搜档网
当前位置:搜档网 › 基于hypermesh的客车车体有限元分析

基于hypermesh的客车车体有限元分析

基于hypermesh的客车车体有限元分析
基于hypermesh的客车车体有限元分析

基于Hypermesh的客车车身有限元分析

沈兵,靳春宁,胡平

大连理工大学汽车工程学院,大连(116024)

E-mail:279987329@https://www.sodocs.net/doc/3418238101.html,

摘要:有限元方法和理论对现代车身设计具有重要的实际意义。综合现有的建模方案,提出了用壳单元建立有限元模型的方法;针对三种工况,应用有限元软件Hypermesh对模型进行后处理,找出了应力、位移分布情况;对轻量化设计提供了可靠的依据。

关键词:客车车身;壳单元;有限元分析

中图分类号TG404;TH114;TB115

1. 引言

当前国内对客车车身的有限元建模方法大致有三种,即采用梁单元、壳单元和体单元。采用梁单元可使计算量大大降低,但由于简化太多,导致一些关键受力截面无法正确表达,使得可信度不高,很难起到指导作用。采用体单元构建的客车骨架跟现实情况很接近,但建模时间太长,不宜采用。而壳单元弥补了梁单元与体单元的不足,是比较理想的建模方法。本文正是采用壳单元构建了客车车身模型,并按照实际使用条件进行车载负荷计算,对车体进行结构分析。

2.模型的建立

目前UG具有强大的曲面造型功能,在航空和汽车行业应用非常广泛;而Hypermesh 是世界上领先的有限元前后处理软件,它与UG等许多软件都有良好的接口。本文采用UG 对客车车身进行何造型设计,然后在Hypermesh中进行网格划分以及前后处理工作。

车架的实际工况复杂多变,建立有限元模型时对CAD模型的简化是十分必要的。其原则是:最大限度地保留零件的主要力学特征;将小面合并成大面,并且相邻面应共用一条轮廓线,以保证各个面上划分出来的网格在边界处是共用节点,避免在边界处出现节点错开的现象。具体的简化如下:

(1)忽略非承载件。有些部件(如保险杠、踏板支架等)是为了满足构造或使用上的要求而设置的,对于分析车身模态影响很小,这里将其忽略掉。

(2)忽略蒙皮、玻璃等附件。

(3)忽略圆角以及梁截面形状的简化。考虑到圆角对网格计算的来说比较费时,将模型中的圆角忽略掉;本文中梁简化成矩形钢和槽型钢。

图1圆角的忽略

(4)相邻节点的合并。在进行网格划分时把小于一定距离的节点合并,以减小方程的阶

数,改善刚度矩阵的状态和减少数字敏感的可能性。

图2 某客车车身骨架有限元模型

3. 工况分析

客车在实际行驶中,作用在车架上的载荷变化是很大的,其受力是也很复杂的,如弯曲、扭转、制动、转向、单边牵引等。[1]从实践经验看,其中对车身强度影响最大的就是弯曲、扭转和制动三个工况。其它工况对车身强度和使用寿命的影响程度相对较小。

对车架进行静力分析的目的是为了计算其在最大载荷作用下的变形与应力,以便进行强度和刚度的校核。因此,应对车架可能承受的最大载荷进行分析,本文采用 3 种不同工况进行了计算分析。

3.1 弯曲工况

客车在静止时,车架只承受弹簧以上部分的载荷,它是由车架、车身的自身重量、装在车架上各总成与附近的质量所受的重力组成,其总和称为车架的静载荷。汽车在平坦道路上以较高车速行驶时,路面的反作用力使车架承受对称的垂直载荷,它使车架产生弯曲变形,其大小取决于作用在车架上各处的载荷。

弯曲变形是衡量客车车身承载度的一个重要评价方法,用弯曲刚度来表示。所谓弯曲刚度是指车身在垂直下的纵向张力,其表示式为:[2]

222()6W a x L a x EI ly

??=i i (1)

其中,W :集中载荷;

L :轴距;

x :支点到测点的距离;

y :挠度;

a :支点到加载点的距离。

车身应当有足够的弯曲刚度,以保证汽车在行驶时车身的整体变形最小和各部件的相对位置基本保持不变。

根据载荷(包括动力总成,乘客及其他)在客车上的实际分布位置,将其分别施加到有限元模型相应的节点上。约束具体情况是:约束右前悬架支撑点的三个方向的移动自由度,约束左前悬架支撑点的X 、Z 方向的移动自由度,约束右后悬架支撑点的Y 、Z 方向的移动自由度,约束左后悬架支撑点的Z 方向移动自由度。

图3 弯曲工况约束条件

3.2 扭转工况

汽车在凸凹不平的路面的行驶时,汽车的4个车轮可能不在同一平面内,从而使车架连同车身一起倾斜,这种工况使车架承受斜对称载荷,它使车架产生扭转变形。扭转刚度是反映车身抵抗扭转变形的主要参数,扭转刚度的计算方法如下:[3]

(2)T L

K θ=Δi

其中,T :作用在车身上的扭矩;

L :轴距;

△θ:前后轴中心线对应处的相对扭转角。

本文分别考虑右后轮、右前轮被抬高时车身的扭转变形。加载同弯曲工况,约束需要分别释放右后、右前悬架支撑点的约束。

3.3 制动工况

假设汽车以80km/h 的速度行驶在普通沥青路面上(附着系数φ=0.75),制动时前后车轮同时抱死。由于本例车架模型并不包括车轮,所以需要对车架模型进行等效处理。下图是车轮与板簧的受力示意图:

图4 车轮与板簧受力示意图

地面制动力是以制动力矩的形式施加在车轮上的,而车轮又由吊耳销传递给车身。此时车轮对车身的作用力可由地面制动力与相应簧下质量惯性力之差(F )表示;车轮对车身的作用力矩可以由F 对车轮的力矩与前后吊耳销的附加作用力(F △)构成的力矩之和表示。

[4]

用公式表达为:

(3)Xb d

F F F =? (4)Xb F R

F S Δ=i

(5)Xb F R F h F S

=+Δi i i

其中,F Xb :地面制动力;

F d :制动时簧下质量惯性力;

R :车轮半径;

S :前后吊耳销间距;

h :吊耳销中心距车轮中心的垂直距离。 加载方式除了弯曲工况所需载荷之外,还要在吊耳销处施加F △和F ;约束的施加方法同弯曲工况。

4 数据分析

研究表明,客车底架承受了车身弯曲总应变能的四分之三以上,本文中的客车底架仍然是主要的抗弯部分。因此,这里采用分析底架纵梁的弯曲变形来评价车身的弯曲工况。为了具体描绘底架纵梁的变形,根据其具体的结构分布将纵梁分成六段,抽取相应节点,分别记录它们的挠度。如表1所示:

表1 弯曲工况客车底架左右纵梁的挠度

第一段第二段

节点编号挠度(mm) 节点编号挠度(mm)

左纵梁165398 40.92 159296 27.45

右纵梁163393 42.7 631770 27.5

第三段第四段

节点编号挠度(mm) 节点编号挠度(mm)

左纵梁165592 7.531 320747 4.696

右纵梁633017 7.97 608825 4.796

第五段第六段

节点编号挠度(mm) 节点编号挠度(mm)

左纵梁673755 4.213 322039 11.84

右纵梁612372 5.551 376026 13.02

图5 弯曲工况底架位移云图

弯曲、扭转、制动工况的相应部位的最大应力值如表2所示:

表2 车身各部位在不同工况下的最大应力

弯曲工况扭转(右前轮悬空)工况

节点编号最大应力(MPa)节点编号最大应力(MPa)

前围168964 5.825 310195 125.8 后围179302 6.631 244950 102.3 左侧围191772 29.96 132299 98.25 右侧围197736 28.91 39336 153.4 顶盖79149 14.68 203508 78.65 底架341976 42.7 42092 167.77 扭转(右后轮悬空)工况制动工况

节点编号最大应力(MPa)节点编号最大应力(MPa)

前围301912 99.22 133937 14.25 后围246342 117.36 178779 19.2 左侧围118761 88.02 193782 88.76 右侧围99406 147.3 236985 79.4 顶盖113527 67.68 106555 99.3 底架58679 142.51 298114 135.26

通过计算可以看出各个部分都处于安全状态,该车局部应力应变较大,特别是后轮后地板横梁、地板梁与车架纵梁连接部位,以及后轮前后牛腿、地板梁与侧围连接处。这主要是由于该车是后置驱动,后部载荷较大。但都小于屈服极限,证明该车设计的是合理的。

5.结论

(1)本文采用板壳单元建立客车车架的有限元模型,通过三种不同工况的分析,反映出了车架变形和应力分布状况,可以看出该车架的结构设计还是比较安全的。

(2)由于本文未考虑蒙皮的影响,并且加载状况较简单。若要进一步得到更加准确的分析结果,还应增加蒙皮。加载也应该进一步贴近情况。

参考文献

[1] 余志生.汽车理论[M].北京:机械工业出版社,2006.5.

[2] 冯国胜,杨绍普.车辆现代设计方法[M].北京:机械工业出版社,2006.

[3] Hailiang Wang, Xianlong Jin and Zhongqin Lin, FEA Static and Dynamic Analysis of the Body Structure of SK6120 Low Floor City Bus, SAE Paper 2002-01-0813.

[4] 吴诰珪,吴湘燕.客车车有限元强度分析载荷条件的确定 [J].机械工程学报,1997.

Finite Element Analysis of Bus Body Based on the

Hypermesh

Shen Bing, Jin Chun Ning, Hu Ping

School of Automotive,Dalian University of Technology, Dalian, PRC, (116024)

Abstract

Finite Element Analysis is of great importance to modern automobile designing. We proposed the method of using shell to build FE model according to three existing ways. The static and breaking analysis were performed in Hypermesh, which provided the evidence for lightweight design. Keywords:bus body; shell; Finite Element Analysis

作者简介:沈兵,男,1984年生,硕士研究生,主要研究方向是汽车CAE、UG二次开发。

白车身模态分析作业指导书(修改)

文件编号: YJY·P ·0020·A1-2004 文件名称:白车身模态分析作业指导书 编制:日期: 审核:日期: 批准:日期:

发布日期:年月日实施日期:年月日 前言 为使本公司白车身模态分析规范化,参考国内外白车身模态分析的技术,结合本公司已经开发车型的经验,编制本分析作业指导书。意在对本公司分析人员在做白车身模态分析的过程中起指导作用,让不熟悉或者不太熟悉该分析的员工有所依据,提高工作效率和精度。本作业指导书将在本公司所有白车身模态分析中贯彻,并将在实践中进一步提高完善。 内容包括:前处理模型;分析软件的使用;工程载荷及求解的设置;分析结果后处理和评价标准等。 本标准于2004年9月起实施。 本标准由上海同济同捷科技股份有限公司技术总监室提出。 本标准由上海同济同捷科技股份有限公司技术总监室负责归口管理。 本标准主要起草人:谢颖、邓文彬

白车身模态分析流程 1、适用范围 任何车型的白车身。 2、分析的目标及意义 本分析旨在分析白车身的振动固有频率和振型,得到的数据可为车身结构设计和振动噪声分析提供参考。 3、前处理建模 3.1白车身模型(只包括焊接总成,不包括门、玻璃、内饰等螺栓紧固件),焊点用RBE2(6个自由度)模拟,焊点布置应符合实际情况,边界条件为自由。 3.2 网格大小和注意事项如下。 3.2.1建模标准(所有项均在HYPERMESH中检测)表1 在网格划分之前,一定要充分考虑该零件与其它零部件之间的连接关系。 3.2.2在hypermesh中注意事项: 3.2.2.1 单元网格总体要求:连续、均匀、美观,过渡平缓。

3.2.2.2 对于倒角,倒角两端点距离小于5mm时可删去(命令:geom\distance)。当倒角两端点距离大于5mm时,测一下倒角的弧长(命令:geom\length),如弧长小于10mm时划分一个单元,大于10mm,划分两排单元,如难以满足单元长度要求,可将倒角的一边toggle掉。对于孔,半径小于5mm时可删去,同时删去小于5mm的凸台和沉孔。 3.2.2.3对于对称件,只划分一个件的网格,另一个件使用镜像方法生成。对于一个单个零件如果是左右对称的,可将它从中间切开,划分一半即可(使用splitbody命令),对于单个零件判断其是否是左右对称的,可将切开的另一半镜像过去(使用transform命令),渲染后看是否重合 3.2.2.4对于一些比较小的零部件(比如小螺栓)根据其位置和尺寸及对分析目标的重要性可不进行网格划分 3.2.2.5 B柱之前的零件网格尺寸控制在10-15mm,对于B柱之后c柱之前的零件,可适当增大网格尺寸,定在15-20mm,c柱之后20-35mm划分时可根据具体情况进行调整(如对一些连接处可划分细一些); 3.2.2.6原则上存在焊点的翻边必须划分两排单元,识别焊边可察看各总成数模、或者是看参考车型以及去设计部门的相关负责人联系。在焊点的翻边上,如翻边长度小于10mm,在保证最小单元长度要求下,可适当将翻边加长。大于10mm 时,考虑划分两排单元,对不符合长度要求的单元进行必要的调整(如将翻边的边界toggle掉)。 原则上焊点位置由设计部门确定,在设计部门已提供焊点位置的情况下,采取以下操作步骤:1)在UG中检查焊点位置,若发现分布不合理的焊点,须与车身相关设计人员确认;2)将零件导入HYPERMESH,其中应包含该零件的焊点信息――点和圆圈线(导入前需确认在UG里已经将点、线、面分层);3)将含圆线圈的COMP隐藏,只显示零件和焊点,然后用GEOM CLEANUP/FIXED POINTS/ADD命令将焊点变成零件面上的硬点;4)划分网格并按标准检查好单元质量后,文件先以HM格式进行保存(须包含所有点、线、面和单元),然后将网格输出成*.bdf文件,再将焊点和圆圈线输出成*.igs(该文件的命名方法:在bdf文件名前加w。如:bdf文件53-01.bdf,则igs文件w53-01.igs);5)在PATRAN里装配时,将

有限元法在汽车行业中的应用

有限元法在汽车行业中的应用 【摘要】:汽车车身结构主要是由薄板冲压的覆盖件、承载骨架和各种加强件组成的。在有限元分析中可将它看成是由许多单元所组成的整体, 或起承载作用, 或承受、传递外部载荷, 以保证整个汽车的正常工作。 【关键词】:汽车;技术;应用 在当前的工程技术领域中有越来越多的复杂结构,包括复杂的几何形状、复杂的载荷作用和复杂的支撑约束等。当对这些复杂问题进行静、动态力学性能分析时, 往往可以很方便地写出基本方程和边界条件, 但却求不出解析解。这是因为大量的工程实际问题非常复杂, 有些构件的形状甚至不可能用简单的数学表达式表达, 所以就更谈不上解析解了。 对于这类工程实际问题, 通常有两种分析和研究途径: 一是对复杂问题进行简化, 提出种种假设, 最终简化为一个能够处理的问题。这种方法由于太多的假设和简化, 将导致不准确乃至错误的答案。另一种方法是尽可能保留问题的各种实际工况, 寻求近似的数值解。在众多的近似分析方法中, 有限元法是最为成功和运用最广的方法。 1. 汽车结构有限元分析 汽车车身结构主要是由薄板冲压的覆盖件、承载骨架和各种加强件组成的。在有限元分析中可将它看成是由许多单元所组成的整体, 或起承载作用, 或承受、传递外部载荷, 以保证整个汽车的正常工作。由于要完成各自独特的功能, 它们的结构各不相同, 并且都比较复杂。一些结构件的工作条件比较恶劣, 长期在振动和冲击载荷下工作。寻求有关这些结构件正确而可靠的设计和计算方法, 是提高汽车的工作性能及可靠性的主要途径之一。 在汽车结构分析中, 有限元法由于其能够解决结构形状和边界条件都非常任意的力学问题的独特优点而被广泛使用。各种汽车结构件都可应用有限元法进行静态分析、固有特性分析和动态分析; 并且从原来对工程实际问题的静态分析为主转化为要求以模态分析和动态分析为主。也可根据工程实际结构的特点要求进行非线性分析。具体地说, 汽车结构有限元分析的应用体现于: 一是在汽车设计中对所有的结构件、主要机械零部件的刚度、强度、稳定性分析; 二是在汽车的计算机辅助设计和优化设计中, 用有限元法作为结构分析的工具; 三是在汽车结构分析中普遍采用有限元法来进行各构件的模态分析,同时在计算机屏幕上直观形象地再现各构件的振动模态, 进一步计算出各构件的动态响应, 较真实地描绘出动态过程, 为结构的动态设计提供方便有效的工具。 有限元法分析汽车结构的一般过程如下:

Hypermesh2017.2有限元分析的前处理1D单元连接

ALTAIR HYPERWORKS2017.2 有限元分析前处理 1D 单元和连接 Trainer’s Name Month XX, 2017

HMD Intro, 2017.2第5章: 1D 单元和焊点 5) 1D 单元和焊点 ?1D Meshing (1D单元) ?HyperBeam (梁截面) ?Connectors (焊点)

HMD Intro, 2017.2 1D 单元 ?1D 单元

HMD Intro, 2017.2示例 跟着示范做 (…\Model-Files\CH5-1D-MESHING\05a-1D-MESHING.hm)

? 2017 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved. HMD Intro, 2017.2 1D单元介绍 ?1D单元是节点之间简单连接,允许精确模拟连接关系(例如螺栓)和类似的杆 状或杆状对象,这些对象在FEA模型中可以建模为简单的线 ?可以从以下面板创建1D单元: ?目前支持的1D单元包括: bar2s, bar3s, rigid links, rbe3s, plots, rigids, rods, springs, welds, gaps and joints. ?显示单元可以在以下面板中创建: Edit Element, Line Mesh, Elem Offset, Edges, or Features panel.

?RIGID 刚性连接用于传递从主节点到从节点的运动. ?Rigids面板允许创建rigid 和rigid link 单元.

汽车尺寸参数

1、外形尺寸 外形尺寸包括车长、车宽和车高三方面尺寸。车长即沿汽车长度方向前后两极端之间的距离(mm);车宽即沿汽车宽度方向两侧极端之间的距离(mm);车高是指汽车最高点至地面间的距离(mm),如图中的b、g、h所示。 汽车尺寸参数示意图 a-轴距;b-车长;c-前悬;d-后悬;e-前轮距; f-后轮距;g-车宽;h-车高;j-离地间隙。 2、轴距 轴距是指汽车两轴中心线之间的距离(mm),如上图中的a。对多轴汽车,轴距应从前至后分别注明相邻两轴间距离,总轴距为各轴距之和。 3、轮距 轮距是指汽车同一轴上左右两轮中心面之间的距离(mm),如上图中的e、f。若为双轮胎时,则为同一轴左右双轮中心面之间的距离。 4、前后悬

前悬是指汽车最前端至通过前轴轴线的垂面间的距离(mm),如上图中c;后悬是指汽车最后端至通过后轴轴线的垂面间的距离(mm),如上图中d。 5、最小离地间隙 最小离地间隙是指汽车满载时,汽车最低点至地面的距离(mm),如上图中j 。 汽车主要技术参数反映汽车的技术性能以及适用范围,主要有以下几项: 1、整车参数 1) 外形尺寸:长×高×宽 2) 重量参数:整车自重(千克)、总质量(千克)、载质量(千克)、空载轴荷分配等。 3) 通过性及机动性参数:最小离地间隙(一般为驱动桥壳最底点与地面之间的距离)、前悬、后悬、接近角、离去角、轴距、轮距、最小转弯半径。 4) 容量参数:载质量、座位数、货厢容积、行李厢容积、燃油箱容积等。 5) 性能参数:有最高转速、最大爬坡度、起步加速时间、各挡加速时间、百公里油耗量、制动距离等。 2、发动机参数 1) 发动机型号与生产厂家。 2) 发动机形式:包括冲程数、缸数、汽缸排列方式(直列用"l"表示,v型排列用"v"表示)、汽油机还是柴油机等。 3) 冷却方式:是风冷还是水冷。 4) 性能参数:包括最大功率、最大扭矩以及最低燃料消耗率等。还给出最大功率和最大扭矩时对应发动机转速。 5) 尺寸参数:包括发动机排量、压缩比、缸径×行程、外形尺寸与重量等。 6) 燃油供给方式:是化油器式还是燃油喷射方式。 7) 废气排放控制装置。 3、底盘参数 1) 传动系

某商用车驾驶室白车身模态分析

龙源期刊网 https://www.sodocs.net/doc/3418238101.html, 某商用车驾驶室白车身模态分析 作者:谢小平,韩旭,陈国栋,周长江 来源:《湖南大学学报·自然科学版》2010年第05期 摘要:以某商用车驾驶室白车身为原型,利用模态分析方法对其动力学特征参数进行分析.在理论(正问题)和实验(反问题)两个互补的模态分析过程中,利用有限元模型进行理论模态分析,为实验模态分析的实施打下良好基础.分别采用最小二乘复指数法(LSCE)和最小二乘复频域法(LSCF)进行实验模态分析,得到各阶模态振型并对理论分析的结果进行修正.经过两种结果的比较和分析,最终得出准确的模态分析结果并对白车身原型提出改进意见.生产厂商依据改进意见进行工艺改进,通过用户实际使用证实了改进方案的有效性和正确性. 关键词: 商用车驾驶室;白车身;有限元;实验模态分析;LSCE;LSCF 中图分类号:TH113.1文献标识码:A Modal Analysis of Commercial Vehicle Cab’s Body-in-White XIE Xiao-ping+, HAN Xu, CHEN Guo-dong, ZHOU Chang-jiang (State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Faculty of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082) Abstract: The theory modal analysis (TMA, forward problem) and experimental modal analysis(EMA, inverse problem) methods are both used to analysis dynamics characteristic parameters of one commercial vehicle cab’s body-in-white. Finite element modal analysis is carried out to get mode shape and lay down well basis to experimental modal analysis in TMA process. In EMA process, LSCE(Least Squares Complex exponent method) and LSCF (Least Squares Complex Frequency Domain method) methods are used to get mode shape and modify TMA results. With comparison to all results, the accurate conclusion can be reached and improvement opinion is brought forward to the prototype. The improvement projection was proved to be effective by consumers’utilization after manufacturer put it into applications. Keywords: commercial vehicle cab’s bod y-in-white; finite element method; experimental modal analysis; LSCE; LSCF 车辆在行使的过程中常因路面不平,车速和运动方向的变化,车轮、发动机和传动系的振动激励,以及齿轮的冲击等各种外部和内部激励,极易引起整车和局部振动。当外界激振频率与系统固有频率接近时,将产生共振[1]。

汽车结构有限元分析

汽车结构的常规有限元分析 本文介绍了与产品研发同步的5个有限元分析阶段,阐述了有限元模型建立过程中应注意的问题,简单介绍了汽车产品的4种常规分析方法,建立汽车设计标准的方法,以及3个强度分析范例。范例1说明了有限元分析应注意的内容,范例2和3介绍了“应力幅值法”在解决汽车车轮轮辐开裂和汽车发动机汽缸体水套底板开裂问题的应用。 汽车是艺术和技术的结合。一辆好车的主要特点是造型美观、有时代感、结构设计合理、轻量化、材料利用率高,车辆性能先进并且满足国家法规、标准和环保的要求,质量可靠、保养方便、低成本、用户满意、满足市场需求等。在竞争日益激烈的汽车市场,汽车性价比已经成为市场竞争的焦点。采用有限元的常规分析技术,用计算机辅助设计代替经验设计,预测结构性能、实现结构优化,提高产品研发水平、降低产品成本,加快新产品上市。 1. 与产品研发同步的5个有限元分析阶段 在汽车产品研发流程中,一般有如下5个同步的有限元分析阶段: 第0阶段:对样车进行试验和分析; 第1阶段:概念设计阶段的分析; 第2阶段:详细设计阶段的分析; 第3阶段:确认设计阶段的分析; 第4阶段:产品批量生产后改进设计的分析。 有限元分析在产品研发的不同阶段有不同的分析目的和分析内容。有限元分析和试验分析是互相结合和验证的。在详细设计阶段,有些汽车公司对白车身和成品车车身都进行有限元分析,有些汽车公司只对白车身进行有限元分析。 2. 有限元分析的关键环节――建立合理的有限元模型 有限元模型的建立是有限元分析的关键环节。通过力学分析,把实际工程问题简化为有限元分析的问题,提出建立有限元模型的具体意见和方法,确定载荷和位移边界条件,使得有限元分析有较好的模拟(仿真)效果。 前处理自动生成的网格可能存在问题。建立有限元模型的好坏直接影响计算结果的误差和分析结论的正确性。在结构的几何图形上,划分有限元网格是建立有限元模型的主要内容之一。在用有限元分析的前处理自动生成网格时,特别是用常应变单元自动生成有限元网格时要非常注意,有可能存在问题,应引起注意,必要时加以改进。要想用有限元分析前处理自动生成出好的有限元网格也要付出辛勤地劳动。即使在方案比较的情况下,应力和变形的分布规律也不能离谱,计算结果的误差也应在给定的范围之内,建立好的有限元模型与分析经验有关。 在没有有限元分析指南的情况下,用力学分析和试验结果对有限元模型的确认和对计算结

基于PROE,HyperMesh,ANSYS的有限元分析

基于PROE,HyperMesh,ANSYS的有 限元分析 作者: 张瑞,琚建民 1.介绍: 目前,ANSYS软件在有限元分析方面被广泛的应用,但是他的预加工功能是如此的复杂以至于我们必须耗费大量的精力和时间,特别是分析复杂模型的时候。根据这种状况,我们将用PROE,HyperMash,和ANSYS商业软件进行建模,创建网格,计算和分析。各种有限元分析软件的综合运用可以发挥他们各自的优势,使有限元分析更加有效率。 2.关于PROE,HyperMash,和ANSYS的介绍 a.ProE是美国PTC公司开发的3D的CAD/CAM/CAE软件。他的几何建模功能是最杰出的。我们建立复杂的模型更多的会去运用PROE而非ANSYS和HyperMash。然而他的划分网格,计算,分析和后续处理是十分差劲的 b.HyperMash 是美国Atair公司开发的产品。它的主要优势在以下几个方面:划分网格变得更容易和迅速;我们更容易可以控制和指定原理特征,操作时非常的方便。因此可以使原理特征和网格工程分析要求更容易吻合;HyperMash有常规CAD和CAE软件界面。HyperMash的建模功能没有PROE那么强,它的计算分析功能也并没有ANSYS那样好。因为它有很少的材质和元素种类,并且设定解决方法是非常不便的。 c.ANSYS是最有影响力的一有限元分析软件在世界上,因为它的强大计算和分析能力。但它的预处理功能相对薄弱。首先,在ANSYS中建模时低PROE一等的,因此对复杂建模是很困难的。此外, 运用ANSYS进行网格划分和修改元素和HyperMesh相比并不容易。所以很难确保元素特性使计算成功。用它进行预处理将会浪费更多时间,严重的影响工作效率。 3. ProE; HyperMesh; ANSYS在有限元分析上的综合应用 a.工作过程 我们的目的是要通过综合利用软件来发挥 每个软件各自的优点。根据三个软件的特点, 我们可以通过PROE建模,通过HyperMesh 划分网格,通过ANSYS求解。通过这个方法, 整个有限元分析过程会更加有效准确。整个 分析过程见图1 b.常见问题及解答:1)简化建模:通常通过 PROE的建模过程是用立体建模的方法然后 提取表面,大量的错误和修改工作将会在划 分网格式出现。因此,我们可以用表面建模 [1],忽略几个细节(例如小孔和倒角)和附 件。2)模型的分类管理:有许多几乎不受约 束的表面互相遮掩。许多表面不同样式的混 合在一起时我们管理起来十分不便。因此, 有着相同特征的表面一定要被定义成相同 的组成,名字和颜色,然后我们可以通过组

汽车车身名词解释

汽车名词解释——车身参数 长×宽×高所谓的长宽高就是一部汽车的外型尺寸,通常使用的单位是毫米(mm),具体的测量方法是这样的: 车身长度定义为:汽车长度方向两个极端点间的距离,即从车前保险杆最凸出的位置量起,到车后保险杆最凸出的位置,这两点间的距离。 车身宽度定义为:汽车宽度方向两个极端点间的距离,也就是车身左、右最凸出位置之间的距离。根据业界通用的规则,车身宽度是不包含左、右后视镜伸出的宽度,即后视镜折 叠后的宽度的。 车身高度定义为:从地面算起,到汽车最高点的距离。而所谓最高点,也就是车身顶部 最高的位置,但不包括车顶天线的长度。 轴距汽车的轴距是同侧相邻前后两个车轮的中心点间的距离,即:从前轮中心点到后 轮中心点之间的距离,就是前轮轴与后轮轴之间的距离,简称轴距,单位为毫米(mm)。 根据轴距对汽车进行分类 轴距是反应一部汽车内部空间最重要的参数,根据轴距的大小,国际通用的把轿车分为 如下几类: 微型车:通常指轴距在2400mm以下的车型称为微型车,例如:奇瑞QQ3、长安奔奔、 ,轴距只有1867mm。吉利熊猫等,这些车的轴距都是2340mm左右,更小的有SMART FORTWO 小型车:通常指轴距在2400-2550mm之间的车型称为小型车,例如:本田飞度、丰田威驰、福特嘉年华等。 紧凑型车:通常指轴距在2550-2700mm之间的车型称为紧凑型车,这个级别车型是家用 轿车的主流车型,例如:大众速腾、丰田卡罗拉、福特福克斯、本田思域等。 中型车:通常指轴距在2700-2850mm之间的车型称为中型车,这个级别车型通常是家用 和商务兼用的车型,例如:本田雅阁、丰田凯美瑞、大众迈腾、马自达6睿翼等。 中大型车:通常指轴距在2850-3000mm之间的车型称为中大型车,这个级别车型通常是 商务用车的主流车型,例如:奥迪A6、宝马5系、奔驰E级、沃尔沃S80等。需要说明的是:通常的中大型车轴距都在2900mm左右,不过由于中国人比较喜欢大车,所以很多车型 到中国来都进行了加长,轴距都达到了2950mm以上,个别车型轴距达到了3000mm以上,例如宝马5系的轴距为3028mm,所以在国内,我们到很难见到不加长的中大型车了。

汽车结构有限元分析--第六讲_汽车结构有限元分析实例

版权所有,仅限于学习交流之用 第六讲汽车结构有限元分析实例 合肥工业大学机械与汽车学院车辆工程系 谭继锦编写 2010年3 月

----------------------汽车结构分析实例 ?1、汽车结构设计准则与目标 ?2、汽车结构有限元模型 ?3、汽车结构强度分析 ?4、汽车结构刚度分析 ?5、汽车结构动态分析 ?6、汽车结构疲劳分析 ?7、汽车结构碰撞分析 ?8、汽车结构有限元优化设计

1、汽车结构设计准则与目标 ?有限元分析方法是汽车数字化设计的一项核心技术; ?在产品设计阶段对汽车结构及性能做出预先评估; ?有限元分析能够提供大量的仿真试验数据和技术参数, 进而可以替代部分试验,有利于设计经验的积累和设计技术的提高。 ------汽车结构分析的目的主要是解决汽车结构的可靠性、安全性、经济性和舒适性等问题,其分析内容十分广泛,而且相互关联,主要涉及以下内容: ?可靠性:研究汽车结构强度、刚度和动态特性,以及疲 劳寿命等; ?安全性:研究结构耐撞性与乘员安全性等; ?经济性:研究结构优化及轻量化等; ?舒适性:进行结构振动噪声分析等。

汽车结构设计准则与目标 ?结构分析可以划分成几个阶段,各阶段有不同的设计 目标。 ?◇概念设计阶段建立相应的设计目标; ?◇详细设计阶段达到相应的设计目标; ?◇样车制作阶段验证整车的性能并且分析设计中存在 问题; ?◇产品制造阶段验证设计和改进产品。 ------以下概略汇总了汽车结构分析中在概念设计阶 段和详细设计阶段汽车结构部分分析内容及设计目标,这些内容与目标是动态发展的,需要结合工程实际不断调整并发展。

史上最全的汽车前挡玻璃尺寸讲解

史上最全的汽车前挡玻璃尺寸 前挡尺寸 A奥迪 奥迪TT135*60cm 奥迪A1140*70cm 奥迪A4L145*80cm 奥迪A3140*75cm 奥迪A6L150*75cm 奥迪A5145*80cm 奥迪Q3145*80cm 奥迪Q5150*80cm 奥迪Q5150*80cm 奥迪A8150*75cm B奔驰 奔驰B级140*70cm smart140*70cm 奔驰C级140*70cm 奔驰E级145*80cm 奔驰S级145*80cm 奔驰R级150*80cm

B宝马宝马MINI135*60cm 宝马3系140*70cm 宝马7系150*75cm 宝马5系150*75cm 宝马1系140*70cm 宝马X1145*80cm M3140*75cm 1系M145*80cm 宝马X3150*80cm 宝马6系150*75cm 宝马X5150*80cm 宝马M系150*75cm M5150*75cm 宝马X6150*80cm B宝骏宝骏630140*70cm B北汽骑士150*80cm E系列140*70cm 路霸150*80cm B比亚迪比亚迪F3135*60cm 比亚迪F0135*60cm 比亚迪G3135*60cm 比亚迪G4135*60cm 比亚迪F6140*75cm

比亚迪G6140*75cm 比亚迪L3140*75cm 比亚迪M6145*80cm 比亚迪S8140*75cm 比亚迪E6150*75cm 比亚迪M6145*80cm 速锐140*75cm 思锐145*80cm 比亚迪S6145*80cm D大众捷达135*60cm 老宝来140*70cm 速腾140*70cm 新领驭140*70cm 桑塔纳140*70cm POLO140*70cm 高尔夫6140*75cm 09宝来140*75cm 朗逸140*75cm 迈腾140*75cm Eos140*75cm 帕萨特145*80cm 途观145*80cm 途锐150*80cm

汽车车身模态分析研究综述

汽车车身模态分析研究综述 北京信息科技大学研1202班姓名:曹国栋学号:2012020045 摘要:车身是汽车的关键总成。它的构造决定了整车的力学特性,对白车身进行模态分析不仅能考察车身结构的整体刚度特性,而且可以指导人们对车身结构进行优化以及响应分析。因此,研究车身模态分析具有重要的意义。本文综述了近几年国内外在车身模态分析领域内的研究,总结了研究理论和试验方法,并进行归纳。最后,对未来的研究工作提出了一些展望。 关键词:车身;模态分析;有限元模态;试验模态;结构优化 0 前言 随着计算机技术的发展和仿真技术、有限元分析技术的提高,计算机辅助设计和分析技术几乎涵盖了涉及汽车性能的所有方面,如刚度、强度、疲劳寿命、振动噪声、运动与动力性分析、碰撞仿真和乘员保护、空气动力学特性等,各种计算机辅助设计软件为汽车设计提供了一个工具平台,极大地方便了汽车的设计。 车辆在行驶过程中,车身结构在各种振动源的激励下会产生振动,如发动机运转、路面不平以及高速行驶时风力引起的振动等。如果这些振源的激励频率接近于车身整体或局部的固有频率,便会发生共振现象,产生剧烈振动和噪声,甚至造成结构破坏。为提高汽车的安全性、舒适性和可靠性,就必须对车身结构的固有频率进行分析,通过结构设计避开各种振源的激励频率。 车身结构模态分析是新车型开发中有限元法应用的主要领域之一,是新产品开发中结构分析的主要内容。尤其是车身结构的低阶弹性模态,它不仅反映了汽车车身的整体刚度性能,而且是控制汽车常规振动的关键指标,应作为汽车新产品开发的强制性考核内容。有限元模态分析和试验模态分析方法是辨识汽车结构动态性能的一种有效的手段,在汽车车身动态性能研究中得到了广泛应用。采用有限元方法对白车身进行模态分析,识别出车身结构的模态参数,并通过模态试验验证了有限元模型的正确性,为改型设计提供参考依据,是汽车开发设计与优化的一般流程。 因此,研究车身结构模态分析,进行车身轻量化设计和优化,对于提高国产轿车的自开发与科技创新能力,具有重要的理论意义和工程实用价值。 1 车身模态分析的一般理论 1.1 模态分析基本理论 模态分析的经典定义即以模态矩阵作为变换矩阵,将线性定常系统振动微分方程组中的物理坐标进行坐标转换变到模态坐标上,从而使系统在原来坐标下的耦合方程变成一组互相独立的二阶常微分方程进而成为一组以模态坐标及模态参数描述的独立方程[1]。 在实际的结构动力分析中,一般将连续结构离散化为一个具有n个有限自由

hypermesh运用实例(1)

运用HyperMesh软件对拉杆进行有限元分析 问题的描述 拉杆结构如图1-1所示,其中各个参数为:D1=5mm、D2=15mm,长度L0=50mm、L1=60mm、L2=110mm,圆角半径R=mm,拉力P=4500N。求载荷下的应力和变形。 图1-1 拉杆结构图 有限元分析单元 单元采用三维实体单元。边界条件为在拉杆的纵向对称中心平面上施加轴向对称约束。模型创建过程 CAD模型的创建 拉杆的CAD模型使用ProE软件进行创建,如图1-2所示,将其输出为IGES格式文件即可。

图1-2 拉杆三维模型 CAE模型的创建 CAE模型的创建工程为: 将三维CAD创建的模型保存为文件。 (1)启动HyperWorks中的hypermesh:选择optistuct模版,进入hypermesh 程序窗口。主界面如图1-3所示。 (2)程序运行后,在下拉菜单“File”的下拉菜单中选择“Import”,在标签区选择导入类型为“Import Goemetry”,同时在标签区点击“select files”对应的图形按钮,选择“”文件,点击“import”按钮,将几何模型导入进来,导入及导入后的界面如图1-4所示。 图1-3 hypermesh程序主页面

图1-4 导入的几何模型 (4)几何模型的编辑。根据模型的特点,在划分网格时可取1/8,然后进行镜像操作,画出全部网格。因此,首先对其进行几何切分。 1)曲面形体实体化。点击页面菜单“Geom”,在对应面板处点击“Solid”按钮,选择“surfs”,点击“all”则所有表面被选择,点击“creat”,然后点击“return”,如图1-5~图1-7所示。 图1-5 Geom页面菜单及其对应的面板 图1-6 solids按钮命令对应的弹出子面板

Hypermesh有限元流程

1 导入几何模型到hypermesh中 首先在UG中打开几何模型,单击文件按钮,选择导出setp格式文件 2打开hypermesh,单击导入按钮,选择导入格式为step,文件

3抽取中面 在右侧的Geom工具栏中,单击抽取中面按钮 选择要抽取的部件,单击抽取 4进行几何清理 在右侧Geom工具栏中选择快速编辑按钮 使用相关功能进行几何清理,

5划分网格 在右侧2D面板中选择,设置网格类型,尺寸 6检查网格质量,修改不合格的网格 在右侧2D面板中选择检查网格质量 利用按钮对不合格的网格进行优化 7对模型进行连接 点击connector 选择Area connector panel, 选择要连接的单元和部件,设置连接类型和距离,进行连接 更正: 8建立材料

单击,输入名字,类型,卡片类型, 单击输入材料相关参数,建立材料 9创建部件属性 单击,输入名字,类型,材料建立属性等 更正:2D,PSHELL,stell,create/edit,T输入厚度 10将创建的属性赋予部件 单击,assign然后单击comps选择要附属性的部件,单击assign赋予部件相关属性信息

更正:update 11创建边界条件 单击输入名字,选择卡片类型 然后单击,编辑卡片相关参数】 11,创建载荷步loadstep(分析类型) 在右侧分析面板中选择输入名字,选择相应的分析类型,选择相应的收集器,创建loadstep 更正:自由模态nomal modes ,SPC不勾 静力分析linear static,spc约束,load载荷

12进行分析 在右侧分析面板中选择选择文件的储存位置,在run options选项中选择analysis(一般来说应该先进行check 检查有限元模型是否正确),单击optistruct进行分析 更正:选择Radioss 静力分析:all改为custom 13分析完成后,单击查看计算结果

基于hypermesh的客车车体有限元分析

基于Hypermesh的客车车身有限元分析 沈兵,靳春宁,胡平 大连理工大学汽车工程学院,大连(116024) E-mail:279987329@https://www.sodocs.net/doc/3418238101.html, 摘要:有限元方法和理论对现代车身设计具有重要的实际意义。综合现有的建模方案,提出了用壳单元建立有限元模型的方法;针对三种工况,应用有限元软件Hypermesh对模型进行后处理,找出了应力、位移分布情况;对轻量化设计提供了可靠的依据。 关键词:客车车身;壳单元;有限元分析 中图分类号TG404;TH114;TB115 1. 引言 当前国内对客车车身的有限元建模方法大致有三种,即采用梁单元、壳单元和体单元。采用梁单元可使计算量大大降低,但由于简化太多,导致一些关键受力截面无法正确表达,使得可信度不高,很难起到指导作用。采用体单元构建的客车骨架跟现实情况很接近,但建模时间太长,不宜采用。而壳单元弥补了梁单元与体单元的不足,是比较理想的建模方法。本文正是采用壳单元构建了客车车身模型,并按照实际使用条件进行车载负荷计算,对车体进行结构分析。 2.模型的建立 目前UG具有强大的曲面造型功能,在航空和汽车行业应用非常广泛;而Hypermesh 是世界上领先的有限元前后处理软件,它与UG等许多软件都有良好的接口。本文采用UG 对客车车身进行何造型设计,然后在Hypermesh中进行网格划分以及前后处理工作。 车架的实际工况复杂多变,建立有限元模型时对CAD模型的简化是十分必要的。其原则是:最大限度地保留零件的主要力学特征;将小面合并成大面,并且相邻面应共用一条轮廓线,以保证各个面上划分出来的网格在边界处是共用节点,避免在边界处出现节点错开的现象。具体的简化如下: (1)忽略非承载件。有些部件(如保险杠、踏板支架等)是为了满足构造或使用上的要求而设置的,对于分析车身模态影响很小,这里将其忽略掉。 (2)忽略蒙皮、玻璃等附件。 (3)忽略圆角以及梁截面形状的简化。考虑到圆角对网格计算的来说比较费时,将模型中的圆角忽略掉;本文中梁简化成矩形钢和槽型钢。 图1圆角的忽略

汽车的主要尺寸参数

汽车的主要尺寸参数: 轴距(L ):是描述汽车轴与轴之间距离的参数,通常可通过汽车前后车轮中心来测量。轴距的长短直接影响到汽车的长度、重量和许多使用性能。轴椐短一些,汽车长度就短一些,自重就轻,最小转弯直径和纵向通过角就小,但若轴距过短,则会带来一系列缺点:如车厢长度不足或后悬过长,汽车行驶时纵摆和横摆较大;在制动时或上坡时重量转移较大,使汽车的操纵性和稳定性变坏。 轮距( B ):指同一轴上车轮接地点中心之间的距离,对双胎汽车,则是指两双胎接地点连线之中点之间的距离。轮距对汽车的总宽、总重、横向稳定性和机动性影响较大。轮距愈大,则横向稳定性愈好,对增加轿车车厢内宽也有利。但轮距宽了,汽车的总宽和总重一般也加大,而且容易产生向车身侧面甩泥的缺点。此外,轮距过宽也会影响汽车的安全性,因此,轮距应与车身宽度相适应。 前悬(L F )和后悬(L R ):前悬是指汽车最前端(除灯罩、后视镜等非刚性固定部分外)至前轴中心之间的水平距离。前悬的长度应足以固定和安装驾驶室前支点。发动机、水箱、转向机、弹簧前托架和保险杠等零件和部件。前悬不宜过长,否则,汽车的接近角过小。 后悬:是指汽车最后端(除灯罩等非刚性固定部分外)至后桥中心之间的水平距离,后悬的长度主要决定于货厢长度、轴距和轴荷分配情况,同时要保证适当的离去角。 汽车的外廓尺寸(总长、总宽、总高):汽车的外廓尺寸是根据汽车的用途、道路条件、吨位(或载客数)、外形设计、公路限制和结构布置等因素来确定的。在总体设计时要力求减少汽车的外廓尺寸,以减轻汽车的自重,提高汽车的动力性、经济性和机动性。 每个国家对公路运输车辆的外廓尺寸均有法规限制。这是为了使汽车的外廓尺寸适合本国的公路桥梁、涵洞和铁路运输的标准及保证行驶的安全性。我国对公路车辆的极限尺寸规定如下:汽车总高≤ 4m ;总宽(不含后视镜)≤ 2.5m ;总长:货车(含越野车)≤ 12m ;一般客车≤ 12m ;铰接大客车≤ 18 ;半挂牵引车(含挂车)≤ 16m ;汽车拖挂后总长≤ 20m 。 汽车轮胎尺寸解读

有限元法在汽车中的应用

有限元法在汽车中的应用 有限元法是随着计算机技术的应用而发展起来的一种先进的技术,广泛应用于各个领域中的科学计算、设计、分析中,成功的解决了许多复杂的设计和分析问题,己成为工程设计和分析中的重要工具。随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法,有限元法在产品设计和研制中所显示出的无可伦比的优越性,使其成为企业在市场竞争中制胜的一个重要工具,有限元法在机电工程中的应用也越来越重要。现代汽车工业技术快速发展,计算机技术不断推陈出新,使分析仿真技术以其快速高效和低成本的强大优势,成为汽车设计的重要手段,各种分析软件成为CAE技术广泛应用的工具。 有限元在机械设计中的优点是有目共睹的,在汽车的设计中这些优势得到了完美的体现,其优点如下: 1、与CAD软件的无缝集成 当今有限元分析软件的一个发展趋势是与通用CAD软件的集成使用,即在用CAD软件完成部件和零件的造型设计后,能直接将模型传送到CAE软件中进行有限元网格划分并进行分析计算,如果分析的结果不满足设计要求则重新进行设计和分析,直到满意为止,从而极大地提高了设计水平和效率。 2、更为强大的网格处理能力

有限元法求解问题的基本过程主要包括:分析对象的离散化、有限元求解、计算结果的后处理三部分。对于许多工程实际问题,在整个求解过程中,模型的某些区域将会产生很大的应变,引起单元畸变,从而导致求解不能进行下去或求解结果不正确,因此必须进行网格自动重划分。有限元使用的自适应网格往往是许多工程问题如裂纹扩展、薄板成形等大应变分析的必要条件。 3、由求解线性问题发展到求解非线性问题 随着科学技术的发展,线性理论已经远远不能满足设计的要求,许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能解决,必须进行非线性分析求解,为此国外一些公司花费了大量的人力和物力开发非线性求解分析软件,它们的共同特点是具有高效的非线性求解器、丰富而实用的非线性材料库。 4、由单一结构场求解发展到耦合场问题的求解 理论上已经证明,只要用于离散求解对象的单元足够小,所得的解就可足够逼近于精确值。用于求解结构线性问题的有限元方法和软件已经比较成熟,发展方向是结构非线性、流体动力学和耦合场问题的求解。需要对结构场和流场的有限元分析结果交叉迭代求解,即所谓"流固耦合"的问题。由于有限元的应用越来越深入,人们关注的问题越来越复杂,耦合场的求解必定成为CAE软件的发展方向。 5、程序面向用户的开放性 有限元软件允许用户根据自己的实际情况对软件进行设置和扩充,包括用户自定义单元特性、用户自定义材料本构(结构本构、热

基于Hypermesh的吊钩有限元结构分析

摘要 本文旨在对吊钩进行仿真计算和分析,得到其应力和位移变化的分布云图,从理论上对吊钩的危险截面进行了分析研究,为吊钩进一步的结构设计和优化提供了必要的理论依据。 本文使用三维建模软件Creo创建吊钩的三维模型,以格式吊钩.stp导入有限元软件hypermesh中绘制网格,进行前处理,继而进行求解得到后处理中的应力和位移云图。 本文通过分析有限元后处理的应力和位移云图,得到吊钩的最大等效应力位于吊钩主弯曲面内侧部位,应力大小为213.2MPa;吊钩整体最大变形位于吊钩钩头位置,变形量为0.08061mm。 本文对比最大等效应力和所给材料30号钢的屈服强度295MPa,分析得到吊钩在给定工作载荷下安全的结论,由此求得5t载荷下的安全系数应小于等于1.284;通过静刚度分析,计算得到吊钩在承载方向上的静刚度为3.1839×108N/m。 关键词:hypermesh;吊钩;应力;安全系数

1.Creo软件建立吊钩三维模型 1.1Creo软件简介 Creo是美国PTC公司于2010年10月推出CAD设计软件包。Creo是整合了PTC公司的三个软件Pro/Engineer的参数化技术、CoCreate的直接建模技术和 ProductView的三维可视化技术的新型CAD设计软件包,是PTC公司闪电计划所推出的第一个产品。 Creo是一个整合Pro/ENGINEER、CoCreate和ProductView三大软件并重新分发的新型CAD设计软件包,针对不同的任务应用将采用更为简单化子应用的方式,所有子应用采用统一的文件格式。 Creo目的在于解决CAD系统难用及多CAD系统数据共用等问题。 1.2创建吊钩模型 1.打开Creo软件,新建类型:零件,不勾选使用默认模版,确定;选择模版类型为: mmns_part_solid,确定,进入零件绘制界面(图1.1,图1.2,图1.3) 图1.1 零件命名图1.2 模板选择 2.草绘吊钩弯曲部分的轨迹图绘制 (1)选择FRONT平面,点击草绘,进入草绘界面(图1.3,图1.4) 图1.3 FRONT平面的选择图1.4 吊钩草绘界面

Abaqus与HyperMesh联合仿真有限元分析核心技术培训

Hypermesh 作为目前综合能力最强的前处理平台,可以很方便的为各种大型CAE 软件完成几乎所有的常见前处理工作,操作极其灵活方便操作极其灵活方便,,例如几何清理例如几何清理、、网格划分网格划分、、材料属性建立材料属性建立、、单元赋予单元赋予、、连接关系设定连接关系设定、、边界条件设定边界条件设定、、控制参数和输出等参数和输出等,,全部都可以在Hypermesh 中高效的完成中高效的完成。。几何模型越复杂几何模型越复杂,,装配体零件越多装配体零件越多,,这种优势越明显这种优势越明显。。 Abaqus 作为业内公认的最强的非线性求解软件作为业内公认的最强的非线性求解软件,,自学入门不易自学入门不易,,成为高手更加成为高手更加艰难艰难艰难。。Abaqus 行业应用广泛行业应用广泛,,最近几年在国内越来越火爆几年在国内越来越火爆,,所以掌握abaqus 势在必行势在必行。。Abaqus 行业应行业应用差异较大用差异较大用差异较大,,但基本的软件操作和软件应用技巧是大同小异的是大同小异的。。Hypermesh 中除了几何清理中除了几何清理、、网格划分外网格划分外,,其余的操作例如材料属性建立其余的操作例如材料属性建立、、单元赋予单元赋予、、连接关系设定连接关系设定、、边界条件设定边界条件设定、、控制参数和输出等全部与Abaqus 息息相关息息相关,,需要对abaqus 的一套理论有很深的认识才能更好的发挥Hypermesh 的强大前处理功能的强大前处理功能。。 本人擅长在Hypermesh 中完成所有的Abaqus 前处理操作前处理操作,,然后提交计算然后提交计算,,后处理在abaqus 和hyperview 中完成。本人领域为电子产品跌落碰撞本人领域为电子产品跌落碰撞,,例如平板电脑例如平板电脑、、台式机台式机、、移动终端等等显式动力学分移动终端等等显式动力学分析析,同时也擅长各种连接器同时也擅长各种连接器、、弹片弹片、、端子等正向力端子等正向力、、插拔力插拔力、、屈服等隐式非线性分析屈服等隐式非线性分析。。 希望通过一些核心培训能让更多的人学会Hypermesh 这个软件的操作技巧这个软件的操作技巧,,同时快速的为Abaqus 建立CAE 模型。本次培训本次培训希望能以学员的模型为主希望能以学员的模型为主希望能以学员的模型为主,,模型越复杂越好(实际培训会适当简化),同时采用自己搜集的3D 模型模型,,通过网络培训例如QQ 群视频等或者自己录制视频的方式群视频等或者自己录制视频的方式,,完整的为大家讲解Hypermesh 和abaqus 的核心应用技巧的核心应用技巧。。 最近在QQ 群陆续为一些同行做了大概10来个例子来个例子,,感觉很多人普遍水平偏低感觉很多人普遍水平偏低,,问的问题千奇百怪,很多人急需一次较深入的培训需一次较深入的培训。。本人第一次尝试做培训做培训,,本次培训大概10次,每次2个小时个小时,,收费2500元.如果觉得培训不合适,可考虑视频录制的方式视频录制的方式,,有问题大家及时和我沟通。 本人QQ :499975874 建立一个专门用作培训建立一个专门用作培训、、技术交流技术交流的群的群的群::470131908 初步培训提纲如下初步培训提纲如下:: 1、Hypermesh 针对abaqus 的基本流程介绍 1.1.如何选取求解器类型?隐式还是显式?在Hypermesh 里面,隐式和显式存在哪些差异性? 1. 2.用一个简单的案例讲解Hypermesh 完成Abaqus 所有前处理的流程和操作; 2、Hypermesh 几何清理技巧 2.1 自由边、烂面、圆角、Logo 、小面等处理技巧,尤其是圆角和特征很多的时候如何处理? 2.2 很多复杂变圆角在Hypermesh 中无法移除的其它处理技巧; 2.3 各种切割面、切割体、添加硬点、临时节点、补面等技巧 3、Hypermesh 网格划分技巧,技巧太多,描述有些困难 3.1 以四边形为主的网格划分技巧 3.2 三角形网格划分技巧、弦长法的设定技巧 3.3 如何保证单元数量尽可能少,同时网格质量高,同时与几何贴近度高 3.4 六面体网格划分技巧 3.5 四面体网格划分技巧 3.6网格质量提高改善技巧 3.7 使用ANSA 划分正交性更高的四边形网格技巧 3.8针对收敛性问题的网格处理技巧 3.9刚体网格的划分技巧 4、Hypermesh 为Abaqus 建立材料、界面属性的技巧 4.1 Abaqus 常用的材料本构模型介绍 4.2 常用的Abaqus 材料模型在Hypermesh 中的设置技巧 4.3 Abaqus 常用的截面类型介绍 4.4常用的Abaqus 截面属性在Hypermesh 中的设置技巧 5、Hypermesh 为Abaqus 赋予单元类型 5.1 常用的abaqus 单元类型介绍 5.2 显式和隐式的单元类型差异

相关主题