搜档网
当前位置:搜档网 › 石墨烯的化学气相沉积法制备 2

石墨烯的化学气相沉积法制备 2

石墨烯的化学气相沉积法制备 2
石墨烯的化学气相沉积法制备 2

石墨烯的化学气相沉积法制备

摘要:化学气相沉积(CVD)法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨

烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、SiC外延生长法和CVD方法)的原理和特点,重点

从结构控制、质量提高以及大面积生长等发面评述了CVD法制备石墨

烯及其转移技术的研究进展,并展望了未来CVD法制备石墨烯的可能

发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与

无损转移等。

关键词:石墨烯制备化学气相沉积法转移

Abstract chemical vapor deposition(CVD) is an effective way for the preparation of preparation of graphene with large area and high quality.In this review,the echanism and characteristics of the four main preparation methods of graphene are briefly introduced ,including microm echanical Cleavage,chemical exfoliation,SiC epitaxial growth and CVD. The recent advances in the CVD growth of graphene and the related transfer techniques in term of structure contral, quality improvement and large area graphene synthesis were discussed .Other possible methods single crystalline

graphene ,graohene nanoribbons and graphene avrostructures. Keywords : Graphene,Preparation, Chemical vapor deposition;

transfe

1.前言

自从1985年富勒烯和1991年碳纳米管被发现以来,碳纳米材料的研究一直是材料研究领域的热点,引起了世界各国研究人员的极大兴趣。虽然碳的三维(石墨和金刚石)、零维(富勒烯)和一维(碳纳米管)同素异形体都相继被发现,但作为二维同素异形体的石墨烯长期以来被认为由于热力学上的不稳定性而难以独立存在,在实验上难以获得足够大的高质量样品,因此石墨烯的研究一直处于理论探索阶段。直到2004年,英国曼彻斯特大学的科学家利用胶带剥离高定向热解石墨(HOPG)获得了独立存在的高质量石墨烯,并提出了表征石墨烯的光学方法,对其电学性能进行了系统研究,发现石墨烯具有很高的载流子浓度、迁移率和亚微米尺度的弹道输运特性,从而掀起了石墨烯研究的热潮。石墨烯是由单层碳原子紧密堆积成的二维蜂窝状结构,是构成其他维数碳材料的基本结构单元。石墨烯可以包覆成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨。由于独特的二维结构特征和极佳的晶体学质量,石墨烯的载流子表现出类似于光子的行为,为研究相对论量子力学现象提供了理想的实验平台,此外石墨烯还具有优异的电学、光学、热学、力学等特性,因此在场效应晶体管、集成电路、单分子探测器、透明导电薄膜、功能复合材料、储能材料、催化剂载体等方面有广阔的应用前景。

图1 CVD法生长石墨烯的渗碳烯碳机制与表面生长机制示意图

材料的制备是研究其性能和探索其应用的前提和基础。尽管目前已经有多种制备石墨烯的方法,石墨烯的产量和质量都有了很大程度的提升,极大促进了对石墨烯本征物性和应用的研究,但是如何针对不同的应用实现石墨烯的宏量控制制备,对其质量、结构进行调控仍

是目前石墨烯研究领域的重要挑战。本文首先简要介绍了石墨烯的几种主要制备方法的原理和特点,继而详细地评述了近两年发展起来的化学气相沉积(CVD)制备方法及其相应的石墨烯转移技术的研究进展,并展望了未来CVD法制备石墨烯的可能发展方向。

2石墨烯的主要制备方法

胶带剥离法(或微机械剥离法):2004年由英国曼彻斯特大学的Gem研究组发展的一种制备石墨烯的方法,它利用胶带的粘合力,通过多次粘贴将HO PG,鳞片石墨等层层剥离,然后将带有石墨薄片的胶带粘贴到硅片等目标基体上,最后用丙酮等溶剂去除胶带,从而在硅片等基体上得到单层和少层的石墨烯}t is。该方法具有过程简单,产物质量高的优点,所以被广泛用于石墨烯本征物性的研究,但产量低,难以实现石墨烯的大而积和规模化制备。

化学剥离法:利用氧化反应在石墨层的碳原子上引入官能团,使石墨的层间距增大,从而削弱其层间相勺_作用,然后通过超声或快速膨胀将氧化石墨层层分离得到氧化石墨烯,最后通过化学还原或高温还原等方法去除含氧官能团得到石墨烯}‘5‘6]。该方法是目前可以宏量制备石墨烯的有效方法,并目_氧化石墨烯可很好地分散在水中、易于组装,因此被广泛用于透明导电薄膜、复合材料以及储能等宏量应用研究。然而,氧化、超声以及后续还原往往会造成碳原子的缺失,因此化学剥离方法制备的石墨烯含有较多缺陷、导电性差。

碳化硅(Sf)外延生长法:利用硅的高蒸汽压,在高温(通常>1 400 0C)和超高真空(通常<10 }Pa)条件下使硅原子挥发,剩余的碳原子通

过结构重排在sf表而形成石墨烯层。采用该方法可以获得大而积的单层石墨烯,并目_质量较高。然而,由于单晶Sf的价格昂贵,生长条件苛刻,并目_生长出来的石墨烯难于转移,因此该方法制备的石墨烯主要用于以Sf为衬底的石墨烯器件的研究。

CVD法:利用甲烷等含碳化合物作为碳源,通过其在基体表而的高温分解生长石墨烯。从生长机理上主要可以分为两种(图1所示)渗碳析碳机制:对于镍等具有较高溶碳量的金属基体,碳源裂解产生的碳原子在高温时渗入金属基体内,在降温时再从其内部析出成核,进而生长成石墨烯;( 2)表而生长机制:对于铜等具有较低溶碳量的金属基体,高温下气态碳源裂解生成的碳原子吸附于金属

表而,进而成核生长成“石墨烯岛”,并通过“石墨烯岛”的二维长大合并得到连续的石墨烯薄膜。由于cvv方法制备石墨烯简单易行,所得石墨烯质量很高,可实现大而积生长,而目_较易于转移到各种基体上使用,因此该方法被广泛用于制备石墨烯晶体管和透明导电薄膜,目前已逐渐成为制备高质量石墨烯的主要方法。

3石墨烯的CVD法制备

cvv方法是上世纪60年代发展起来的一种制备高纯度、高性能固体材料的化学过程,甲一期主要用于合金刀具的表而改性,后来被广泛应用于半导体工业中薄膜的制备,如多晶硅和氧化硅膜的沉积。近年来,各种纳米材料尤其是碳纳米管、氧化锌纳米结构、氮化稼纳米线等的制备,进一步推动了cvv方法的发展}‘9]。

CVD法制备石墨烯旱在20世纪70年代就有报道} zo-z i,当时

主要采用单晶Ni作为基体,但所制备出的石墨烯主要采用表而科学的方法表征,其质量和连续性等都不清楚。随后,人们采用单晶C <}, PG PcI, It; Ru等基体}22]在低压和超高真空中也实现了石墨烯的制备。但直到2009年初,麻省理工学院的J K one研究组}23]与韩国成均馆大学的I3. H.H one研究组}za]才利用沉积有多晶Ni膜的硅片作为基体制备出大而积少层石墨烯,并将石墨烯成功地从基体上完整地转移下来,从而掀起了CVD法制备石墨烯的热潮。

石墨烯的CVD生长主要涉及二个方而:碳源、生长基体和生长条件(气压、载气、温度等)。

碳源:目前生长石墨烯的碳源主要是烃类气体,如甲烷(CH4)、乙烯(C2H4)、乙炔(C2H2})等。最近,也有报道使用固体碳源sc生长石墨烯。选择碳源需要考虑的因素主要有烃类气体的分解温度、分解速度和分解产物等。碳源的选择在很大程度上决定了生长温度,采用等离子体辅助等方法也可降低石墨烯的生长温度。

生长基体:目前使用的生长基体主要包括金属箔或特定基体上的金属薄膜。金属主要有Ni,Cu,Ru以及合金等,选择的主要依据有金属的熔点、溶碳量以及是否有稳定的金属碳化物等。这些因素决定了石墨烯的生长温度、生长机制和使用的载气类型。另外,金属的晶体类型和晶体取向也会影响石墨烯的生长质量。除金属基体外,MgO等金属氧化物最近也被用来生长石墨烯,但所得石墨烯尺寸较小(纳米级),难以实际应用。

生长条件:从气压的角度可分为常压、低压(105Pa-10-3Pa)和超低

压(<10-5Pa);据载气类型不同可分为还原性气体(H2)、惰性气体(Ar.He)以及二者的混合气体;据生长温度不同可分为高温( > 800 0C )、中温( 600 0C-800 0C)和低温(<600 0C ),主要取决于碳源的分解温度。

下而就上述二个方而着重分析一下目前CVD法制备石墨烯的主要进展。

石墨烯的CVD法制备最旱采用多晶Ni膜作为牛长基体。麻省理工学院的J K one研究组}z{通过电子束沉积的方法,在硅片表而沉积500 nm的多晶Ni膜作为生长基体,利用CHa为碳源, H,为载气

的CVD法生长石墨烯,生长温度为900 0C1000 0C。韩国成均馆大学的B.H.H one研究组}za{采用类似的CVD法生长石墨烯:生长基体为电子束沉积的300 nm的Ni膜,碳源为CH4,生长温度为1000 0C,载气为H}和A:的混合气,降温速度为10 0C /、图2为采用该生长条件制备的石墨烯的形貌图。由于Ni生长石墨烯遵循渗碳析碳生长

机制,因此所得石墨烯的层数分布很大程度上取决于降温速率。采用Ni膜作为基体生长石墨烯具有以下特点:石墨烯的晶粒尺寸较小,层数不均一目_难以控制,在晶界处往往存在较厚的石墨烯,少层石墨烯呈无序堆叠。此外,由于Ni与石墨烯的热膨胀率相差较大,因此降温造成石墨烯的表而含有大量褶皱。

图2 Ni膜上生长的石墨烯(a)300毫米的Ni膜和1毫米的镍铂上生长的石墨烯的SEM照片;(b)转移到300毫米SD2/Si 机体表面的石墨烯的光学显微镜照片,插图给出了石墨烯褶皱的AFM像;(d)与(c)对应的拉曼光谱面扫描图;

图3 铜箔上生长的石墨烯,(a),(b)分别为铜箔上生长的石墨烯的低倍和高倍SEM照片;(c),(d)分别为转移到SD2/Si机体和玻璃表面的石墨烯;

由于采用Ni膜生长的石墨烯存在晶粒尺寸小、在晶界处存在多层石墨烯、层数难以控制等问题,美国德州大学奥斯汀分校的R .s.Ruoff 研究组提出了利用Cu箔生长单层为主的大而积石墨烯。他们采用CH4为碳源,用25微米厚的铜箔制备出尺寸可达厘米级的石墨烯(图3)。与Ni不同,Cu具有较低的溶碳量,石墨烯的生长遵循表而生长机制,所得石墨烯中单层石墨烯的含量达百分之95以上,其余为双层和二层石墨烯。他们还发现,单层石墨烯具有大的晶粒尺寸,并可以连续地跨过铜箔表而的台阶和晶界,而其中双层和二层石墨烯的尺寸不会随反应时间的延长而增大。韩国成均馆大学的B.H.H one研究组进一步发展了该方法,他们利用铜箔柔韧可卷曲的特点,将30英寸的铜箔通过卷曲的方式放置到直径为8英寸的CVD反应炉中,结合热释放胶带的连续滚压转移方法制备出30英寸的石墨烯膜,其透光率可达97. 4%,非常接近于单层石墨烯的百分之97.7。目前大部分以Cu为基体生长石墨烯的研究,均采用压用了低压(50Pa-5KPa)条件,温度在900℃以上,基体为较高纯度的Cu箔(纯度>99% ),载气为还原气体H2。采用该方法制备石墨烯,由于具有可控性好、铜箔价格低廉及易于转移和规模化制备等优点,有望在透明导电薄膜应用方而首先取得突破。

由于低压CVD对反应设备及体系压力要求高,一定程度上限制了石墨烯的低成本、规模化生产。最近,中国科学院金属研究所的成会明、任文才研究组和麻省理工学院的J K one研究组提出了利用铜箔作为基体的常压CVD法制备石墨烯,并发现通过调节载气的成分,

可以有效地提高石墨烯的质量。图4是常压条件下在铜箔基体上生长的石墨烯。可以发现,通过降低生长过程中还原气体H,的比例,能够有效减少石墨烯岛的数量,显著加快石墨烯的生长速度和提高石墨烯的质量。在不添加H,的条件下,石墨烯的生长可在1 m in之内完成,并目_制备出的石墨烯薄膜在550 nm时的透光率为96.3%,平均表而电阻小于350欧姆/口,除最近报道的采用改进转移方法及HNO,掺杂得到的超大石墨烯薄膜外}川,该结果优于采用Ni为基体的常压CVD以及采用Cu为基体的低压CVD制备的石墨烯薄膜的性能。他们认为:一方而,H,的存在可有效抑制甲烷的分解,进而影响石墨烯的成核、最初形成的石墨烯岛的数量以及最终得到的石墨烯薄膜中不同石墨烯岛间连接形成的缺陷的数量;另一方而,高温时溶入的H,在降温过程中会释放,进一步加剧了石墨烯褶皱的生成。总之,采用Cu 基体生长石墨烯,目前仍然是生长均匀单层石墨烯的最佳方法,对石墨烯的应用研究起到了极大的推动作用。

图4 常压下在铜箔上生长的石墨烯(a)转移到SD2/S表面的石墨烯(不添加氢气的条件下制备);(b)石墨烯的拉曼光谱(不同载气成分配比下制备,图中数字代表H2流量/总气流量);(c)石墨烯的光学照片(150ml/m in H2/150ml/m in Ar条件下制备);(d)石墨烯的光学照片(不添加氢气的条件下制备)

为了深入理解Cu上生长的石墨烯的质量,美国阿贡国家实验室的N.P.GuisinGeR研究组近期研究在Cu( 111)单晶表而生长的石墨烯的形貌。他们采用C2H4为生成碳源,度为1000 0C,生长气压为10-3Pa、研究结果表明:石墨烯的生长始于大量离散的单晶石墨烯岛,随着生长过程的进行,这些石墨烯岛逐渐长大,并最终相勺_连接成连续的石墨烯薄膜。这种生长模式是典型的表而生长过程,与在多晶铜箔上采用同位素标记的方法研究得到的结论相同。图5给出了在单

晶Cu基片上生长的石墨烯的扫描隧道显微镜(STM)表征结果。对莫尔条纹和原子分辨率的STM像分析表明,形核在Cu单晶上的单晶石墨烯岛具有不同的晶体取向,从而导致片层的结合处形成线缺陷。这类似于二维材料中的晶界结构,因此有学者将此类石墨烯称为“多晶石墨烯。从提高石墨烯质量的角度来说,进一步改进制备方法以增大单晶石墨烯岛的尺寸和减少晶界结构,具有极为重要的意义。

图5 C基体上生长的多晶石墨烯.(a)晶界处的STM像,晶界两侧表现出不同的莫尔条纹;(b)晶界处原子分辨率的STM像,给出了石墨烯的蜂窝结构;(c)观察到最多的周期为~6.6mm的Cu(111)表面上石墨烯莫尔条纹;(d)周期为~2.0mm的Cu(111)表面上石墨烯的莫尔条纹。

相比于表而生长机制,目前的渗碳析碳机制在制备单晶石墨烯方而更具优势。中国科学院物理研究所的高鸿钧研究,采用单晶R u ( 0001)作为基体,在超高真空(10-7Pa)和1000℃的生长条件

下,制备出毫米级的单晶石墨烯(图6)。由于单晶Ru中存在固溶碳,因此该研究仅利用了析碳过程生长石墨烯。但因该方法需要采用昂贵的单晶金属作为基体,而目_石墨烯与基体的结合较强,难以转移,从而限制了该方法的进一步应用。

图6 Ru(0001)表面上生长的单晶石墨烯的STM像.(a)跨过Ru (0001)表面台阶的原子级的平整的石墨烯;(b)由石墨烯和Ru机体叠加形成的六角摩尔条纹像;(c)摩尔条纹的晶胞的原子分辨率的STM像尽管CVD法制备石墨烯的研究时间很短,但其匕速的发展使笔者可以大胆预测:CVD法制备的石墨烯在未来两二年内很有可能获得应用。然而,采用CVD法制备高质量石墨烯的工作才刚刚起步。虽然目前CVD石墨烯的质量较高,有望满足在透明导电薄膜等方而的应用要求,但是对电子器件而言,与硅材料相比,现有的CVD法制备的石烯在电子迁移率等方而并不具有显著优势。因此,基于CVD方法的大而积、高质量单晶石墨烯的制备有可能成为近期的研究热点。此外,如何实现石墨烯带以及石墨烯宏观体的制备,进而扩展石墨烯的性能和应用;如何实现石墨烯在聚合物等基体上的低温生长等,也是CVD 方法的未来发展方向。

4石墨烯的转移技术

石墨烯的转移技术是指根据研究的需要,将石墨烯在不同基体之

间转移的方法,通常是将石墨烯从制备基体转移到目标基体之上。由于一般需要将石墨烯放置在特定的基体上进行表征、物性测量以及应用研究,因此石墨烯转移技术的研究在一定程度上决定了石墨烯的发展前景。从某种意义上讲,石墨烯的发现正是得益于石墨烯转移技术的发明,即把石墨烯从胶带转移到硅片上。

石墨烯与金属基体间的电荷转移,掩盖了石墨烯的本征性能。在上世纪}o年代用过渡族金属生长单层石墨的研究中,由于没有将生长出的单层石墨转移下来,因此其奇特的性能一直未被发现。如果当时能够从金属基体上将石墨烯转移下来,那么石墨烯的发现或许会提前30年。近期CVD方法制备石墨烯的快速发展与石墨烯转移技术的发展息息相关。

理想的石墨烯转移技术应具有如下特点:( 1)保证石墨烯在转移后结构完整、无破损;(2)对石墨烯无污染(包括掺杂);( 3)工艺稳定、可靠,并具有高的适用性。对于仅有原子级或者数纳米厚度的石墨烯而言,由于其宏观强度低,转移过程中极易破损,因此与初始基体的无损分离是转移过程所必须角Y决的首要问题。

“腐蚀基体法”是解决上述问题的一个有效方法,它最初被用于转移胶带剥离法制备的石墨烯,即将石墨烯从硅片表而转移到其他基体上。如图7所-小,as,,研究者使用聚甲基丙烯酸甲酷(PMMA)作为转移介质,lm o 1/L的N }H作为腐蚀液,腐蚀温度为90 0C,在把粘附有石墨烯的}VI M A薄膜从原始硅基底上分离后,室温下将其粘贴到目标基体上,最后利用丙酮清洗掉VIMA,实现了石墨烯的转移。

图7( b), ( c)分别是转移前后的石墨烯样品的光学显微镜照片。可以看到,转移前后石墨烯的形貌并未发生很大变化,石墨烯基本可以完整地从硅片表而转移到另一个硅片表而。该方法由于使用了转移

介质(即}VI M A薄膜),确保了其转移的可靠性和

4石墨烯的转移技术

石墨烯的转移技术是指根据研究的需要,将石墨烯在不同基体之间转移的方法,通常是将石墨烯从制备基体转移到目标基体之上。由于一般需要将石墨烯放置在特定的基体上进行表征、物性测量以及应用研究,因此石墨烯转移技术的研究在一定程度上决定了石墨烯的发展前景。从某种意义上讲,石墨烯的发现正是得益于石墨烯转移技术的发明,即把石墨烯从胶带转移到硅片上。

石墨烯与金属基体间的电荷转移,掩盖了石墨烯的本征性能。在上世纪70年代用过渡族金属生长单层石墨的研究中,由于没有将生长出的单层石墨转移下来,因此其奇特的性能一直未被发现。如果当时能够从金属基体上将石墨烯转移下来,那么石墨烯的发现或许会提前30年。近期CVD方法制备石墨烯的快速发展与石墨烯转移技术的发展息息相关。

理想的石墨烯转移技术应具有如下特点:( 1)保证石墨烯在转移后结构完整、无破损;(2)对石墨烯无污染(包括掺杂);( 3)工艺稳定、可靠,并具有高的适用性。对于仅有原子级或者数纳米厚度的石墨烯而言,由于其宏观强度低,转移过程中极易破损,因此与初始基体的无损分离是转移过程所必须角Y决的首要问题。

“腐蚀基体法”是解决上述问题的一个有效方法,它最初被用于转移胶带剥离法制备的石墨烯,即将石墨烯从硅片表而转移到其他基体上。如图7所小,as,,研究者使用聚甲基丙烯酸甲酷(PMMA)作为

转移介质,lm o 1/L的N }H作为腐蚀液,腐蚀温度为90 0C,在把粘附有石墨烯的}VI M A薄膜从原始硅基底上分离后,室温下将其粘贴到目标基体上,最后利用丙酮清洗掉}VIMA,实现了石墨烯的转移。图7( b), ( c)分别是转移前后的石墨烯样品的光学显微镜照片。可以看到,转移前后石墨烯的形貌并未发生很大变化,石墨烯基本可以完整地从硅片表而转移到另一个硅片表而。该方法由于使用了转移

介质(即}VI M A薄膜),确保了其转移的可靠性和稳定性,之后被广泛用于转移CVD石墨烯。

图8是腐蚀基体法转移CVD生长石墨烯的示意图。首先,利用旋涂、滚压等方法在石墨烯上涂覆转移介质,如即PMMA,聚二甲基硅氧烷(PDM S),胶带等。然后,将带有转移介质和石墨烯的金属基片放入合适的腐蚀液中将金属腐蚀掉,得到漂浮在溶液表而的转移介质墨烯的薄膜。选用的腐蚀液有Fecl3溶液(腐蚀金属Cu等)、酸溶液(腐蚀金属N得)、碱溶液(腐蚀硅片)等。随后,将转移介质石墨烯的薄膜从腐蚀液中捞出,清洗后,粘贴到日标基体上。为了表征石墨烯的结构和制作电子器件,通常需要将石墨烯放置在硅片上;而为了测试石墨烯的透光性,需要将其放置在玻璃等透明基体上;为了透射电子显微镜观察,则需将之放置在微栅上;而如要制作石墨烯柔性透明导电薄膜,则需要将石墨烯放置在聚对苯二甲酸乙二醇酷( PET)等柔性透

明基体上。最后,将转移介质用适当的方式去除,从而实现CVD石墨烯到日标基体的转移。PVIMA可以采用高温热分解或者有机溶剂清洗去除,PDMS可直接揭下,而胶带则需根据具体类型采用不同方法去除。

以硅片表而沉积的Ni膜为基体,可以通过CVD方法生长出少层的石墨烯腐蚀基体法首先在转移此类CVD生长的石墨烯方而取得了成功。然而,使用FVI M A薄膜作为转移介质的工艺流程较为复杂,并目_由于涂覆的PVI M A薄膜的厚度小(~300nm )、易于破损,因此在转移大而积石墨烯时具有局限性。美国德州大学奥斯汀分校的R.S.Ruoff研究组在利用PVI M A转移Cu箔生长的石墨烯时发现,由于CVD生长的石墨烯复制了Cu箔表而的台阶状结构,加之PVI M A 具有一定强度和硬度,转移过程中PVI M A表而上起伏的石墨烯难以与平整的硅片充分接触,可导致裂痕等缺陷。因此他

们采用二次溶解的方法将转移到硅片后的FVI M A薄膜用原溶液重溶,以促进石墨烯与硅片的接触,从而减少了石墨烯的破损}30。此外,韩国成均馆大学的B.H.Hone研究组开展了采用PDM S薄片作为转移介质的研究工作。如图9所示,他们首先将制作好有PDM S的生长有石墨烯的Ni基体放入腐蚀液中(Fecl3溶液或者酸溶液)。腐蚀完成后,带有石墨烯的PDM S片会漂浮在液而上。用水清洗PDM S片后,将其粘贴在日标基体上,静置去除气泡后再揭下PDM即可将石墨烯转移到目标基体之上。这种方法利用了PDM S与常见材料的结合力非常小的特性,可以将石墨烯转移到多种基体上,如硅片、玻璃、PET等。

石墨烯的制备方法与应用

石墨烯的制备方法与应用 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的热潮。关键字: 石墨烯, 制备, 应用,氧化石墨烯,传感器 石墨烯的定义 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。 石墨烯的结构 完美的石墨烯是二维的, 它只包括六角元胞(等角六边形)。 如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯; 可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。 每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。 每个碳原子贡献一个多余p电子,垂直于graphene平面,形成未成键的π电子——良好的导电性。 石墨烯的性能 最薄——只有一个原子厚 强度最高——美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。 没有能隙——良好的半导体 良好的导热性 热稳定性——优于石墨 较大的比表面积 优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予

化学气相沉积法制备石墨烯材料

化学气相沉积法新材料的制备 1 化学气相沉积法 化学气相沉积(CVD)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。 1.1 化学气相沉积法的原理 化学气相沉积法是利用气相反应,在高温、等离子或激光辅助灯条件下,控制反应器呀、气流速率、基板材料温度等因素,从而控制纳米微粒薄膜的成核生长过程;或者通过薄膜后处理,控制非晶薄膜的晶化过程,从而或得纳米结构的薄膜材料。 CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,同时让高熔点物质可以在较低温度下制备。 1.2 分类 用化学气相沉积法可以制备各种薄膜材料,包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件—基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜才来。 通过反应类型或者压力来分类,可以将化学气相沉积法分为:低压CVD(LPCVD),常压CVD(APCVD),亚常压CVD(SACVD),超高真空CVD(UHCVD),等离子体增强CVD(PECVD),高密度等离子体CVD(HDPCVD)以及快热CVD(RTCVD),以及金属有机物CVD(MOCVD) 化学气相沉积的化学反应形式,主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。具体表现如下表: 表1-1 化学气相沉积的各种反应形式

石墨烯在催化方面的应用

石墨烯在催化方面的应用 1、石墨烯纳米光催化复合材料的研究 纳米材料被认为是“二十一世纪最有前途的材料”。石墨烯是一种由单层碳原子紧密排列成的二维蜂窝状晶格结构的纳米材料,由于它具有特殊的纳米结构以及优异的性能,石墨烯的复合材料已在电子学、光学、磁学、生物医学、催化等诸多领域显示出了巨大的应用潜能。光催化技术具有工艺简单,能耗低,操作条件容易控制和降解彻底的特点,被认为是具有良好发展前景的环保新技术。以光催化剂/石墨烯纳米复合材料为研究对象,通过不同的复合工艺,制备了三种石墨烯纳米复合材料。 1)以天然鳞片石墨为原料,采用Hummers法制备氧化石墨,并用热剥离成石墨烯,或者利用超声波分散剥离为氧化石墨烯,再化学还原成石墨烯。 2)二氧化钛/石墨烯纳米复合材料,二氧化钛和石墨烯复合效果较好。 3)以氧化石墨烯为基体,醋酸锌为锌源,采用溶胶法制备了氧化锌/石墨烯纳米复合材料。 研究发现了石墨烯的光催化性能,结果表明石墨烯/氧化锌有较高的催化效率,可以测定复合材料的荧光效应。 2、石墨烯负载Pt催化剂的催化氧化发光性能 Pt纳米颗粒可以很好地分散在石墨烯表面,因此合成了石墨

烯负载Pt纳米颗粒的Pt/石墨烯催化剂.并有较快的催化反应速率,Pt颗粒越小催化发光强度越大。当不同Pt负载量(0.4%-1.6%(w,质量分数)的催化剂作用于40%(φ,体积分数)以下浓度的CO/空气体系时,产生的催化发光强度均与CO浓度成正比。该催化剂在一定条件下,不但对CO氧化有较好的催化发光性能,还对乙醚、无水甲醇和甲苯有不同程度的催化氧化发光活性;但二氧化碳、甲醛、戊二醛、丙酮、乙酸乙酯、三氯甲烷、水蒸气均无响应信号。 3、与传统的Pd/Vulcan XC-72相比,Pd/石墨烯催化剂对碱性介质中乙醇电氧化的催化活性有了极大的提高,石墨烯-SnO2复合物(SnO2-GNS)可以负载高分散的Pd作为纳米颗粒催化剂,电化学测试表明,与Pd/石墨烯(Pd/GNS)相比,Pd/SnO2-GNS 催化剂对乙醇电氧化的催化活性有了很大的提高。当加入的前驱盐SnCl2·2H2O与氧化石墨的质量比为1:2时,Pd/SnO2-GNS催化剂获得最好的催化活性。 4、用石墨烯(G)代替Vulcan XC-72炭(XC)作Ir的载体制备石墨烯载Ir(Ir/G)催化剂.电化学的测量结果表明,Ir/G催化剂对氨氧化的电催化性能优于XC炭载Ir(Ir/XC)催化剂。 5、利用溶胶-凝胶法原位制备了二氧化钛/石墨烯(TiO2-GE)复合光催化剂,研究了纯TiO2以及不同方法制备的TiO2-GE复合光催化剂对亚甲基蓝及罗丹明B光催化降解性能.结果表明:石墨烯的引入提高了TiO2的光催活性,这主要是得益于石墨烯优

电化学法制备石墨烯

电化学法制备石墨烯 石墨烯(Graphene,GN)是由sp2杂化C原子组成的具有蜂窝状六边形结构的二维平面晶体。石墨烯独特的结构特征使其具有优异的物理、化学和机械等性能,在晶体管太阳能电池传感器、锂离子电池、超级电容器、导热散热材料、电发热膜、场发射和催化剂载体等领域有着良好的应用前景。石墨烯的制备方法对其品质和性能有很大影响,低成本、高品质、大批量的制备技术是石墨烯能得到广泛应用的关键。现有制备石墨烯的方法有很多,包括机械剥离石墨法、液相剥离法、溶剂热合成法、化学气相沉积法、外延生长法和电化学法等。其中,电化学方法因其成本低、操作简单、对环境友好、条件温和等优点而越来越受到人们的关注。据最新研究报道,通过电化学方法制备的石墨烯可以达到克量级,这为石墨烯的工业化生产带来了曙光。 电化学制备技术则是通过电流作用进行物质的氧化或还原,不需要使用氧化剂或还原剂而达到制备与提纯材料的目的,具有生产工艺简单、成本低、清洁环保等优点,已在冶金、有机与聚合物合成、无机材料制备等方面得到广泛应用。而且通过电化学电场作用,可以实现外在电解液离子(分子)对一些层状材料的插入,如锂离子电池石墨负极充电时就是锂离子在石墨层间的插入及石墨层间化合物的电化学制备。根据电化学原理主要有两种路线制备石墨。 1、通过电化学氧化石墨电极可得氧化石墨烯,再通过电化学还原以实 现电化学或化学氧化的氧化石墨烯的还原而得到石墨烯材料。 2、采用类似液相剥离,但施以电场力作用驱动电解液分子以电化学方式直接对石墨阴极进行插层,使石墨层间距变大,层间范德华力变弱,以非氧化方式直接对石墨片层进行电化学剥离制备得到石墨烯。 电化学法制备石墨烯的优势主要为:1)与普通化学氧化还原法相比,不需要用到强氧化剂、强还原剂及有毒试剂,成本低,清洁环保;2)通过电化学方式,在氧化时可以更多地以离子插入方式剥离而减少氧化程度降低对石墨烯结构的破坏,电化学还原时则能更彻底还原,因此制得的石墨烯具有更好的物理化学性质;3)以石墨工作电极为阴极进行非氧化直接剥离时,石墨片层结构没有受到破坏,可以得到与液相或机械剥离法一样高品质的石墨烯片,但因为电化学的强电场作用,比单纯的溶剂表面作用力或超声作用力要大得多,剥离的效率更高,与液相或机械剥离法相比,电化学剥离易实现高品质石墨烯批量制备;4)电化学制备过程中,电流与电压很容易精确控制,因此容易实现石墨烯的可控制备与性能调控,而且电化学法工艺过程与设备简单,容易操作控制;5)与CVD 及有机合成法相比,电化学法采用石墨为原料,我国石墨产量居世界前列,原料丰富成本低廉,不需要用到烯类等需大量进口的高价石化原料。 一、石墨阳极氧化剥离制备石墨烯 阳极氧化剥离制备石墨烯就是将石墨作为阳极,电源在工作时电解质中的阴离子向阳极移,进而进入阳极石墨导致石墨被插层而体积膨胀,当阳极石墨的体积增加到一定程度时,就会由于层间范德华作用力的减小而最终从块体上脱落下来,形成层状具有一定含氧官能团的石墨烯或氧化石墨烯(包括单层和2~10层的少层氧化石墨烯)。石墨由于电化学氧化和酸性阴离子的插层导致表面体积剧烈膨胀,这种现象在很早之前就有报道。近年来提出了电化学法阳极氧化石墨制备石墨烯的机理,在进行电化学反应时电解液中的阴离子会向阳极迁移,由于石

电化学法制备石墨烯及其导电特性

Vol.33高等学校化学学报No.82012年8月 CHEMICAL JOURNAL OF CHINESE UNIVERSITIES 1804~1808电化学法制备石墨烯及其导电特性 朱龙秀,李英芝,赵 昕,张清华 (东华大学材料科学与工程学院,纤维材料改性国家重点实验室,上海200051) 摘要 采用电化学方法将石墨层电解剥离,得到分散于电解质溶液的结构较为完整的石墨烯.用透射电子显微镜和拉曼光谱分析了石墨烯的形貌和结构,利用四探针法测定了石墨烯导电特性.实验数据和理论拟合结果表明,当100K

石墨烯的应用领域

第二章石墨烯应用领域 石墨烯因其独特的电学性能、力学性能、热性能、光学性能和高比表面积,近年来受到化学、物理、材料、能源、环境等领域的极大重视,应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。具体在五个应用领域:一是储能领域。石墨烯可用于制造超级电容器、超级锂电池等。二是光电器件领域。石墨烯可用于制造太阳能电池、晶体管、电脑芯片、触摸屏、电子纸等。三是材料领域。石墨烯可作为新的添加剂,用于制造新型涂料以及制作防静电材料。四是生物医药领域。石墨烯良好的阻隔性能和生物相容性,可用于药物载体、生物诊断、荧光成像、生物监测等。五是散热领域。石墨烯散热薄膜可广泛应用于超薄大功耗电子产品,比如当前全球热销的智能手机、IPAD 电脑、半导体照明和液晶电视等。 中国科学院预计,到2024年前后,石墨烯器件有望替代互补金属氧化物半导体(CMOS)器件,在纳米电子器件、光电化学电池、超轻型飞机材料等研究领域得到应用。目前,全球范围内仅电子行业每年需消耗大约2500吨半导体晶硅,纯石墨烯的市场价格约为人民币1000元/g ,其若能替代晶硅市场份额的10%,就可以获得5000亿元以上的经济利益;全球每年对负极材料的需求量在2.5万吨以上,并保持了20%以上的增长,石墨烯若能作为负极材料获得锂离子电池市场份额的10%,就可以获得2500吨的市场规模。可见,石墨烯具有广阔的应用空间和巨大的经济效益。

正是在这一背景下,目前国内外对石墨烯技术的应用研究如火如荼,具体应用如下: 2.1 石墨烯锂离子电池 锂离子电池具有容量大、循环寿命长、无记忆性等优点,目前已成为全球消费类电子产品的首选电池以及新能源汽车的主流电池。高能量密度、快速充电是锂电池产品发展的必然趋势,在正极材料中添加导电剂是一种有效改善锂电性能的途径,可大大增加正负极的导电性能、提高电池体积能量密度、降低电阻,增加锂离子脱嵌及嵌入速度,显著提升电池的倍率充放电等性能,提高电动车的快充性能。 所谓石墨烯电池并非整个电池都用石墨烯材料制作,而是在电池的电

石墨烯的化学气相沉积法制备_图文(精)

收稿日期:2010 12 31; 修回日期:2011 02 14 基金项目:国家自然科学基金(50872136,50972147,50921004、中国科学院知识创新项目(K J CX 2 YW 231. 通讯作者:任文才,研究员.E m ai:l w cren@i m r .ac .cn;成会明,研究员.E m ai:l chen g @i m r .ac .cn ;高力波.E m ai:l l bgao @i m r .ac .cn 作者简介:任文才(1973-,男,山东东营人,博士,研究员,主要研究方向为石墨烯和碳纳米管的制备、物性和应用. E m ai:l w cren @i m r .ac .cn 文章编号: 1007 8827(201101 0071 10 石墨烯的化学气相沉积法制备 任文才, 高力波, 马来鹏, 成会明 (中国科学院金属研究所沈阳材料科学国家(联合实验室,辽宁沈阳110016 摘要: 化学气相沉积(CVD 法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、S i C 外延生长法和CV D 方法的原理和特点,重点从结构控制、质量提高以及大面积生长等方面评述了CV D 法制备石墨烯及其转移技术的研究进展,并展望了未来CVD 法制备石墨烯的可能发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与无损转移等。关键词: 石墨烯;制备;化学气相沉积法;转移中图分类号: TQ 127.1+1 文献标识码: A 1 前言 自从1985年富勒烯[1] 和1991年碳纳米管[2]

石墨烯的制备及电化学性能研究

目录 摘要............................................................................................................................ I Abstract ......................................................................................................................... I I 1 引言 (1) 1.1 石墨烯的制备 (2) 1.1.1 机械剥离法 (2) 1.1.2 电化学剥离法 (2) 1.1.3 化学气相沉积法 (3) 1.2 石墨烯电极材料的制备 (5) 1.3 石墨烯电极材料电化学性能测试 (5) 2 实验部分 (6) 2.1 实验试剂 (6) 2.2 实验仪器 (6) 2.3 RHAC和GQDs的制备 (6) 2.4 RHAC-GQDs的制备 (6) 2.5 电极制备和电池组装 (7) 3 结果和讨论 (8) 3.1 分析了RHAC的比表面积和孔隙结构 (8) 3.2 GQDs的拉曼光谱和荧光光谱分析 (8) 3.3 红外光谱分析 (8) 3.4 XRD分析 (8) 3.5 扫描电镜分析 (9) 3.6 循环伏安法测试分析 (9) 3.7 恒流充放电试验分析 (9) 3.8 电化学阻抗分析 (10) 4 结论与展望 (12) 4.1 结论 (12) 4.2 主要创新点 (12) 4.3 展望 (12) 参考文献 (13) 致谢............................................................................................ 错误!未定义书签。

hummers法制备石墨烯

主要原材料:石墨粉(粒度小于30μm的粒子。含量大于95%,碳含量%), 浓硫酸(95%—98%),高锰酸钾,硝酸钠,双氧水30%,盐酸,氯化钡,水合肼80% 氧化石墨(GO)的制备 采用Hummers 方法[12]制备氧化石墨。具体的工艺流程:在冰水浴中装配好250 mL 的反应瓶,加入适量的浓硫酸,搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物,再分次加入6 g 高锰酸钾,控制反应温度不超过20℃,搅拌反应一段时间,然后升温到35℃左右,继续搅拌30 min,再缓慢加入一定量的去离子水,续拌20 min 后,并加入适量双氧水还原残留的氧化剂,使溶液变为亮黄色。趁热过滤,并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥,保存备用。 石墨烯的制备 将100 mg 氧化石墨分散于100 g 水溶液中,得到棕黄色的悬浮液,再在超声条件下分散1 h,得到稳定的分散液。然后移入四口烧瓶中,升温至80℃,滴加2 mL 的水合肼,在此条件下反应24 h 后过滤,将得到的产物依次用甲醇和水冲洗多次,再在60℃的真空干燥箱中充分干燥,保存备用。 具体实验步骤: 一:氧化石墨烯的制备 1:一只大烧杯250Ml,里面放冰块,提供冰水浴 " 2:用试管量取23mlH2SO4,再用电子天平称取1g石墨,硝酸钠,3g高锰酸钾 3:用镊子企业一直转自放到锥形瓶,之后把浓硫酸轻轻倒入锥形瓶,然后放到电磁搅拌器中。 4:将石墨和硝酸钠混合加入锥形瓶,搅拌反应三分钟,然后将高锰酸钾加入锥形瓶 5:控制温度小于20℃,搅拌反应2个小时 6:升温至35℃,继续搅拌30分钟 7:将水和蒸馏水配置46mL的去离子水(14摄氏度) 8反应到30分钟后,将去离子水加入锥形瓶,然后将温度升高至98℃,持续加热20min,溶液呈棕黄色,冒出红烟 9:取出5g双氧水(30%),加入锥形瓶 10:取下锥形瓶趁热过滤,并用HCL和去离子水洗涤,待剩余固体在滤纸稳定后,用镊子把滤纸取出,再用一块干净的滤纸衬在底部,一块放到60℃的干燥箱中充分干燥。 二:石墨烯的制备 1:干燥后的氧化石墨烯,取出100mg分散于100g水溶液中,得到棕黄色悬浮液 @ 2:把悬浮液放到超声波洗涤箱中,在超声波条件分散1小时 3:取出溶液放到四口烧杯中,升温到80℃,再滴加20ml水合肼,反应24小时过滤 4:得到的产物以此用甲醇和水冲洗 5:得到的固体在60℃干燥箱中充分干燥,保存备用。 三:实验原材料的作用 浓硫酸:强质子酸,进入石墨层间。高锰酸钾:强氧化剂氧化,生成氧化石墨(GO)经过超声剥离得到氧化石墨烯。水合肼:还原剂,出去氧化石墨烯表面的含氧官能团,得到石墨烯。硝酸钠:在强酸环境下,硝酸根具有强氧化性。双氧水:除去氧化中多余的高锰酸钾,氧化成2价锰离子除去。稀盐酸:洗去其中的金属离子,硫酸根离子,氯化钡:检测其中的硫酸

利用CVD化学气相沉积法制备石墨烯的研

厦门工学院 本科生毕业设计(论文) 题目:利用CVD化学气象沉积法制备石墨烯的研究姓名:闫建林 学号:1205101033 系别:材料科学与工程系 专业:材料专业 年级:2012级 指导教师:杨凤娟 2016 年月日

独创性声明 本毕业设计(论文)是我个人在导师指导下完成的。文中引用他人研究成果的部分已在标注中说明;其他同志对本设计(论文)的启发和贡献均已在谢辞中体现;其它内容及成果为本人独立完成。特此声明。 论文作者签名:日期: 关于论文使用授权的说明 本人完全了解厦门工学院有关保留、使用学位论文的规定,即:学院有权保留送交论文的印刷本、复印件和电子版本,允许论文被查阅和借阅;学院可以公布论文的全部或部分内容,可以采用影印、缩印、数字化或其他复制手段保存论文。保密的论文在解密后应遵守此规定。 论文作者签名:指导教师签名:日期:

利用CVD化学气象沉积法制备石墨烯的研究 摘要 石墨烯是最新被研发出来的具有单层二维结构的纳米材料,石墨烯具有许多独特的性质,例如室温下体现出来的反常量子效应、高电子迁移速率、抗热传导率以及良好的机械性能,使其具有广泛的应用空间,2010年诺贝尔物理学奖说明曾指出,由石墨烯这种新型碳材料所引发的全球性的材料革命正在发生着。这就是石墨烯为什么被称为材料界未来之星的原因。但是我们要研究新材料的应用前景就必须从怎样制备出高质量的石墨烯入手,只有制备出具有较高质量的石墨烯,我们才能够对于他的特性进行分析。现在使用的制备石墨烯的主要方法,就是CVD化学气相沉积法,这种方法所生产出来的石墨烯有极大的质量和极大地生长面积。本文内容主要介绍了制备石墨烯的化学气象沉积法,并且通过改变载气氮气和甲烷的浓度,总结出了对于制备出具有质量高、面积大的石墨烯所需要达到的工艺条件和工艺要求,又利用氧化还原法做了对比试验,比较了两种工艺的优点和缺点。并且设想了以后石墨烯的发展方向。 关键词:石墨烯,化学气象沉积,红外光谱,制备,氧化还原法,拉曼光谱,扫描电子显微镜

石墨烯修饰电极电化学性能

石墨烯修饰电极的电化学性能 石墨烯(Graphene>是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是构建零维富勒烯、一维碳纳M管、三维石墨等其他碳质材料的基本单元,具有许多优异而独特的物理、化学和机械性能,在微纳电子器件、光电子器件、新型复合材料以及传感材料等方面有着广泛的应用前景,基于石墨烯的相关研究也成为目前电化学领域的热点研究领域之一。 本论文围绕石墨烯的不同修饰电极条件,结合电化学基础研究,开展了石墨烯及其相关的电化学性能研究。具体内容归纳如下: (1>将石墨烯与具有良好导电性能的聚苯胺(PANI>复合,研究了石墨烯/聚苯胺复合物修饰电极的电化学性能。利用石墨烯与聚苯胺之间电子给体与电子受体的相互作用,实现了聚苯胺在中性甚至强碱性溶液中的电化学活性,并利用红外光谱、拉曼光谱和紫外光谱进行了可能的机理探讨。石墨烯/聚苯胺复合物材料在中性溶液里的电化学活性,在生物传感领域具有可能的应用空间。同时,在不同pH溶液里的电化学活性也为石墨烯/聚苯胺复合物材料在pH传感中提供了可能的应用空间。 (2>将石墨烯与具有电绝缘性能的凡士林混合,研究了石墨烯/凡士林膜电极的电化学性能。循环伏安测试表明:采用10.0 mg/mL、5.0 mg/mL和1.0 mg/mL的石墨烯/凡士林修饰电极可以依次得到常规尺寸电极、亚微尺寸电极和微尺寸的纳M电极阵列,并且通过简单混合所制备的石墨烯/凡士林膜电极具有良好的电化学活性和稳定性。作为新型碳材料的膜电极,石墨烯/凡士林膜电极在基础电化学研究和应用中具有一定的潜在价值。 (3>将石墨烯组装在具有完全电绝缘性能的硫醇自组装膜电极上,研究了石墨烯/硫醇自组装膜电极的电化学性能。交流阻抗数据表明,随着组装时间的增加,石墨烯/硫醇自组装膜电极的电化学阻抗逐渐降低,表明石墨烯在硫醇自组装膜上是一个可控的组装过程。循环伏安测试还表明,石墨烯的组装时间是120 min和5 min时,可以分别得到常规尺寸和微尺寸纳M电极阵列的石墨烯/硫醇自组装膜电极,而且对抗坏血酸、多巴胺、尿酸具有较好的电催化活性。同时,为了探讨可能的实验机理,我们讨论了电子传递的可能原因以及影响自组装膜电极双电层结构的两个因素。结果表明随着硫醇中碳链长度的增加,电子传递速率逐渐降低,氧化还原峰电位的差值逐渐增大。不同碳材料的电子转移速率呈现为:石墨烯>多孔碳>石墨。这种采用简单而有效的方法制备的石墨烯/硫醇自组装膜电极,在电化学理论研究和实际应用中具有较好的前景。 超级电容器是一种绿色、新型的储能元件,因为其高效、无污染的优良特性,符合“低碳”经济的发展要求,受到了人们的高度重视。超级电容器的核心是电极材料。 新兴的石墨烯二维单层原子碳材料因具有大的比表面积、优异的导电性、高的机械强度,被认为是理想的超级电容器电极材料。化学方法制备的氧化石墨烯具有良好的成膜性,可用于制备“石墨烯纸”并进而应用于无支撑电极。 此外,氧化石墨烯上丰富的含氧官能团可用于锚定金属纳M粒子,形成石墨烯复合材料。本论文围绕石墨烯薄膜制备、修饰和电化学电容性质开展研究工作,发展了石墨烯/碳纳M管复合薄膜的溶液铸造制备方法,提出了水热还原制备石墨烯基复合薄膜的途径,并研究了所制备材料的电容性能,取得了以下的研究成果:1.利用氧化石墨烯良好的成膜性,通过溶液铸造方法,制备了氧化石墨烯薄膜和氧化石墨烯/碳纳M管复合薄膜。 然后通过200℃退火,得到了相应的石墨烯薄膜、石墨烯/碳纳M管薄膜。这种薄膜通过石墨烯层间相互作用结合,例如π-π堆积,以及范德华力等,因而能够在各种极性电解液中稳定存在。复合薄膜的比电容在70~110 F/g,并且因为其表面仍然存在着部分含氧官能团的作用,显示了一定的赝电容的特性,表明其作为超级电容器电极的潜质。2.通过抽虑法制备了氧化石墨烯/碳纳M管复合薄膜。在水热条件下,氧化石墨烯被水还原并实现自组装,重新构建成具有π-π堆积的网络状三维结

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

比较三种化学方法制备石墨烯

一、利用液氨作为还原剂,还原氧化石墨。 工艺: 1、将60 g的颗粒状天然石墨,硝酸钠30 g加入l0L的双层玻璃反应釜中冷却至0℃;再将2500 mL浓硫酸缓慢加入反应釜中充分搅拌3 0 min,保持反应体系的温度不高于4℃;然后,将180 g高锰酸钾加入反应釜中并充分搅拌60 min,同时保持反应体系温度不高于8℃,此阶段为低温反应。 2、撤走冷浴,用高温恒温循环泵将反应体系加热至35℃,并充分搅拌3h,得到褐色悬浮液,再缓慢加入90 g高锰酸钾反应12h,保持反应体系的温度不高于

40℃,此阶段为中温反应。 3、撤走高温恒温循环泵,用低温冷却循环泵将反应系统温度控制在5℃以下,将7L去离子水缓慢滴加入褐色悬浮液中,体系温度骤然升高,并伴有大量气体生成,稀释的悬浮液在此温度下搅拌60 min。 4、向悬浮液中加入50 mL的H202(30%),室温下搅拌60 min,得到亮黄色氧化石墨 分散液。 5、将上述分散液静置2 h,分层,去除上清液后,加入一定量的去离子水,过滤,得到黄褐色滤饼。用5000 mL稀盐酸(10%)将滤饼洗涤2次后,再分散于5000 mL 去离子水中,过滤,用大量去离子水洗涤至溶液中无氯离子(可用AgN03溶液检测),且接近中性。然后将剩余固体产物在60 ℃的真空干燥箱中干燥24 h,研磨过筛后得到的氧化石墨。 石墨烯的制备 用低温冷却循环泵在一定温度下将高纯氨在密封容器中液化,加入一定量干燥的氧化石墨用超声细胞粉碎机超声剥离1h,将一定量的金属铿放入液氨中,溶液变成蓝色,继续保持超声30 min溶液变黑,停止冷却自然升温使液氨挥发,向得到的黑色固体中加入乙醇超声分散,过滤用去离子水洗涤至中性,真空60℃干燥12h,得到黑色的石墨烯。在其他实验条件相同的条件下,将铿用金属钠和金属钾代替,得到对应的碱金属还原的石墨烯。 小结:采用液氨作为溶剂超声剥离氧化石墨,利用液氨一碱金属强还原性,碱金属进一步插层剥离氧化石墨同时将其还原。实验结果表明,低温的还原体系有效避免了热还原过程中重新团聚的产生,从透射电镜观察得到的石墨烯片层厚度在2-5 nm,红外和XPS证实大部分含氧基团被去除。 还原剂锂不易存放,石墨烯制备时所使用的试剂腐蚀性强。 二、用抗坏血酸(L-AA)(维生素)作还原剂,还原氧化石墨,所得到的是化学还原氧化石墨(CRG) 工艺: 1.在室温下,将30 μm的颗粒状天然石墨2 g,硝酸钠1g加入250 mL三口瓶中冷却至0 ℃;再将_50 mL浓硫酸缓慢加入三口瓶中充分搅拌30 min,并保持反应体系的温度不高于5 ℃;然后,将0.3 g高锰酸钾加入三口瓶中并充分搅拌30 min,同时保持反应体系温度不高于10 ℃;在1h内,再将7g高锰酸钾分3批加入三口瓶中,保持反应体系温度不高于20 ℃,此阶段为低温反应。 2.撤走冷浴,用水浴将反应体系加热至3 5士3 ℃,并充分搅拌2h,得到褐色悬浮液,此阶段为中温反应。 3.将90 mL水缓慢滴加入褐色悬浮液中,体系温度骤然升高至90 ℃,并伴有大量气体生成,稀释的悬浮液在此温度下反应15 min,此阶段对高温反应。 4.向悬浮液中加入H2O2 (30%, 7 mL)与超纯水(55 mL, 45 ℃)的混合溶液, 并得到亮黄色氧化石墨分散液。

网友对hummers法制备氧化石墨烯的讨论

本人新手,我想增加GO的氧化程度让GO变得更小,不知道应该怎么做,从外面买的GO 是溶液状态的。如果用化学方法的话,该怎么继续氧化?我还是想得到溶液态的GO 这个深度氧化的问题我文章中已经进行了阐述,不知道怎么上传,可以参见Formation of carbon nanoparticles from soluble graphene oxide in an aqueous solution 具体氧化方法也有阐述 加倍高锰酸钾用量试过没? 延长反应时间试过没? 用过硫酸钾和五氧化二磷预氧化试过没? 用磷酸和硫酸试过没? 多看点文献说不定会有更好的方法.. 疯狂大功率长时超声 我试过超声,但是好像损失的物质太多 pH很低的,基本测不出来,酸浓度非常高,团聚的原因有可能是因为那个,之前Nature 上不是有个相关的文章发表么,但是我们还不是很确定,最近试验正在考虑这方面内容~ 这个我曾经看过一篇文献,上面讲氧化石墨烯的氧化程度其实是可以提高的,但是不是那种可以无限提高的,好像是KMnO4的量是石墨量的4倍以后就不能够增加了,C:0的比例在1.5-2.5之间 [交流]氧化石墨制备过程的现象与问题 经过文献整理,及在小木虫上和大家的交流,终于自己摸索着进行了石墨烯制备的前期工作,氧化石墨的制备,过程中存在以下一些现象,不知正确与否,在这里和大家交流交流 1 石墨粉在80℃水浴下,预氧化6h,用蒸馏水稀释后,会有气泡冒出,静置一夜后,次日仍有少量气泡,液面上有一层悬浮物,我想可能是没有氧化的石墨粉吧 2 在加入KMnO4后,会有刺激性气味产生,同时也会有褐色气体出现在烧杯壁上,搅拌停止,感觉烧杯内液体似乎有些发青色,这是正常现象么 3 之后恒压滴入250mL蒸馏水,这一步我是在0℃冰浴条件下进行的,发现并没有大量的热产生,可能是0℃冰浴造成的,这样应该是对石墨膨胀的效果影响很大吧,现在感觉应该是在室温下,恒压滴入蒸馏水就可以了

化学气相沉积法合成石墨烯的转移技术研究进展 (1)

化学气相沉积法合成石墨烯的转移技术研究进展 黄 曼1郭云龙2*武 斌2刘云圻2付朝阳1*王 帅1* (1华中科技大学化学与化工学院 武汉 4300742中国科学院化学研究所有机固体重点实验室 北京 100190) 摘 要化学气相沉积(CVD)法合成石墨烯已为人们广泛研究采用。其中,如何将生长的石墨烯材料转移到与各种器件匹配的基底上是十分重要的科学问题。本文从方法、特点和结果等方面综述了由CVD法合成石墨烯的几种主要转移技术的研究进展,并对转移技术的未来做出了展望。 关键词化学气相沉积法 石墨烯 转移技术 Progress in Transfer Techniques of Graphene Synthesized by Chemical Vapor Deposition Huang Man1,Guo Yunlong2*,Wu Bin2,Liu Yunqi2,Fu Chaoyang1*,Wang Shuai1* (1School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074;2Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190) Abstract The growth of graphene by chemical vapour deposition (CVD) is being widely studied. The transfer of graphene grown by CVD onto a substrate for making devices is a very important area of research. In this paper, six main transfer techniques of CVD-grown graphene were analyzed. Also, the advances in the methods, characteristics and results of the transfer techniques of CVD-grown graphene were discussed. Finally, the future of transfer techniques was briefly introduced. Keywords Chemical vapor deposition,Graphene,Transfer techniques 自2004年Geim等[1]发现石墨烯(graphene)以来,石墨烯的研究已为世界各国科学家所高度重视。石墨烯是由单层碳原子紧密堆积而成的二维蜂窝状晶体,同时也是构建不同维度结构碳材料的基本结构单元,它可以卷曲成零维富勒烯、一维碳纳米管和三维石墨[2]。石墨烯作为一种有独特电子性能的理想二维材料,引起了研究者们对于探索凝聚态物理学中的基本问题(例如,量子霍尔效应)以及开发各种应用(例如,透明电极等)的广泛兴趣[1~6]。此外,石墨烯在晶体管、超级电容器和传感器等方面广泛的应用[6~9]也得到了产业界的广泛关注。石墨烯已经成为材料科学、凝聚态物理学及高科技产品生产领域中一颗冉冉升起的“明星”[2]。 可控制备高质量、大面积单层、单晶石墨烯是石墨烯合成的趋势。目前,石墨烯的主要制备方法有机械剥离法[1]、化学剥离法[10,11]、SiC外延生长法[12~14]、化学气相沉积(CVD)法[7,15~17]等。其中,CVD 法是目前获得大面积高质量、层数可控的石墨烯的主要方法。由于Cu极溶碳率低[15],以Cu为基体的CVD法已经发展成迄今为止最具前景的大面积单层石墨烯合成法[18~23]。另外,近年来,科学家们也对无需转移的CVD法合成的石墨烯做了相关研究[24,25],它的突出优点是去除了传统转移 黄 曼女,25岁,硕士,从事石墨烯的制备、表征及性能研究。*联系人,E-mail: cyfu@https://www.sodocs.net/doc/3416947545.html,;samuel19741203@https://www.sodocs.net/doc/3416947545.html,; guoyunlong@https://www.sodocs.net/doc/3416947545.html, 国家自然科学基金项目(51173055)和跨世纪优秀人才和国家青年千人项目资助 2012-03-25收稿,2012-09-25接受

氮掺杂石墨烯作为锂离子电池负极材料的电化学性能

第7卷第6期 413 中国科技论文CHINA SCIENCEPAPER 2012年6月 氮掺杂石墨烯作为锂离子电池负极材料 的电化学性能 高云雷,赵东林,白利忠,张霁明,孔 莹 (北京化工大学碳纤维及功能高分子教育部重点实验室,北京 100029) 摘 要:以天然石墨为原料,通过氧化、快速热膨胀和超声分散制备石墨烯。将氧化石墨与三聚氰胺在氮气下950 ℃反应合成氮掺杂石墨烯。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)以及红外光谱(FTIR)、X射线能谱(XPS)等测试方法对氮掺杂石墨烯的形貌、结构进行分析。结果表明,该方法合成了薄层状氮掺杂石墨烯。 采用恒流充放电和循环伏安法等手段测试氮掺杂石墨烯、石墨烯和天然石墨作为锂离子电池负极材料的电化学性能,比较研究了三者用作锂离子电池负极材料的电化学性能,结果表明氮掺杂石墨烯负极材料具有优异的电化学能和独特的储锂机制。 关键词:氮掺杂石墨烯;石墨烯;锂离子电池;负极材料;电化学性能 中图分类号:O613.71;O646文献标志码:A 文章编号:2095-2783(2012)06-0413-5 Electrochemical performance of nitrogen-doped graphene as anode material for lithium ion batteries Gao Yunlei,Zhao Donglin,Bai Lizhong,Zhang Jiming,Kong Ying (Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China) Abstract: Graphene sheets (GSs) have been prepared from natural flake graphite by oxidation, rapid expansion and ultrasonic treatment. Graphene oxide (GO) was further annealed at the presence of melamine at 950 ℃ and transferred into nitrogen-doped grapheme (N-GSs). The samples were characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Electrochemical performances of nitrogen-doped graphene, graphene and graphite as anode materials for lithium ion batteries were investigated using galvanostatic charge-discharge and cyclic voltammetry methods. It was found that the prepared N-GSs exhibited a relatively higher cycling stability and larger specific capacity compared with the pristine nature graphite and GSs. Cyclic voltammograms results indicate that the higher cycling stability may be associated with more structural defects during cycling. Key words: nitrogen-doped graphene;graphene;lithium ion batteries;anode material;electrochemical properties 收稿日期:2012-02-28 基金项目:国家自然科学基金资助项目(50672004);国家高技术研究发展计划(863计划)资助项目(2008AA03Z513) 作者简介:高云雷(1986-),男,硕士研究生,主要研究方向:锂离子电池负极材料 通信联系人:赵东林,教授,主要研究方向:新型炭材料及其应用,dlzhao@https://www.sodocs.net/doc/3416947545.html,

相关主题