文以电路与系统专业研究生的必修课《电网络分析与综合》为例,讲解矩阵论的重要作用。 在电路分析中,对于一个有n个节点,b条支路的电路图, 每条支路的电压和电流均为未知,共有2b个未知量。根据KCL 我们可以列出(b-1)个独立的方程,根据KVL我们也可以列出 (b-n+1)个独立的方程,根据每条支路所满足的欧姆定律,我 们还可以可以列出b个方程;总共2b个方程要解出b个支路电 流变量和b个支路电压变量。当b的数值比较大时,传统的解数学方程组的方法已经不再适用了,因此我们需要引入矩阵来帮助我们求解电路。 一. 电网络中最基本的三个矩阵图 1 1.关联矩阵

在电路图中,节点和支路的关联性质可以用关联矩阵][ij a A =来表示。 选取一个节点为参考节点后,矩阵A 的元素为: ?????-+=个节点无关联条支路与第第方向指向节点个节点相关联,且支路条支路与第第方向离开节点个节点相关联,且支路条支路与第第i j i i j i i j a ij 0 1 1 图1中电路图的关联矩阵为 ????????????= 0 1- 0 1- 1- 0 0 1- 0 0 0 1 1 0 0 0 0 0 0 1- 1-0 0 1- 1 0 0 1 A 2. 基本回路矩阵 在电路图中,基本回路和支路的关联性质可以用基本回路矩阵][ij f b B =来表示。当选定电路图中的一个树,额外再增加一个连枝的时候,就会形成一个基本回路。选取基本回路的方向与它所关联的连枝方向一致,矩阵f B 的元素为: ?? ???-+=个回路无关联条支路与第第反方向和基本回路方向相个回路相关联,且支路条支路与第第同方向和基本回路方向相个回路相关联,且支路条支路与第第i j i j i j b ij 0 1 1 图1中电路图的基本回路矩阵为 ???? ??????=1 0 0 1- 1 0 0 0 1 0 1- 1 1- 1 0 0 1 0 1- 1 1-f B 3. 基本割集矩阵 在电路图中,基本割集和支路的关联性质可以用基本割集矩阵][ij f q Q =来表示。当选

中科院矩阵分析_第五章

第五章特征值的估计及对称矩阵的极性本章主要讨论数值代数中的三个特殊理论,即 特征值的估计 广义特征值问题 实对称矩阵(一般是Hermite矩阵)特征值的极小极大原理,其次也涉及到一些特征值和奇异值的扰动问题,最后简要地介绍矩阵直积的一些性质及其在线性矩阵方程求解方面的应用。这几方面的内容,在矩阵的理论研究与实际应用当中都有着相当重要的作用。 5.1特征值的估计 一、特征值的界 首先给出直接估计矩阵特征值模的上界的 一些方法 定理 5.1 设A=(a rs) R n X1,令 1 , , M= ma彷总a sr| 若表示A任一特征值,则的虚部Im() 满足不等式 |Im( )| M n(n21) |Im( )| ||A A T||2 / 2 |Im( )| ||A A T||1n /2. 证明:设x+i y为对应于的A的特征向量, 则A(x+i y)=( + i)(x+i y) 其中=+ i.显然x,y为实向量,且x,y为线性无关的向量。 经整理A(x,y)=(x,y)B, 其中B= 从而(x,y) T A(x,y)=(x,y) T(x,y)B 展开有

i 1 j i T T X y X X T T y y y X (求等式两边矩阵的对角元之和,可得 (x T x+y T y)=x T Ax+y T Ay (1) 等式两边矩阵的左上角单元减去右下角单元 可得: (x T x+y T y)=x T (A A T )y 1) . 记 B=A A T ,则 |x T By| ||x||2||B||2||y||2 从而 1 1 1凶|2 ||B||2||y||2 /((||x||2)2 +(||y|2)2) 利用 ab/(a 2+b 2) 1/2 可得 | | ||B||2 /2. 2) . 由于 |x T By| ||B X ||I ||y|| ||B||i ||X ||I ||y|| 从而 | | ||B||i ||x||i ||y|| /((||X |2)2 +(||y||2)2) 易证明 ||x||i ||y|| /((||X ||2)2 +(||y||2) 2) n /2. (显然,不妨假设(||X ||2)2 +(||y||2)2=1, 设HyH =t=cos (),则y 必为t e 的形式(为什么?) 从 而极值转化为求解如下最大值问题: max ||X ||1,满足约束(||X ||2)2=1 t 2 这样有均值不等式 ||x|h i n ||X ||2= 、、n (1 t 2)1/2, 从而我们需要求解t(1 t 2)1/2的最大值,设t=cos() 可得 t(1 t 2)1/2的最大值为1/2.从而得证。) 因此 11 ||B||1 . n /2. 3) . 由于 b ii =0, i =1,2,…,n, b ij = b ji , n 1 因此 x T By|2=| b ij (X y j X j y i )|2 i 1 j i 2 n (2M)2 |xy j X j Y i | i 1 j i (利用(a 1+a 2+…+a n )2 n((a 1)2+(a 2)2+ …+(a n )2) n (2M)2(n(n 1)/2) | X y j X j yj 2 X T A X y T Ax X T Ay y T Ay T T X X X y T T X y y y

第五章矩阵分析(改)(完整资料).doc

【最新整理,下载后即可编辑】 第五章 矩阵分析 本章将介绍矩阵微积分的一些内容.包括向量与矩阵序列的收敛性、矩阵的三种导数和矩阵微分与积分的概念,简要介绍向量与矩阵范数的有关知识. §5.1 向量与矩阵的范数 从计算数学的角度看,在研究计算方法的收敛性和稳定性问题时,范数起到了十分重要的作用. 一、向量的范数 定义1 设V 是数域F 上n 维(数组)向量全体的集合,x 是定义在V 上的一个实值函数,如果该函数关系还满足如下条件: 1)非负性 对V 中任何向量x ,恒有0x ≥,并且仅当0=x 时,才有x =0; 2)齐次性 对V 中任意向量x 及F 中任意常数k ,有 ;x k kx = 3)三角不等式 对任意V y x ∈,,有 y x y x +≤+, 则称此函数x (有时为强调函数关系而表示为?) 为V 上的一种向量范数. 例1 对n C 中向量()T n x x x x ,,,21 =,定义

2 22212 n x x x x +++= 则2x 为n C 上的一种向量范数[i x 表示复数i x 的模]. 证 首先,2n x C 是上的实值函数,并且满足 1)非负性 当0x ≠时,0x >;当0x =时,0x =; 2)齐次性 对任意k C ∈及n x C ∈,有 22||||||kx k x = =; 3)三角不等式 对任意复向量 1212(,, ,),(,, ,)T T n n x x x x y y y y ==,有 222 221122||||||||()n n x y x y x y x y +=++++ ++ 2221122()()()n n x y x y x y ≤++++ ++ 2 2 1 1 1 ||2||||||n n n i i i i i i i x x y y ====++∑∑∑(由Cauchy-ВуНЯКОВСКИЙ不 等式) 22 2222 2 22||||2||||||||||||(||||||||), x x y y x y ≤++=+ 因此 222||||||||||||x y x y +≤+ 所以 2||||x 确为n C 上的一种向量范数 例2 对n C [或n R ]上向量12(,,,)T n x x x x =定义 112||||||||||n x x x x =+++, 1max i i n x x ∞ ≤≤=, 则1||||x 及x ∞都是n C [或n R ]上的向量范数,分别称为1-范数和∞-范数.

#第七章 线性变换(小结)

第七章 线性变换(小结) 本章的重点: 线性变换的矩阵以及它们对角化的条件和方法. 本章的难点: 不变子空间的概念和线性变换和矩阵的一一对应关系. 线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内在联系起着重要作用.线性变换的概念是分析几何中的坐标变换、数学分析中的某些变换替换等的抽象和推广,它的理论和方法,(特别是和之相适应的矩阵理论和方法)在分析几何、微分方程等许多其它使用学科,都有极为广泛的使用. 本章的中心问题是研究线性变换的矩阵表示,在方法上则充分利用了线性变换和矩阵对应和相互转换. 一、线性变换及其运算 1. 基本概念: 线性变换,可逆线性变换和逆变换; 线性变换的值域和核,秩和零度; 线性变换的和和差, 乘积和数量乘法, 幂及多项式. 2. 基本结论 (1) 线性变换保持零向量、线性组合和线性关系不变; 线性变换把负向量变为象的负向量、把线性相关的向量组变为线性相关的向量组 (2) 线性变换的和、差、积、数量乘法和可逆线性变换的逆变换仍为线性变换. (3) 线性变换的基本运算规律(略). (4) 一个线性空间的全体线性变换关于线性变换的加法和数量乘法作成一个线性空间. (5) 线性空间V 的线性变换A 的象Im(A )= A V 和核ker A = A -1(0) (a) A 的象Im(A )= A V 和核ker A = A -1(0)是V 的(A -)子空间. (b)若dim(V )=n ,则Im(A )由V 的一组基的象生成: 即设V 的一组基 n ααα,...,,21, Im(A )= A V =L(A α1, A α2,… ,A αn )={ A α|α∈V }. ker A = A -1(0)= { α∈V | A α=0}. (c)A 的秩(dim Im(A ))+A 的零度(dim ker A )=n . (d)A 是双射?A 是单射? Ker(A )={0}?A 是满射.

线性变换及其矩阵

第三讲 线性变换及其矩阵 一、线性变换及其运算 定义:设V 是数域K 上的线性空间,T 是V 到自身的一个映射,使得对于V 中的任意元素x 均存在唯一的 y ∈V 与之对应,则称T 为V 的一个变换或算子,记为 y x T =)( 称y 为x 在变换T 下的象,x 为y 的原象。 若变化T 还满足 )()()(y T x T y x T +=+ )()(x kT kx T = K k V y x ∈∈?,, 称T 为线性变换。 [例1] 二维实向量空间12 2i R R ξξξ?? ??=∈???????? ,将其绕原点反时针方向旋转θ 角的操作即 ??? ? ?????? ??-=???? ??2121cos sin sin cos ξξθθ θθ ηη就是一个线性变换。 [例2] 次数不超过 n 的全体实多项式n P 构成实数域上的一个 1n +维的线性空间,其基可选为 {}2 1,,,,n x x x ,微分算子d D dx = 是n P 上的一个线性变换。 [例3] 取定矩阵n n K C B A ?∈,,,定义n n K ?的变换C XB AX X T ++= )( n n K X ?∈,是否是线 性变换 2. 性质 (1) 线性变换把零元素仍变为零元素 (2) 负元素的象为原来元素的象的负元素 (3) 线性变换把线性相关的元素组仍变为线性相关的元素组 应该注意,线性无关的元素组经过线性变换不一定再是线性无关的。但 (4) 如果线性变换是一个单射,则把线性无关的元素组变为线性无关的元素组 3. 线性变换的运算 (1) 恒等变换e T :,e x V T x x ?∈= (2) 零变换0T :0,0x V T x ?∈= (3) 变换的相等:1T 、2T 是V 的两个线性变换,x V ?∈,均有12T x T x =,则称1T =2T (4) 线性变换的和1T +2T :x V ?∈,1212()T T x T x Tx +=+ (5) 线性变换的数乘kT :x V ?∈,()()kT x k Tx = 负变换:()()T x Tx -=-

矩阵分析

《矩阵分析》作业布置 第三章 章末习题:3-1,3-30,3-25,3-12,3-13,3-14,3-27,3-20,3-19,3-28(1)(2) 3-26,3-22,3-9,3-3(1),3-16,3-23 注:题3-261λ2 应改为1 λ 2 补充题: #3*1 试证:向量长度的齐次性,即,,.n k k k C C ααα=?∈∈ #3*2 试证:在任意酉空间V 中成立广义商高定理: 2 2 2 ,&(,)0V αβαβαβ αβ∈=?+=+ #3*3令()()()1231,1,1,1,3,3,1,1,2,0,6,8T T T ααα==--=-。求12,3{,}Span ααα的一个标准正交基。 #3*4 试证下列矩阵是酉矩阵:(i )0000 1?????? ? ?? ? (ii )0i 000i i 00?? ? ? ?-??, #3*5 用归纳法证明下列结论:(i ) 对任意正整数n 成立1+3+5+……+(2n-1)=2 n .(ii)对任意正整数k 成立: 2 22 11k 1&(,)0,k i j k V i j αααααααα∈=?≠?+=+……………… #3*6 试证:A=001 0001i i i ?? ? - ? ?+?? ,(i =为正规矩阵。试问:A 是否为H 矩阵,反H 矩阵,或酉矩阵?为什么? #3*7 试证:对正定矩阵A 存在正定矩阵S 使得k S A =,其中k 为任意正整数。 第四章 章末习题:4-1(1)(2);4-2 (其中矩阵A 代之以101001?? ? ? ??? ) 补充题: #4*1 ***,,,,,m n m m n n A B C A UBV U U V U ∈=∈∈若则称 B 与A 酉等价。 试证:B 与A 酉等价当且仅当B 与A 有相同奇异值集。 #4*2 设***A ,,m n m m n n r C U U V U ∈∈∈使得* 1r 0,(,00U AV diag b Λ?? =Λ= ??? ……,b),

线性变换和矩阵

§3 线性变换和矩阵 一、线性变换在某组基下对应的矩阵 设V 是数域P 上n 维线性空间.n εεε,,,21ΛV 的一组基,现在建立线性变换与矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21Λ线性表出,即有关系式 n n x x x εεεξ+++=Λ2211 (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标. 由于线性变换保持线性关系不变, 因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++Λ2211) =1x A(1ε)+2x A(2ε)+…+n x A (n ε) (2) 上式表明,如果知道了基n εεε,,,21Λ的像,那么线性空间中任意一个向量ξ的像也就 知道了,或者说 1. 设n εεε,,,21Λ是线性空间V 的一组基,如果线性变换A 与?在这组基上的作用 相同,即 A i ε= B i ε, ,,,2,1n i Λ= 那么A= B. 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出, 基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21Λ是线性空间V 的一组基,对于任意一组向量n ααα,,,21Λ一定有一个 线性变换 A , 使 A i ε=i α .,,2,1n i Λ=

定理1 设n εεε,,,21Λ是线性空间V 的一组基,n ααα,,,21Λ是V 中任意n 个向量. 存在唯一的线性变换A 使 A i ε=i α .,,2,1n i Λ= 定义2 设n εεε,,,21Λ是数域P 上n 维线性空间V 的一组基,A 是V 中的一个线性变换. 基向量的像可以被基线性表出: ???????+++=+++=+++=. ,,22112222112212211111n nn n n n n n n n a a a A a a a A a a a A εεεεεεεεεεεεΛΛΛΛΛΛΛΛΛ 用矩阵表示就是 A (n εεε,,,21Λ)=(A(1ε),A(2ε),…, A(n ε)) =A n ),,,(21εεεΛ (5) 其中 ?????? ? ??=nn n n n n a a a a a a a a a A ΛΛΛΛΛΛΛΛΛΛΛ2122221 11211 矩阵A 称为线性变换A 在基n εεε,,,21Λ下的矩阵. 例1 设m εεε,,,21Λ是n )(m n >维线性空间V 的子空间W 的一组基,把它扩充为 V 的一组基n εεε,,,21Λ.指定线性变换A 如下 ???+====.,,1,0,,,2,1,n m i A m i A i i i ΛΛεεε 如此确定的线性变换A 称为子空间W 的一个投影.不难证明 A 2=A 投影A 在基n εεε,,,21Λ下的矩阵是 ]练习:7, 8, 9

7.3线性变换的矩阵

§3 线性变换的矩阵 设V 是数域P 上n 维线性空间,12,,,n εεε是V 的一组基,现在我们来建立线性变换与矩阵的关系。 空间V 中任一向量ξ可以被基12,, ,n εεε表示出,即有关系式 1122n n x x x ξεεε=++ +, (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标。由于线性变换保持线性关系不变,因而在ξ的象A ξ与基的象12,,,n A A A εεε之间也必然有相同的关系: )(2211n n x x x A A εεεξ+++= )()()(2211n n A x A x A x εεε+++= (2) 上式表明,如果我们知道了基12,,,n εεε的象,那么线性空间中任意一个向量ξ的象也就知道了,或者说 1.设12,,,n εεε是线性空间V 的一组基。如果线性变换A 与B 在这组基上的作用相 同,即 n i B A i i ,,2,1, ==εε, 那么A =B 。 证明 A 与B 相等的意义是它们对每个向量的作用相同。因此,我们就是要证明对任一向量ξ,等式A B ξξ=成立。而由(2)及假设,即得 ξεεεεεεξB B x B x B x A x A x A x A n n n n =+++=+++= 22112211 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定。下面我们进一步指出,基向量的象完全可以是任意的,也就是说, 2.设12,,,n εεε是线性空间V 的一组基。对于任意一组向量12,,,n ααα一定有一个线性变换A 使 ,1,2, ,i i A i n εα== (3) 证明 我们来作出所要的线性变换。设 ∑==n i i i x 1εξ 是线性空间V 的任意一个向量,我们定义V 的变换A 为 1 n i i i A x ξα ==∑ (4) 下面来证明变换A 是线性的。 在V 中任取两个向量, ∑∑====n i i i n i i i c b 1 1 ,εγεβ。 于是 ∑=+=+n i i i i c b 1 )(ελβ, P k kb k n i i i ∈=∑=,1εβ。 按所定义的A 的表达式(4),有

04 线性变换及其矩阵

第四讲 线性变换及其矩阵 一、线性变换及其运算 1,定义:T 是到自身的一个映射,满足()n V F x ?∈V 中的任意元,均存在唯一的 y ∈V 与之对应,则称T 为V 的一个变换,记为 Tx =y 称y 为x 在变换T 下的象,x 为y 的原象。 若变化T 还满足线性性:T(kx+ly)=k(Tx)+l(Ty) x,y ∈V , k,l F ?∈称T 为线性变换。 [例1] 二维实向量空间12 2i R R ξξξ?????????=∈????????????? ,将其绕原点旋转角的操作就是一个线性变换。 θ[证明] 12 2,x R x ξξ?????∈=????12y Tx ηη????==???? 112212cos sin sin cos ηξθξθηξθξ?=+????=?+??θ 1122cos sin sin cos ηξθθηξθθ???? ??????? ?=????????????? 2R ∈ 可见T 为变换,下面证明其为线性变换. [例2] 次数不超过-1的全体实多项式[x]构成实数域上的一个n 维的线性空 间,微分算子n n P d dx D =是[x]上的一个线性变换。 n P [证明] Remark: [x]上的积分变换n P 0 (())()x J p x p s ds =∫ 不是[x]上的线性变换,为 C[0,1]上的线性变换。 n P [例3])上对任意固定α为线性变换0=时称零变 (n V F ,()F T λα∈=λ。换; λ

1λ=时称恒等变换。 [例4] 上定义,选定,为上线性变换。 n F (),n n A T X AX A F ×=∈A T n F 2. 性质 (1) 线性变换把零元素仍变为零元素(T(0)=T(0x)=0(Tx)=0) (2) 负元素的象为原来元素的象的负元素(T (-x )=(-1)(Tx )=-(Tx )) (3) 线性变换把线性相关的元素组仍变为线性相关的元素组 [证明] Remark: 线性无关的元素组经过线性变换不一定再是线性无关的。 3, 线性变换相关的空间 ★象空间 {}|(),..()n V F s t T βαβα=?∈=()R T ()N T dimR(T)为线性变换T 的秩 ★零空间 {}|()0T αα== dimN(T)为线性变换T 的零度。 [例] 求线性变换的象空间和零空间。 A T 4. 线性变换的运算 (1) 恒等变换e T :,e x V T x x ?∈= (2) 零变换0T :0 ,0x V T x ?∈=(3) 变换的相等:1T 、2T 是V 的两个线性变换,x V ?∈,均有, 则称1T =2T . 12T x T x =(4) 线性变换的和1T +2T :x V ?∈,2() 121T T x T x Tx +=+(5) 线性变换的数乘kT :x V ?∈,()() kT x k Tx =负变换:() (T x Tx ?=?)

重庆大学矩阵理论及其应用论文

“矩阵理论及其应用”课程研究报告 科目:矩阵理论及其应用教师:蒋卫生 姓名:学号: 专业:机械电子工程类别:学术 上课时间:2013 年10 月至2013 年12 月 考生成绩: 阅卷评语: 阅卷教师(签名)

最小二乘法问题 摘要:无论在哪个专业领域,都不可避免的要面对测量所得到的一批数据。这些数据看似杂乱无章,但对于特定的时间却是符合特定的规律。而要发现这些规律必须借助一定的手段。矩阵理论作为一门具有强大功能的学科再此发挥了它重要的作用。用矩阵论的理论来处理现代工程技术中的各种问题已经越来越普遍了。在工程技术中引进矩阵理论不仅使理论的表达极为简捷,而且对理论的实质刻画也更为深刻,这一点是不容质疑的,更由于计算机和计算方法的普及发展,不仅为矩阵理论的应用开辟了崭新的研究途径。矩阵理论与方法已成为研究现代工程技术的数学基础。因此,对于数据的处理采用最小二乘法是最恰当不过的了。 关键词:数据处理,矩阵理论,最小二乘法 正文 一、引言 最小二乘法已有近200年的发展历史,它首先由Gauss K F提出并被应用于天文计算中,现已被广泛地用来解决各种技术问题。在过去的30多年里,它已被成功地应用到过程控制系统的参数估计领域,数字计算机技术又使最小二乘原理更有实践价值。参数估计现在模型结构已知时,用实验法所取得的数据来确定表征系统动力学模型中的参数。最小二乘法原理提供了一个数学程序,通过它可以获得一个在最小方差意义下与实践数据拟合最好的模型,它在稳态系统数学模型的回归分析方面应用已很成熟,在动态系统的参数辨识方面也取得了许多重要成果,其参数估计的收敛性质也得到了深入的研究,可以说在参数估计领域中最小二乘方法已达到了完善的程度。 本文讨论的问题如下: 一颗导弹从敌国发射,通过雷达我们观测到了它的飞行轨迹,具体有如下数据:

矩阵开题报告

篇一:矩阵的应用开题报告 山西大同大学 09 届本科毕业论文(设计)开题报告及任务书篇二:矩阵变换及应用开题报告鞍山师范学院 数学系 13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号: 30 指导教师:裴银淑 2013年 12月 26日一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种 十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到 非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解 决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义: 矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式 识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着 不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内 外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词, 他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩 阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的 研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容, 在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在 第四章中也提到了householder变换和givens旋转。美国著名的约翰斯.霍普金 斯大学的rogera.horn和威廉姆和玛丽学院的charlesr.johnson联合编著的《矩 阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外 关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出 了巨大贡献。 2 、本人对以上综述的评价:矩阵理论一直都是各个学科的基本数学工具,矩阵变换是矩阵理论的基础, 近年来有许多关于矩阵变换的研究,这些研究将一些繁琐复杂的问题简单化,也 极大地推进和丰富了电子信息、航空航天等领域的发展,同时促进了更多的数学 家加入到研究矩阵变换的队伍中,这样就使得矩阵变换知识日渐完善,并应用到 更多的领域中去。 三、论文提纲 前言 (一)、矩阵初等变换及应用 1、矩阵初等变换的基本概念 2、初等变换在方程组中的应用

相关主题