搜档网
当前位置:搜档网 › Abundance and Diversity of TCs

Abundance and Diversity of TCs

Abundance and Diversity of TCs
Abundance and Diversity of TCs

Abundance and Diversity of Tetracycline Resistance Genes in Soils Adjacent to Representative Swine Feedlots in China

N A N W U,?M I N Q I A O,?B I N G Z H A N G,?

W A N G-D A C H E N G,§A N D

Y O N G-G U A N Z H U*,?,|

State Key Laboratory of Urban and Regional Ecology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,Beijing,China100085,College of Resources and Environment,Shandong Agricultural University,

Taian,China271018,Jiaxing Academy of Agricultural Sciences,Jiaxing,China314016,and Key Laboratory of Urban Environment and Health,Institute of Urban Environment, Chinese Academy of Sciences,Xiamen,China361021

Received March11,2010.Revised manuscript received July 28,2010.Accepted August2,2010.

Tetracyclines are commonly used antibiotics in the swine industryfordiseasetreatmentandgrowthpromotion.Tetracycline resistance was determined in soils sampled from farmlands

in the vicinity of nine swine farms located in three cities in China. Totally,15tetracycline resistance(tet)genes were commonly detected in soil samples,including seven ef?ux pump genes (tet A,tet C,tet E,tet G,tet K,tet L,tet A/P),sevenribosomalprotection proteins(RPPs)genes(tet M,tet O,tet Q,tet S,tet T,tet W,tet B/ P),andoneenzymaticmodi?cationgene(tet X).Thequantitative real-time PCR was further used to quantify?ve RPPs genes (tet M,tet O,tet Q,tet W,tet T)and16S rRNA gene abundances. The concentrations of total tetracyclines(5typical tetracyclines and10of their degradation products)in these soils were measured using liquid chromatography-electrospray tandem mass spectrometry(LC-MS/MS)and were found to range from 5.4to377.8μg·kg-1dry soil.Bivariate correlation analysis con?rmed that absolute tet gene copies(sum of tet M,tet O, tet Q,tet Wgenes)werestronglycorrelatedwiththeconcentrations of tetracycline residues(r2)0.45,P<0.05),ambient bacterial 16S-rRNA gene copies in each soil sample(r2)0.65,P< 0.01),and organic matter in soil(r2)0.46,P<0.05),respectively. Finally,thephylogeneticanalysison tet Mcombinedwithculture-independent molecular techniques revealed at least?ve genotypes of tet M in nine soil samples.

Introduction

In concentrated animal feeding operations,antibiotics are routinely used for disease control and growth promotion(1). However,when used in this manner,antibiotics can select for resistant bacteria in the gastrointestinal tracts of produc-tion animals,providing a potential reservoir for dissemination of resistant bacteria into the environment(2).Bacteria have been shown to readily share genetic information by horizontal gene transfer mechanism driven by mobile genetic elements (3),permitting the transfer of resistance genes from fecal microorganisms to indigenous environmental bacteria. Furthermore,many antibiotics are poorly absorbed in the animal gut and subsequently could be excreted into the environment by feces(1)where they tend to persist and accumulate in soils after repeated manure application(4). Residual antibiotics may exert selection pressure on envi-ronmental microorganisms,contributing to the spread of antibiotic resistant microorganisms and the resistance genes they carry(5).Growing evidence exists that antibiotics used in the animal industry may transfer antibiotic resistance genes into the environment through a variety of pathways con-nected with common waste disposal practices,such as land application of manures(1,6).However,it is dif?cult to demonstrate a direct link between agricultural usage of antibiotics and increased levels of resistance in pathogens (7),the potential consequences are serious,and the World Health Organization has recommended that antimicrobials be phased out as animal growth promoters(8).In China, more than8000tons of antibiotics are used as feed additives each year(9),but there is no regulation on antibiotics used as feed additives for growth promotion at present(9)or legislation in China for the limits of antibiotics in the environment.

Tetracyclines(TCs)are broad-spectrum antibiotics,which are extensively used in clinical treatment and livestock industry,particularly in the swine industries(10,11).In China, the annual tetracycline usage was about9413tons in1999 (12);in2003,the annual oxytetracycline production in China was about10,000tons(65%of world total)(13).The majority of TCs are excreted into the environment via various pathways (e.g.,agricultural runoff),and there is potential for resistance selection among pathogens and nonpathogens(8,14).To date,more than40classes of tetracycline resistance(tet) genes have been described in various environments(15,16), which encode three main resistance mechanisms(ef?ux pump proteins,ribosomal protection proteins(RPPs),and inactivating enzymes)(16).In China,tetracycline-resistant bacteria(e.g.,Escherichia coli)and tet genes have been found in different water environments(12,13).However,little is known about the concentrations of tetracycline residues and the levels of tet genes in soil environments in China.

Previous studies investigated various tet genes in envi-ronments surrounding swine feedlots(2,10,11,17),swine manures,or piggery manured soils(18-20),indicating the ubiquitous occurrence of tet genes in environments in?u-enced by swine farms.The quantitative real-time PCR(qRT-PCR)assay has been frequently employed to study the resistance levels(11,21-23).A number of studies reported that tet gene concentrations were signi?cantly correlated with the levels of tetracycline residues in the environment (21,24,25);however,only parent TCs were investigated as indicators for TCs levels thereby omitting any consideration of degradation products.It is unlikely that this correlation is indicative of a true relationship,because the presence of tetracycline degradation products would theoretically select for maintenance and transfer of tetracycline resistance as they have potency on tetracycline sensitive bacteria(26). Among the tet genes,tet M is known to have the widest host range of any tet genes(16)since it is often associated with mobile genetic elements which enhance its transferability from one bacteria to another(27).Several studies have reported a variety of genotypes of the tet M from natural

*Corresponding author phone:+861062936940;fax:+8610

62936940;e-mail:ygzhu@https://www.sodocs.net/doc/3b5080336.html,.

?Research Center for Eco-Environmental Sciences,Chinese

Academy of Sciences.

?Shandong Agricultural University.

§Jiaxing Academy of Agricultural Sciences.

|Institute of Urban Environment,Chinese Academy of Sciences.

Environ.Sci.Technol.2010,44,6933–6939

10.1021/es1007802 2010American Chemical Society VOL.44,NO.18,2010/ENVIRONMENTAL SCIENCE&TECHNOLOGY96933 Published on Web08/13/2010

environments(28,29)or resistance isolates(10,30),and various genotypes of the tet M are known to occur in human and animal pathogens(29).

To evaluate the effects of swine production facilities on the levels of resistance to tetracyclines in surrounding soil environments and to?ll the knowledge gaps at the national level,a survey was designed to investigate the antibiotics residues and determine the occurrence and quantity of resistance genes in soil environments adjacent to swine facilities in China.In this study,soil samples were collected from farmlands surrounding nine swine feedlots from three cities in China,and PCR was used to determine the occurrence of tet genes typically present in soil samples.Seven ef?ux pump genes(tet A,tet C,tet E,tet G,tet K,tet L,tet A/P), seven ribosomal protection proteins genes(tet M,tet O,tet Q, tet S,tet T,tet W,tet B/P),and one enzymatic modi?cation gene (tet X)were selected,since these genes have been reported to frequently occur in environments surrounding swine feedlots(10,11,17,31),and they re?ect the three main resistance mechanisms encoded by tet genes.Furthermore, the qRT-PCR was used to quantify?ve RPPs genes tet M, tet O,tet Q,tet W,and tet T,which were chosen because some studies found greater relative abundance of RPPs genes than that of tet ef?ux pump genes in swine feedlots(8,11),they have established relationship with bacteria of public health concern(16,32),and the real-time PCR method targeting these genes has been established during our preliminary tests. To investigate the levels of tetracycline residues in soil samples,liquid chromatography-electrospray tandem mass spectrometry(LC-MS/MS)methods were used to determine the concentrations of?ve typical tetracyclines and ten of their degradation products.Finally,the phylogenetic analysis was performed to investigate the diversity of tet M genotypes; culture-independent molecular techniques were used in phylogenetic analysis because the conventional culture-dependent methods are limited in scope by only considering culturable bacteria(28).

Experimental Section

Soil Sampling and Processing.Soil samples were collected from farmlands adjacent to nine swine production facilities located in three cities s Beijing,Tianjin,and Jiaxing(in Zhejiang Province)(Figure S1)between November2008and June2009.In Beijing,samples were taken around two swine feedlots in Changping District(de?ne as BJ1and BJ2, respectively),and one feedlot in Shunyi District(de?ne as BJ3);in Tianjin,samples were from Beichen District(TJ1and TJ2)and Dagang District(TJ3);in Jiaxing,samples were from Nanhu District(JX1and JX2)and Tongxiang(JX3).For each site,three subsamples were collected from the top0to10 cm of the surface soil and were mixed to form one composite sample.All samples were passed through a2.0mm sieve, and subsamples were stored at-80°C for DNA extraction. Soil pH was determined with a soil to water ratio of1:10.Soil organic matter was determined by the K2Cr2O7oxidation method.

DNA Extraction.Total DNA was extracted from0.5g of soil using a FastDNA SPIN kit for Soil(Bio101Inc.,Vista, CA),following the manufacturer’s instructions.The con-centration and quality of the extracted DNA was determined by spectrophotometer analysis(NanoDrop ND-1000,Nano-Drop Technologies,Willmington,DE)and agarose gel electrophoresis.

PCR Assays for Detection of tet Genes.All PCR assays were conducted in a25μL volume reaction,using a Peltier Thermal Cycler(Bio-Rad,Hercules,CA).The PCR mixture consisted of2.5μL10×Ex Taq buffer(Mg2+Plus);2μL dNTPs (2mM each);0.2μM of each primer;1.25U of Ex Taq DNA Polymerase;and0.5μL of template.Primers targeting15 different tet genes,tet A,tet C,tet E,tet G,tet K,tet L,tet A/P,tet B/P,tet M,tet O,tet Q,tet S,tet T,tet W and tet X were described

previously(30,33),and their sequences are listed in Table

S1(Supporting Information).The temperature program was

initially denaturated at94°C for4min,followed by35cycles

of45s at94°C,45s at different annealing temperatures

(Table S1),and72°C for1min,with a?nal extension step

for6min at72°C.PCR products were analyzed by

electrophoresis on a1.5%agarose gel in1×TAE buffer.To

ensure reproducibility,duplicate PCR reactions were per-

formed for each sample.Sterile water was used as the negative

control in every run.

After PCR ampli?cation,gel slices of an agarose gel

containing the PCR products were excised and puri?ed using

Agarose Gel DNA Puri?cation Kit(TaKaRa).The puri?ed PCR

products were ligated into p-GEM T easy vector(Promega,

Madison,WI)and then cloned into Escherichia coli JM109

(TaKaRa).Clones containing tet gene inserts were picked

and sequenced.If the gene inserts were veri?ed as the object

resistance genes using the BLAST alignment tool(http://

https://www.sodocs.net/doc/3b5080336.html,/blast/),clones that had the right tet

gene inserts were chosen as the positive control for qualitative

PCR as well as the standards for the real-time PCR.Plasmids

carrying target genes were extracted with Plasmid Kit

(TaKaRa).

qRT-PCR Methods.Five target genes(tet M,tet O,tet Q,

tet W,and tet T)and16S rRNA were quanti?ed based on the

?uorescent dye SYBR-Green I.Plasmids carrying target genes

were used to generate calibration curves,and their concen-

trations were measured with a spectrophotometer(Nano-

drop).As the lengths of the vector and target gene inserts

were known,the gene copy numbers were calculated directly

from extracted plasmid DNA concentration(34).10-fold serial

dilutions of a known copy number of the plasmid DNA were

generated to produce the standard curve.The PCR ef?ciencies

(88.8-119.5%)were examined to test for inhibition.R2values

were more than0.990for all calibration curves.Data analysis

was carried out with iCycler software(version1.0.1384.0CR).

The16S rRNA and tet gene copy numbers were determined

in triplicate using an iCycler IQ5Thermocycler(Bio-Rad,

Hercules,CA).Probe/primer sets for16S rRNA genes were

adapted from Suzuki and colleagues(35).The qPCR primer

sets for tet genes were the same as those used in qualitative

PCR.Each reaction was performed in a25mL volume

containing12.5μL of SYBR Premix Ex Taq(TaKaRa),0.2μM

of each primer,and2μL of template DNA which was diluted

10-fold.The PCR protocol was as the following program:1

min at95°C,followed by40cycles of10s at94°C,45s at

the annealing temperatures.The temperature at which the

?uorescence was read during each cycle was varied according

to different target genes(79°C for tet T,80°C for tet M,81°C

for tet O,82°C for tet Q,and83°C for tet W).Product speci?city

was con?rmed by melting curve analysis(55-95°C,0.5°C

per read,30s hold)and visualization in agarose gels.

Tetracyclines Detection.The procedures for extraction

of tetracyclines and their degradation products in soils

followed those described by Kim and Carlson(36)with minor

modi?cations.LC-MS/MS was used to separate and detect

the tetracyclines,following methods described by Jia(14).

Five target tetracyclines,including tetracycline(TC),oxytet-

racycline(OTC),chlortetracycline(CTC),doxycycline(DXC),

and methacycline(MTC),and ten degradation products,

including4-epitetracycline(ETC),anhydrotetracycline(ATC),

4-epianhydrotetracycline(EATC),4-epioxytetracycline(EOTC), R-apo-oxytetracycline(R-apo-OTC), -apo-oxytetracycline ( -apo-OTC),isochlortetracycline(ICTC),4-epichlortetra-

cycline(ECTC),anhydrochlortetracycline(ACTC),and4-epi-

anhydrochlortetracycline(EACTC),were analyzed in this

study.

Cloning and Phylogenetic Analysis of tetM Genes.The

clone libraries of tet M amplicons obtained from all nine soil

69349ENVIRONMENTAL SCIENCE&TECHNOLOGY/VOL.44,NO.18,2010

samples were constructed to analyze the sequence diversity. Tet M gene fragments were cloned as described above. Between20and30representative clones from each library bearing inserts of the correct size(171bp)were randomly selected for sequencing.Online similarity searching was performed using the BLAST tool.Sequences were subjected to homology analysis using the software DNAMAN version 6.0.3.48(Lynnon Biosoft,USA).For sequence types that exhibited more than98%identity to each other,only one representative was considered for construction of trees.The GenBank sequences most similar to clone sequences in this study and reference sequences for de?ning clusters were included in phylogenetic tree construction.Nucleotide sequences of tet M were aligned using the multiple sequence alignment program CLUSTAL W(37).The neighbor-joining trees were constructed using MEGA version4.1(http:// https://www.sodocs.net/doc/3b5080336.html,/).Bootstrap analysis with1000replicates was used to evaluate the signi?cance of the nodes.

The sequences of tet M obtained in this study have been deposited in GenBank under Accession No.GU373619to GU373623,GU474957to GU474981.

Data Analysis.Copy numbers were log-transformed as

needed to normalize the distributions prior to statistical analysis.All statistical analyses were performed using SPSS version13.0,and one-way analysis of variance(ANOVA)was used to assess the homogeneity of variance with signi?cance levels of5%(P<0.05).Pearson’s bivariate correlation analysis was used to assess trends among tet genes and other parameters monitored.

Results and Discussion

Occurrence of tet Genes.All15tet genes were detected in soil samples adjacent to swine feedlots,and each sample contained several different tet genes(Table S2).The soil samples from different sites showed different diversities of resistance genes.Samples from TJ1and TJ2contained12tet gene patterns,while samples from JX3only contained seven tet gene patterns.Two ef?ux pump genes(tet A,tet C),four RPPs genes(tet M,tet O,tet Q,tet W),and one enzymatic modi?cation gene(tet X)were the most frequently detected determinants in soil samples.Among them,four RPPs genes (tet M,tet O,tet Q,tet W)have been detected in all samples, while tet E and tet S genes were only detected in one sample (TJ1).

The different diversities of resistance genes in soils from different sites possibly re?ect regional differences in gene diversity.Schmitt et al.found that the diversity of resistance genes from German agricultural?eld was considerably lower than that of Swiss pasture(18).All15tet genes detected in the present study were also reported previously in swine lagoons(2,10,11,17),in swine manures,or piggery manured soils(18-20).These results were consistent with the hy-pothesis that the seepage from waste lagoons and/or land application of manure waste from swine production facilities nearby contributes to the spread of these tet genes in surrounding soil environments.However,it is known that resistance could occur in pristine soil environments even without any record of antibiotic contamination(5,38),so it is not possible to conclude whether this diversity is caused by the spread of resistance after50years of tetracycline use or is due to the natural background in soil resistance genes (18).But the evidence that a high diversity of resistance genes were detected in soil in the present study still showed that soil plays an important role as resistance gene reservoir(39).

The most frequently detected seven tet genes in soil samples covered all the three main resistance mechanisms, which showed that the detection frequency of tet genes had no preference for the resistance mechanism(34).Four RPPs genes(tet M,tet O,tet Q,and tet W)have been detected in all samples,indicating their prevalence in soils surrounding swine feedlots.Similar results were also found in swine lagoons where tet M,tet O,tet Q,and tet W were dominant in the total communities(10).The prevalence of these four RPP genes in the present study is not surprising,since these genes were found to be predominant in the gastrointestinal tracts of pigs and steers(30),and the increasing frequencies of these genes in the vicinity of pig farms are consistent with the hypothesis that this occurrence could be the result of gene?ow from the animals(10).The above aspects are in favor of using these four RPPs genes as indicators to assess the tetracycline resistance in soils adjacent to swine feedlots. Therefore,tet M,tet O,tet Q,and tet W genes were further quanti?ed using qRT-PCR.

The limited distribution of some genes is possibly associated with their limited host range,such as tet E,since it is associated with large plasmids,which are neither mobile nor conjugative(33).That reduces its opportunities for transfer to other species(32).However,the limited distribu-tion of tet S is not expected since it can be found in conjugative plasmids although they are not self-mobile(32).

In this survey only a limited number of resistance genes in soils were investigated,however,a variety of ARGs encoding different antibiotic resistance could be present in soil environments in the vicinity of swine feedlots where different classes of antibiotics(e.g.,macrolides,lincosamides)are frequently used in addition to TCs(1).So there is a need for further study to explore more diverse ARGs in soils.In addition,it is noteworthy that many ARGs have been found frequently to be part of multiple antibiotic resistant gene cassettes which can cause multiple antibiotic resistance in bacteria,meaning that when one antibiotic was used,it may coselect for resistance to other different antibiotics simul-taneously(3).So a comprehensive study on multiple antibiotic resistance in soils surrounding swine feedlots is important.

Quanti?cation of tet Genes in Soils around Swine Feedlots.Absolute gene copy numbers of?ve tet genes(tet M, tet O,tet Q,tet W,and tet T)in soil samples are presented in Table S3.To minimize variance caused by different extraction and analytical ef?ciencies,and differences in background bacterial abundances,the absolute number of all resistance genes was normalized to that of ambient16S rRNA genes (Figure1and Table S4).The same general trends in gene abundance were seen in the normalized data(Table S4) relative to absolute data(Table S3),since the total number of16S rRNA gene copies was found to be relatively consistent among different sites at1010copies per gram dry soil,except for JX3(109copies per gram dry soil)(Table S5).The

relative FIGURE1.Detected levels of?ve tetracycline resistance genes (tet M,tet O,tet Q,tet W,and tet T)normalized to copies of ambient16S rRNA gene present in soil samples from different sites.Error bars indicate the standard deviation of three replicates.

VOL.44,NO.18,2010/ENVIRONMENTAL SCIENCE&TECHNOLOGY96935

abundances(target gene/16S rRNA genes)of tet M,tet O,tet Q, and tet W in soil showed signi?cant variation over sampling sites,ranging from10-5to10-2.In summary,the total absolute and relative abundances of these four tet genes(Tables S3 and S4)on average in different soil samples showed signi?cant variation,in the range of1.46×106to2.62×109 (about1794times difference)and in the range of2.12×10-4 to4.41×10-2(about208times difference),respectively. However,tet T genes were lower in relative abundances(from 10-6to10-4)than the other four genes at all sites where tet T genes were detected.

To date,four RPPs genes(tet M,tet O,tet Q,and tet W) observed in different environments showed very different relative abundances.In our results,the relative abundances of these four RPPs genes ranged from10-5to10-2,comparable to the results obtained from waste lagoons at cattle feedlots, ranging from10-6to10-2(24);in swine lagoons and groundwater samples,generally higher relative abundances of these four genes were presented with values in the range of10-4to10-1(11);however,samples from river sediments contained much lower concentrations of tet O and tet W ranging from10-8to10-7(22).In theory,prevalent resistance genes in soils near swine feedlots should re?ect the gas-trointestinal microbes of the involved animals and the tendency of different genes(and/or their hosts)to survive after release into the environment(24).The prevalence of these four RPPs genes could be attributed to their predomi-nance in the gastrointestinal tracts of pigs,as previously mentioned(30),and their elevated possibilities of transfer from one bacteria to another because of their close relation-ship with mobile genetic elements such as plasmids,con-jugative transposons,integrons,and consequently their wide host range(16,32).

Although tet T was not always detected in these samples in the present study(Table S2),it has been reported to be ubiquitous in soil and pig slurries(18).Therefore tet T was also quanti?ed simultaneously for comparison purposes.In the present study,tet T genes were lower in relative abun-dances than the other four RPPs genes(tet M,tet O,tet Q,and tet W).It could be attributed to the limited transferability of tet T genes compared with the other four genes or the shorter migration of tet T gene carriers from manure to soil.The tet T gene has been found in the pathogen Streptococcus pyogenes (18),but very few studies reported its potential host range (16).The higher concentrations of tet M,tet O,tet Q,and tet W than that of tet T in samples at all the sites also suggested that the risk for dissemination of tet M,tet O,tet Q,and tet W in environments is much higher than that for tet T.

Quanti?cation of Tetracyclines in Soils.Table1sum-marizes the concentrations of?ve typical tetracyclines and ten of their degradation products in soils.From these?ndings, it was concluded that a degradation of tetracyclines occurred. TC(average concentration range1.3-95.3μg·kg-1dry soil) and its three degradation products ETC(0.6-135.6μg·kg-1 dry soil),ATC(0.7-9.9μg·kg-1dry soil),and EATC(0.6-11.6μg·kg-1dry soil)and two degradation products ACTC(0.1-0.9μg·kg-1dry soil)and EACTC(0.4-1.3μg·kg-1dry soil)from CTC were observed in all soils.Among them,the average concentration of ETC observed in the BJ2sample was the highest,up to135.6μg·kg-1dry soil.Totally,the highest concentration of the total tetracyclines from BJ2soil(377.8 (224.3μg·kg-1dry soil)were about2orders of magnitude

TABLE1.Quantification of Tetracyclines in Soil Samples,Normalized to the Dry Weight of the Soil a

swine feedlots(μg/kg)

compound BJ1BJ2BJ3TJ1TJ2TJ3JX1JX2JX3

tetracycline(TC)10.5795.2813.66 1.32 2.74 6.12 3.10 1.33 1.40 (1.64)(55.50)(7.52)(0.12)(0.69)(3.07)(0.32)(0.19)(0.31)

4-epitetracycline(ETC)11.08135.5814.390.78 2.43 2.59 2.790.660.62 (4.05)(78.84)(2.72)(0.17)(0.82)(0.59)(0.35)(0.21)(0.12)

anhydrotetracycline(ATC)7.00 4.519.92 1.07 4.46 4.03 1.570.70 1.28 (3.29)(2.52)(1.04)(0.56)(1.60)(0.60)(0.60)(0.26)(0.54)

4-epianhydrotetracycline(EATC)7.50 5.8011.63 4.12 3.70 3.610.870.670.60 (3.60)(2.84)(0.35)(1.04)(1.81)(0.62)(0.17)(0.13)(0.17)

oxytetracycline(OTC)13.1220.3633.21ND0.41 4.51 3.240.29ND (2.90)(14.06)(12.91)(0.07)(1.09)(0.73)(0.06)

4-epioxytetracycline(EOTC)7.7622.1729.87ND ND ND 2.46ND ND (3.04)(16.81)(16.18)(0.28)

R-apo-oxytetracycline(R-apo-OTC)0.070.060.05ND0.080.090.090.10ND (0.02)(0.06)(0.02)(0.04)(0.04)(0.04)(0.06)

-apo-oxytetracycline( -apo-OTC)0.160.09ND0.330.15ND0.130.130.08 (0.05)(0.02)(0.14)(0.05)(0.07)(0.11)(0.03)

chlortetracycline(CTC)33.2032.2319.47ND0.690.837.77 1.240.36 (9.39)(18.67)(6.43)(0.48)(0.17)(0.59)(0.25)(0.12)

4-epichlortetracycline(ECTC)69.7958.2637.61ND ND 2.5021.81 2.40ND (22.23)(33.72)(16.84)(0.80)(6.70)(1.26)

anhydrochlortetracycline(ACTC)0.410.730.420.600.510.890.590.150.30 (0.09)(0.52)(0.34)(0.43)(0.26)(0.06)(0.39)(0.03)(0.19)

4-epianhydrochlortetracycline(EACTC)0.73 1.090.46 1.27 1.03 1.250.850.510.39 (0.30)(0.24)(0.10)(0.83)(0.26)(0.35)(0.70)(0.33)(0.16)

isochlortetracycline(ICTC)1.98 1.420.770.21ND ND0.850.28ND (0.17)(0.43)(0.33)(0.07)(0.08)(0.10)

methacycline(MTC)ND ND0.17ND0.10ND0.220.120.10

(0.04)(0.05)(0.08)(0.04)(0.03)

doxycycline(DXC)0.170.180.260.190.16ND 5.010.540.23 (0.11)(0.07)(0.10)(0.08)(0.04)(0.13)(0.18)(0.06)

sum of tetracyclines 163.55377.77171.889.9016.4526.4151.359.12 5.36 (50.88)(224.30)(64.91)(3.43)(6.16)(7.40)(11.25)(3.22)(1.74)

a The data represent the average of three independent sample concentrations.(Standard errors of the mean are presented in brackets.)

69369ENVIRONMENTAL SCIENCE&TECHNOLOGY/VOL.44,NO.18,2010

higher than the lowest concentration of total tetracyclines from JX3soil(5.4(1.7μg·kg-1dry soil).

Previous studies have shown that the highest average concentrations of TC and CTC in surface soil(0-10cm)after fertilization with liquid manure were86.2and6.6μg·kg-1 dry soil,respectively(41),which is comparable to TC(95.3μg·kg-1dry soil)observed in the present study but lower than CTC(33.2μg·kg-1dry soil).We hypothesized the difference in the highest average concentrations of CTC in surface soil between this and previous studies might be associated with the initial concentrations of parent CTC in the manure waste and different ways of applying manure waste into soil as well as environmental factors.It is known that environmental factors such as pH,redox,and light conditions could in?uence the abiotic degradation of TCs in environments(14).It has been reported that the temperature could in?uence the persistence of CTC in soil(41).In the swine wastewater from concentrated swine feeding plants in Beijing,the tetracyclines(TC,OTC,CTC)have been detected showing a concentration range of1.1-32.7μg·L-1 (9),generally lower than those detected in Beijing samples in the present study.This is possibly due to the limited stability of the parent TCs in aqueous solution but high sorption to solid matrices(42).In domestic wastewater and surface waters in Beijing,the tetracyclines and their deg-radation products(ranging from1.9to72.5ng·L-1)(14)were much lower than those detected in the present study.These results are also consistent with the fact that tetracyclines are mainly applied in animal industry in China(14).

Responses of tet Genes to Environmental Factors.A bivariate correlation analysis was performed between total tet gene copy numbers(sum of the four genes,tet M,tet O, tet Q,and tet W)and measured physicochemical and biological soil data(Table S5)to assess the in?uence of other envi-ronmental factors on absolute tet gene copy numbers(Figure S2,P<0.05).The strongest positive correlation with tet gene copies were16S rRNA gene copies(r2)0.65,P<0.01)(Figure S2B).In addition,total tet gene copies were also signi?cantly correlated with organic matter in soil(r2)0.46,P<0.05) (Figure S2C),which could be attributed to the signi?cant relationship between16S rRNA gene copies and organic matter(data not shown).Recent data have shown a negative relationship between tet genes and pH(25);however,there is no signi?cant relationship between total tet gene copies and pH(r)-0.14,P>0.05)in this study,and the reasons are not clear.

A bivariate correlation analysis further showed that the levels of total tet gene copies were signi?cantly correlated to the total concentrations of tetracyclines with an r2value of 0.45(P<0.05)(Figure S2A).Although this relationship is not as strong as that in other studies(21),similar results were also found in Peak’s study,and they hypothesized the weak correlation was possibly related to different environmental fate and transport mechanisms of resistance genes versus tetracycline after release(24).However,Pei and colleagues did not?nd a signi?cant correlation between the concentra-tions of antibiotics and resistance gene numbers in environ-ment(22).Anyway,the results in the present study are consistent with the hypothesis that resistance genes would be positively selected after greater exposure to TCs.

Considering the frequent usage of TCs in swine industry and its poor absorption by animals,the chances of bacteria in environment exposure to TCs highly increased.The resistance selection process can occur in gastrointestinal tracts of animals and in a manure waste holding system(1). So the presence of tet genes in soils may be the result of the migration of tetracycline-resistant bacteria or transmission of resistance genes by horizontal gene transfer from irrigation of waste lagoon water or from swine manure(11).It has been identi?ed that piggery manure is a reservoir for transferable antibiotic resistance plasmids(6).Another resistance selection process is in soils after land application of waste lagoon water or manure containing TCs residues. It has been reported that TCs released to soils were strongly absorbed in various soil types and not to be readily degradable,combined with its constant input through manure waste or waste lagoon water,they can potentially provide a concentrated environment where alterations in local environmental microbiota can occur(10),including selection of resistant mutants in susceptible species,changes in the distribution of resistance genes present in gene-transfer elements,and selection of resistant species(5).Soil bacteria in close contact to manure or pigsty environment may thus have an important role in horizontal spread of resistance (20)as a huge environmental reservoir.

Cloning and Phylogenetic Analysis of tetM genes.A total of191clones for tet M from9libraries(BJ1,BJ2,BJ3,TJ1, TJ2,TJ3,JX1,JX2,JX3)were sequenced successfully.BLAST searches of the GenBank database con?rmed that all of the sequenced clones matched known tet M genes,with sequence identities ranging from98%to100%.Phyloge-netic trees of tet M gene sequences and related NCBI sequences are shown in Figure S3.Results showed at least ?ve types of tet M existed in the soil samples.The most common type is the type1tet M present in a total of117 clones(61%),which was identical to the sequences of tet M found in various plasmids,transposons,conjugative transposons,and chromosomes of both gram-negative and gram-positive https://www.sodocs.net/doc/3b5080336.html,pared to other genotyping, our type1tet M correspond to Mekong type1tet M by Kobayashi et al.(28).The type5tet M detected in59clones (31%)revealed high sequence identity(G99%)to the corresponding sequence in Streptococcus agalactiae(ac-cession no.GU318219),Streptococcal conjugative shuttle transposon Tn1545(accession no.X04388),and Strepto-coccus pneumoniae partial transposon Tn1545(accession no.AM889142).The sequence of type4tet M in two clones (1%)was more closely related to the above three sequence types.Nine clones(5%)contained the type2tet M from Staphylococcus aureus transposon Tn916-like(accession no.EU918654)and Streptococcus pneumoniae(accession no.AY466395),and four clones(2%)contained the type 3tet M from Streptococcus pneumoniae(accession no. EF472561).

It is known that alleles of tet M are widely distributed in a broad range of genera,and their transfer is presumably mediated by conjugative transposons Tn916-Tn1545family and Tn5251and large conjugative plasmids(16).However, further analysis is still needed to con?rm the association of tet M gene with mobile genetic elements.

This study clearly demonstrates the presence of high levels of tetracycline residues and tetracycline resistance in soil environments adjacent to these swine feedlots,raising concerns that the overuse of antibiotics in the livestock system contributes to the resistance reservoir in the surrounding environment,through potential pathways such as waste lagoon seepage,irrigation of land with waste lagoon water, and land application of manures.Bivariate correlation analysis con?rmed that the absolute tet gene copies in soil were not only strongly correlated with environmental factors such as ambient bacterial16S-rRNA gene copies and organic matter but also signi?cantly correlated with the concentra-tions of tetracycline residues in soil,which possibly indicated that resistance genes would be positively selected after greater exposure to TCs.The phylogenetic analysis on tet M revealed that most genotypes of tet M were associated with various conjugative transposons and plasmids,which may allow wider dissemination of tet M gene among numerous bacteria in environment,even in pathogens.However work is still needed to investigate the potential host range of tet genes VOL.44,NO.18,2010/ENVIRONMENTAL SCIENCE&TECHNOLOGY96937

in soil environments,which may have signi?cant implication for public health as pathogens carrying resistance genes are more dangerous.Although it is dif?cult to build a direct link between environmental resistance and public health con-cerns,the results in the present study highlight that soil plays an important role in the spread of antibiotic resistance and is a huge environmental reservoir. Acknowledgments

This project was?nancially supported by the Ministry of Science and Technology,China(2007CB407304)and Chinese Academy of Sciences(KZCX1-YW-06-03).We also acknowledge the?nancial support of the International Scienti?c Cooperation Key Program of Zhejiang Province, China(2009C14026).We thank Mrs.Hongmei Zhang for providing soil samples from Jiaxing and Drs.Limei Zhang and Jupei Shen for many helpful instructions.We thank Professor Jianying Hu and Dr.Ai Jia for help in measuring tetracyclines.We thank Dr.Paul Williams for proofreading the manuscript.

Supporting Information Available

Three locations in China from which soil samples were originally collected(Figure S1);primers and PCR conditions used in this study(Table S1);detection of tet genes in soils around nine swine feedlots(Table S2);copies of tet genes in soil at different sites,normalized to sample volume(Table S3);copies of tet genes in soil at different sites,normalized to ambient16S rRNA gene copies(Table S4);the mean chemical and biological conditions of each sample(Table S5);relationship between total tet gene copy numbers and measured physicochemical and biological soil data(Figure S2);neighbor-joining phylogenetic tree of tet M gene se-quences detected in nine soil samples(Figure S3).This material is available free of charge via the Internet at http:// https://www.sodocs.net/doc/3b5080336.html,.

Literature Cited

(1)Chee-Sanford,J.C.;et al.Fate and Transport of Antibiotic

Residues and Antibiotic Resistance Genes following Land Application of Manure Waste.J.Environ.Qual.2009,38(3), 1086–1108.

(2)Mackie,R.I.;et al.Tetracycline residues and tetracycline

resistance genes in groundwater impacted by swine production facilities.Anim.Biotechnol.2006,17(2),157–176.

(3)Pruden, A.;et al.Antibiotic resistance genes as emerging

contaminants:Studies in northern Colorado.Environ.Sci.

Technol.2006,40(23),7445–7450.

(4)Hamscher,G.;et al.Different behavior of tetracyclines and

sulfonamides in sandy soils after repeated fertilization with liquid manure.Environ.Toxicol.Chem.2005,24(4),861–868.

(5)Martinez,J.L.Environmental pollution by antibiotics and by

antibiotic resistance determinants.Environ.Pollut.2009,157

(11),2893–2902.

(6)Binh,C.T.T.;et al.Piggery manure used for soil fertilization

is a reservoir for transferable antibiotic resistance plasmids.

FEMS Microbiol.Ecol.2008,66(1),25–37.

(7)Rhodes,G.;et al.Distribution of oxytetracycline resistance

plasmids between aeromonads in hospital and aquaculture environments:Implication of Tn1721in dissemination of the tetracycline resistance determinant Tet A.Appl.Environ.

Microbiol.2000,66(9),3883–3890.

(8)Jindal,A.;et al.Antimicrobial use and resistance in swine waste

treatment systems.Appl.Environ.Microbiol.2006,72(12),7813–7820.

(9)Ben,W.W.;et al.Simultaneous determination of sulfonamides,

tetracyclines and tiamulin in swine wastewater by solid-phase extraction and liquid chromatography-mass spectrometry.

J.Chromatogr.,A2008,1202(2),173–180.

(10)Chee-Sanford,J.C.;et al.Occurrence and diversity of tetracycline

resistance genes in lagoons and groundwater underlying two swine production facilities.Appl.Environ.Microbiol.2001,67

(4),1494–1502.(11)Koike,S.;et al.Monitoring and source tracking of tetracycline

resistance genes in lagoons and groundwater adjacent to swine production facilities over a3-year period.Appl.Environ.

Microbiol.2007,73(15),4813–4823.

(12)Hu,J.Y.;et al.Phenotyping and genotyping of antihiotic-resistant

Escherichia coli isolated from a natural river basin.Environ.

Sci.Technol.2008,42(9),3415–3420.

(13)Zhang,X.X.;et al.Class1integronase gene and tetracycline

resistance genes tetA and tetC in different water environments of Jiangsu Province,China.Ecotoxicology2009,18(6),652–660.

(14)Jia,A.;et al.Simultaneous determination of tetracyclines and

their degradation products in environmental waters by liquid chromatography-electrospraytandemmassspectrometry.J.Chro-matogr.,A2009,1216(22),4655–4662.

(15)Brown,M.G.;Mitchell,E.H.;Balkwill,D.L.Tet42,a Novel

Tetracycline Resistance Determinant Isolated from Deep Ter-restrial Subsurface Bacteria.Antimicrob.Agents Chemother.

2008,52(12),4518–4521.

(16)Roberts,M.C.Update on acquired tetracycline resistance genes.

FEMS Microbiol.Lett.2005,245(2),195–203.

(17)Macauley,J.J.;Adams,C.D.;Mormile,M.R.Diversity of tet

resistance genes in tetracycline-resistant bacteria isolated from

a swine lagoon with low antibiotic impact.Can.J.Microbiol.

2007,53(12),1307–1315.

(18)Schmitt,H.;et al.Tetracyclines and tetracycline resistance in

agricultural soils:Microcosm and?eld studies.Microbial Ecol.

2006,51(3),267–276.

(19)Sengelov,G.;et al.Bacterial antibiotic resistance levels in Danish

farmland as a result of treatment with pig manure slurry.

Environ.Int.2003,28(7),587–595.

(20)Agerso,Y.;Sandvang,D.Class1integrons and tetracycline

resistance genes in Alcaligenes,Arthrobacter,and Pseudomonas spp.isolated from pigsties and manured soil.Appl.Environ.

Microbiol.2005,71(12),7941–7947.

(21)Smith,M.S.;et al.Quanti?cation of tetracycline resistance genes

in feedlot lagoons by real-time PCR.Appl.Environ.Microbiol.

2004,70(12),7372–7377.

(22)Pei,R.T.;et al.Effect of River Landscape on the sediment

concentrations of antibiotics and corresponding antibiotic resistance genes(ARG).Water Res.2006,40(12),2427–2435.

(23)Yu,Z.T.;et al.Development and application of real-time PCR

assays for quanti?cation of genes encoding tetracycline resis-tance.Appl.Environ.Microbiol.2005,71(11),6926–6933. (24)Peak,N.;et al.Abundance of six tetracycline resistance genes

in wastewater lagoons at cattle feedlots with different antibiotic use strategies.Environ.Microbiol.2007,9(1),143–151. (25)Storteboom,H.N.;et al.Response of antibiotics and resistance

genes to high-intensity and low-intensity manure management.

J.Environ.Qual.2007,36(6),1695–1703.

(26)Sengelov,G.;Halling-Sorensen,B.;Aarestrup,F.M.Susceptibility

of Escherichia coli and Enterococcus faecium isolated from pigs and broiler chickens to tetracycline degradation products and distribution of tetracycline resistance determinants in E-coli from food animals.Vet.Microbiol.2003,95(1-2),91–101. (27)Rizzotti,L.;et al.Molecular diversity and transferability of the

tetracycline resistance gene tet(M),carried on Tn916-1545 family transposons,in enterococci from a total food chain.

Antonie Van Leeuwenhoek Int.J.Gen.Mol.Microbiol.2009,96

(1),43–52.

(28)Kobayashi,T.;et al.Distribution and diversity of tetracycline

resistance genes encoding ribosomal protection proteins in Mekong river sediments in Vietnam.FEMS Microbiol.Ecol.2007, 59(3),729–737.

(29)Rahman,M.H.;et al.Occurrence of two genotypes of tetracycline

(TC)resistance gene tet(M)in the TC-resistant bacteria in marine sediments of Japan.Environ.Sci.Technol.2008,42(14),5055–5061.

(30)Aminov,R.I.;Garrigues-Jeanjean,N.;Mackie,R.I.Molecular

ecology of tetracycline resistance:Development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins.Appl.Environ.Microbiol.2001, 67(1),22–32.

(31)Aminov,R.I.;et al.Development,validation,and application

of PCR primers for detection of tetracycline ef?ux genes of gram-negative bacteria.Appl.Environ.Microbiol.2002,68(4),1786–1793.

(32)Chopra,I.;Roberts,M.Tetracycline antibiotics:Mode of action,

applications,molecular biology,and epidemiology of bacterial resistance.Microbiol.Mol.Biol.Rev.2001,65(2),232+. (33)Ng,L.K.;et al.Multiplex PCR for the detection of tetracycline

resistant genes.Mol.Cell.Probes2001,15(4),209–215.

69389ENVIRONMENTAL SCIENCE&TECHNOLOGY/VOL.44,NO.18,2010

(34)Zhang,T.;et al.Tetracycline Resistance Genes and Tetracycline

Resistant Lactose-Fermenting Enterobacteriaceae in Activated Sludge of Sewage Treatment Plants.Environ.Sci.Technol.2009, 43(10),3455–3460.

(35)Suzuki,M.T.;Taylor,L.T.;DeLong,E.F.Quantitative analysis

of small-subunit rRNA genes in mixed microbial populations via5′-nuclease assays.Appl.Environ.Microbiol.2000,66(11), 4605–4614.

(36)Kim,S.C.;Carlson,K.Quanti?cation of human and veterinary

antibiotics in water and sediment using SPE/LC/MS/MS.Anal.

Bioanal.Chem.2007,387(4),1301–1315.

(37)Thompson,J.D.;Higgins,D.G.;Gibson,T.J.Clustal-W-

Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting,Position-Speci?c Gap Penalties and Weight Matrix Choice.Nucleic Acids Res.1994, 22(22),4673–4680.

(38)Allen,H.K.;et al.Functional metagenomics reveals diverse

beta-lactamases in a remote Alaskan soil.ISME J.2009,3(2), 243–251.(39)D’Costa,V.M.;et al.Sampling the antibiotic resistome.Science

2006,311(5759),374–377.

(40)Auerbach,E.A.;Seyfried,E.E.;McMahon,K.D.Tetracycline

resistance genes in activated sludge wastewater treatment plants.

Water Res.2007,41(5),1143–1151.

(41)Hamscher,G.;et al.Determination of persistent tetracycline

residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ioniza-tion tandem mass spectrometry.Anal.Chem.2002,74(7),1509–1518.

(42)Halling-Sorensen,B.;Sengelov,G.;Tjornelund,J.Toxicity of

tetracyclines and tetracycline degradation products to envi-ronmentally relevant bacteria,including selected tetracycline-resistant bacteria.Arch.Environ.Contam.Toxicol.2002,42(3), 263–271.

ES1007802

VOL.44,NO.18,2010/ENVIRONMENTAL SCIENCE&TECHNOLOGY96939

TCS电子台秤说明书

1.0 概 述 T C S 系 列 电 子 台 秤 采 用 本 公 司 生 产 的 高 精 度 称 重 显 示 仪 和 称 重 传 感 器 , 具 有 结 构 新 颖 , 计 量 准 确 , 经 久 耐 用 的 特 点 , 台 面 采 用 不 锈 钢 或 碳 钢 材 料 , 可 适 用 于 工 业 及 商 业 的 称 重 场 合 。 该 台 秤 如 配 置 打 印 机 或 与 计 算 机 联 接 , 可 实 现 称 重 数 据 的 计 算 机 管 理 。 2.0 安 装 使 用 说 明 2.1 结 构 图一 LP7610电子台秤总装图 1、 台面板 2、 支脚 3、 上称架 4、 传感器 5、 下称架 6、 限位螺栓 7、 立柱 8、 称重显示器

图 二 LP7611/7612系 列 台 秤 结 构 示 意 图 2.2 安 装 说 明 开 箱 : 1). 打 开 包 装 箱 , 取 出 秤 体 和 仪 表 , 将 说 明 书 、 合 格 证 、 保 修 卡 等 资 料 妥 善 保 管 好 。 装 配 : 1). 拿 去 台 面 , 将 秤 体 平 稳 放 置 , 调 整 四 支 承 脚 使 水 泡 居 中 。 2)调 整 四 角 的 限 位 螺 栓, 使 之 与 上 台 面 的 间 隙 为 2~3 mm 。 2). 用 螺 栓 将 立 柱 托 架 安 装 到 下 秤 体 上 , 将 立 柱 插 入 立 柱 托 架 。 3). 将 传 感 器 电 缆 线 穿 过 立 柱 托 架 及 立 柱 ,并 用 螺 栓 拧 紧 立 柱 ( 注 意 螺 栓 不 要 拧 在 电 缆 上 ), 按 仪 表 说 明 书 要 求 将 传 感 器 电 缆 插 头 插 入 仪 表 的 插 座 。 4). 将 仪 表 安 装 到 立 柱 上 , 将 多 余 的 电 缆 线 塞 入 立 柱 内 。 5). 盖 上 台 面 , 仪 表 通 电 。 6). 该 台 秤 在 工 厂 已 校 正 过 。 1、 台面板 2、 支脚 3、 上称架 4、 传感器 5、 下称架 6、 限位螺栓 7、 立柱 8、 称重显示器

电子秤使用说明书

名称:便携式电子手提秤(配送电池) 最大称重:20公斤,40公斤 最小称重:20g 颜色:淡蓝、橙色、银色、黑色(无说明所要颜色,我们将随机发货) 尺寸:秤身长度11.5厘米,最宽处7.3厘米。 电源:使用2节7号电池 液晶显示,选择锁定/自动锁定,去皮/置零 开机:将电子秤悬挂,使其处于竖直状态,按“ON/OFF”键开机,蜂鸣器发出开机提示声,约二秒钟后LCD 窗显示0.00Kg,进入称量状态。 称重:开机后挂上物品,即可显示称上物品重量,当秤上的挂物品稳定(停止摇摆)后,若已开启锁定功能,物品的重量值被锁定蜂鸣器发出锁定提示声,显示锁定的标志。此时可按“ON/OFF”键解锁追加称量。称重时,所加物品重量(包括皮重)不得超过最大称量40kg ,如果超过以上值时,将显示超载标志“0-Ld”,并发出报警声。 单位转换:按“UNIT”键,电子称在Kg(公斤)、Lb(磅)、OZ(安士)三个单位之间进行循环转换。 关机:(1) 开机后,在90秒内无任何操作,电子称自动关机。 (2) 称重状态下,没有锁定时按“ON/OFF”键关机。在锁定状态时先按“ON/OFF”解锁,再按“ON/OFF”键关机。在温度测量状态下先按“ON/OFF”键退出温度测量状态,再按“ON/OFF”键关机。 1. 每次开机自检时,电子称应处于垂直方向。 2. 请手提着吊环或在吊环上另加辅助工具称量,请勿手握外壳称量,否则将导致称量显示误差超标。 3. 若显示电量不足标志,请及时更换电池。如果电子秤长期不使用,应取出电池,以免因电池漏液而损坏电路。 4. 如出现非人为故障,请送回本公司指定的维修点维修,不要随意拆卸。

XK3190-A12E型电子秤使用说明书

XK3190-A12E型电子秤使用说明书 点击次数:2856 发布时间:2009-4-6 14:23:11 XK319 0-A12E系列电子秤使用说明书 适用:A12E型电子地磅, A12E型电子台秤,A12E型电子叉车秤的 目录 第一章主要参数----------1 第二章显示与键盘--------2 一. 仪表显示与键盘功能示意图 二. 键盘功能 三. 传感器和仪表的连接 第三章操作说明-----------5 一. 开机及开机自动置零 二. 手动置零(半自动置零) 三. 去皮功能四. 计数功能 五. 用户功能设置 六. 大屏幕与仪表的连接、使用七.串行通信接口 第四章维护保养和注意事项-----8

第五章信息提示-------------9 第一章主要参数 1. 型号: XK3190-A12/A12E称重显示器 2. 准确度: n=3000 3. 采样速度: 10次/秒 4. 传感器灵敏度范围: 1.5~3mV / V 5. 分度值: 1/2/5/10/20/50可选 6. 显示: 6位LCD / LED,6个状态指示 7. 大屏幕显示接口(可选):采用串行输出方式:电流环信号, 传输距离≤50 米, 8. 通讯接口(可选):RS232C;波特率1200/2400/4800/9600可 9. 使用电源: 蓄电池 DC6V/4AH (当电源电压小于5.4V 时,显示Bat_lo 报警) 10. 使用温度、湿度:0~40℃;≤85%RH 11. 储运温度:-25~55℃

(1) 上海台之衡工贸有限公司 第二章显示及键盘 一. 仪表显示和键盘功能示意图 交流电源 XK3190-A12 称重显示器 计数功能 * 去皮稳定零点 # 功能 * 去皮置零开/关 交流欠电压 XK3190-A12E 称重显示器 计数功能 * 去皮稳定零点 # 功能 * 去皮置零 (图2 - 1 )显示和键盘示意图 二. 键盘功能 1.[功能]:在称重状态时,按此键大于5 秒,进入用户设置模式。按此键小于 5 秒,进入计数状态。 2. [ * ]:在计数状态时,按此键进入取样样本数输入状 态。 3. [去皮]:在称重状态时,按此键去除皮重。 4. [置零]:在称重状态时,按此键重量显示为零。

电子称使用说明书

智能重量变送器 使 用 说 明 书

一.概述 随着电子称重技术在工业生产过程中的广泛应用,为了使重量信号可以直接输送到工业控制计算机及其它控制仪表,实现生产过程的远距离集中控制,用户迫切需要一种能将重量信号转换成标准模拟量信号或数字信号并能进行设定控制的重量变送器。 该智能重量变送器是本公司为适应这一需求而专门研制的一种集设定控制技术和数字变送器功能于一身的新颖智能重量变送器,适用于冶金、石化、水泥、建材、饲料等需要配料、定值控制的计量控制装置中。 二.技术参数、规格及功能 1.技术参数 ●线性度:0.01%F.S ●输入灵敏度:0.25μv/d ●输入信号范围:0.1mV~20mV ●A/D转换速度:100次/秒 ●A/D转换码数:100万码 ●显示分度数:≤60000码 ●零点温度影响:≤0.2μV/℃ ●满度温度影响:≤10ppm/℃ ●传感器激励电源:电压:DC5V±0.3V ●最大激励电流: 200mA 2.模拟量输出信号 ●一路独立的可编程标准电流信号(可选配两路模拟量输出) ●准确度: 0.1%F.S

●模拟量输出种类: 4~20mA(负载电阻≤750Ω) 0~10mA(负载电阻≤1.5kΩ) 3.通讯口(可选配) 一路串行数字接口 信号种类:标准RS-232、RS-485、20mA电流环(单向)及电台接口。 (用户可在上述信号接口中任选一种,可同具有相应输入接口及格式的计算机、显示器等使用。)4.设定控制信号 二路(常开)继电器触点:容量AC250V 2.5A(可选配四路) 5.显示器 5.1 A型 ●主显示器5位红色0.5英寸LED,显示称量值、提示符。 ●付显示器6位绿色0.3英寸LED,显示累加值。 ●指示灯8只LED显示工作状态及内容。 5.2 B型 ●主显示器5位红色0.8英寸LED,显示称量值、提示符。 ●付显示器6位红色0.5英寸LED,显示累加值。 ●指示灯8只LED显示工作状态及内容。 6.一般规格及使用环境 ●环境温度:0 ~40℃; ●相对温度:40℃(20 ~90)%RH; ●大气压强:86 ~106 KPa; ●供电电压:AC220 +22-33V ●供电频率:50±1Hz;

电子秤说明书

使用手册说明 instrucción de manual de uso 名称:型号acs-fb(kv)使用手册 denominación :manual de uso de modelo acs-fb(kv) 本使用手册通用于太航相同产品 的各种型号。本手册上的部分内容可能不适用于您所购买的设备上。 nuestra empresa tendrá terecho de mejora y actualizar por cualquier momento nuestros productos. 发布时间: 2010年 fecha de emisión: a?o 2010 产品尺寸与技术参数 dimensión y espeficicación 57 cm 42 cm 47 cm篇二:友声电子秤说明书 友声电子秤说明书 一、技术指标: 1.内装免维护充电蓄电池,充电可同时开机使用。 2.开机自动置零。 3.零点自动跟踪。 4.累计次数1~100次。 5.电源:交流220v(+10%、-10%),50hz,内置4v/4ah免维护可充电蓄电池。 6.工作温度范围:0℃~+40℃。 7.相对湿度≤ 85%rh。 二、操作方法: 将电子秤置于结实平整的台面上,四脚调整至水平泡位于中央,使用专用秤盘时,必须 先放上专用秤盘,然后开启电源,使零位标志点亮,决不能长期在"去皮"标志点亮情况下使 用,否则零位自动跟踪功能消失,零位会产生漂移。 1. 开机:打开电源,系统显示笔 划及自检,然后进入正常称重状态。 2. 【置零】键:重量显示置零。置零范围≤4%fs, 去皮状态下无效。 3. 【去皮】键:最大去皮范围<显示数值99999(1)按此键, 重量显示为零,并点亮去皮标志。(2)将原称重物取下,重量显示为负值,按【去皮】键,称 重复零,去皮标志熄灭。 4. 0~9键:输入数据,单重窗显示从右到左循环输入。隔3秒后,按任一数字键, 均可清除原数据,并同时输入该键的数字。 5. 【清除】键:在称重状态下,按此键清除单重。 6. 【累计】键:按此键进入计数累计状态(数量为零时无效)。此时,重量窗显示 "add",单重窗显示"x",其中"x"表示累计的次数,个数窗显示为累计总个数。在累计状态下, 除【累计】键外,按任何键均可恢复称重状态,等待下一次累计,原累计数据均保存在内存 中。 7. 【累清】键:清除内存的累计数据,退出累计状态,"累计"标志消失。 8. 【取样】键:在秤上放足样品,以数字键输入取样数量(显示在单重窗),待重量稳 定后按此键,此时所设定个数将显示在个数窗,单重窗则显示根据取样计算出的单重值。如 果计算出的单重值小于分度值的80%,则单重不足标志点亮。如果取样的重量小于分度值的4 倍,则取样不足标志点亮 如需更改取样数量,可先按【清除】键,再输入新数量。若前次设定已超过3秒,则免 按【清除】键,直接输入新数量即可。 单重最多为四位小数时,单重值最大不能超过1kg,否则会出现计算错误。

电子台秤说明书

TCS-60型交直流两用电子台秤 使用说明书 安庆市亚星电子衡器有限公司 一、概述 亚星牌TCS-60型交直流两用电子台秤,是本公司最新开发的新产品。该产

品采用了高性能八位单片机和高精度传感器技术,计量迅速准确、性能稳定可靠。 与TCS-A型系列产品相比具有直流电池供电的特点,更加适合于商业买卖计量, 是文明经商之必备用品。 本产品的特点如下: 1、外形小巧,操作方便,装置简单。 2、具有零位自动跟踪功能,故零位不受微风的影响,从而保证称量准确。 3、采用防水型轻触键盘,按键时发出“嘟嘟”声。 4、为了保证公平买卖,具有双面显示功能,显示器采用红色LED发光数码管。 5、具有自动清除单价的功能。 6、具有金额累计、次数累计功能。 二、特点及使用须知 1、 TCS-60交直流两用电子台秤使用6V/5Ah大容量铅酸免维护可充电电池 作为直流电源,充满一次可连续使用20小时。 2、正常使用情况下,插上交流电源,电源打开电源开关,电子秤自动切换到交 流电源,并自动对蓄电池充电,此时电子秤金额显示“电池”▽标志灭,“充电”▼标志亮,当电源充满时,自动关断充电电路,“充电”▽标灭,“充满” ▼指示灯亮。 3、在电源供电情况下,打开电子秤电源开关,金额显示窗下“电池”▼标志指 示灯亮,说明是后备直流电池供电。若连续使用至电池容量不足时,“不足” ▼标志指示灯亮,提示用户液压对蓄电池充电此时,电子秤在继续使用数分钟后,出现“dC Lo”,将停止称量计量。 4、在电池供电情况下,为了节电,在秤盘上无重量时,约十几秒后,显示器自 动熄灭,此时若按清除键或放上计量物品,电子秤会自点亮显示。 5、蓄电池容量出现不足时,充电时间需要约7-8小时。 6、建议使用直流电源为主的用户每使用2个白天,即在夜间对电池充电一次。 7、在使用过程中,交直流电源突然切换时,若出现不正常显示,只需重新开机 一次即可正常使用。 三、产要技术功能 1、交直流两用三窗显示计价功能(可选交流、交直流计重仪表) 2、规格:30kg、60kg、100kg、150kg、300kg、600kg 准确度符合OIM L○Ⅲ级秤的要求 3、开关、置零、去皮等功能 4、不锈钢大平面秤台 5、台面尺寸:550×460mm 400×300mm 480×360mm可选 6、额定电压:220vac-15%+10% 50Hz

电子厨房秤SF400A厨房电子秤 家用电子秤的使用说明 电子秤使用说明

SF400A使用说明 一:按键功能: 1、ON/OFF:电源开关,如开机在空称情况下,30秒左右会自动关机 2、TARE:去皮键,如放器皿于秤盘上,按此键后归零,接着向器皿中倒入液体,此时只显示器皿中液体重量。 3、MODE:单位转换键,“g”(克)和“oz”(盎司)间转换。盎司为国外常用单位,例如黄金美元报价通常以一盎司为单位。注:1公斤=1000克=2斤。 4、PCS:开机归零后,放上一定数量(只能是25,50,75,100中一个)均重小物体,此时显示这些物体重量,此时按MODE键,交替显示25,50,75,100。如您放得物体是75个,反复按MODE键,显示为75后停止,再按PCS键,小物体重量标定完成。重新放上需要计数的物体,显示屏直接显示为物体数量。实际上就是增加一个一个除法算法。 5、LIGHT:显示屏背景光源的开关。 二、注意事项: 1、开机不显示:检查电池是否安装正确电量是否充足、绝缘塑料片是否取出。 2、电子秤放平稳后,将待称量物体轻拿轻放于秤盘上,发现物体重量超过量程后迅速拿下,尽量爱惜电子秤。 3、长期不用电子秤,请将电池取出,以防电池漏液损害您的电子秤。

SF400A使用说明 一:按键功能: 1、ON/OFF:电源开关,如开机在空称情况下,30秒左右会自动关机 2、TARE:去皮键,如放器皿于秤盘上,按此键后归零,接着向器皿中倒入液体,此时只显示器皿中液体重量。 3、MODE:单位转换键,“g”(克)和“oz”(盎司)间转换。盎司为国外常用单位,例如黄金美元报价通常以一盎司为单位。注:1公斤=1000克=2斤。 4、PCS:开机归零后,放上一定数量(只能是25,50,75,100中一个)均重小物体,此时显示这些物体重量,此时按MODE键,交替显示25,50,75,100。如您放得物体是75个,反复按MODE键,显示为75后停止,再按PCS键,小物体重量标定完成。重新放上需要计数的物体,显示屏直接显示为物体数量。实际上就是增加一个一个除法算法。 5、LIGHT:显示屏背景光源的开关。

友声电子秤说明书

友声电子秤说明书 一、技术指标: 1.内装免维护充电蓄电池,充电可同时开机使用。 2.开机自动置零。 3.零点自动跟踪。 4.累计次数1~100次。 5.电源:交流220V(+10%、-10%),50Hz,内置4V/4Ah免维护可充电蓄电池。6.工作温度范围:0℃~+40℃。 7.相对湿度≤ 85%RH。 二、操作方法: 将电子秤置于结实平整的台面上,四脚调整至水平泡位于中央,使用专用秤盘时,必须先放上专用秤盘,然后开启电源,使零位标志点亮,决不能长期在“去皮”标志点亮情况下使用,否则零位自动跟踪功能消失,零位会产生漂移。 1.开机:打开电源,系统显示笔划及自检,然后进入正常称重状态。 2.【置零】键:重量显示置零。置零范围≤4%FS,去皮状态下无效。 3.【去皮】键:最大去皮范围<显示数值99999(1)按此键,重量显示为零,并点 亮去皮标志。(2)将原称重物取下,重量显示为负值,按【去皮】键,称重复零,去皮标志熄灭。 4.0~9键:输入数据,单重窗显示从右到左循环输入。隔3秒后,按任一数字键, 均可清除原数据,并同时输入该键的数字。 5.【清除】键:在称重状态下,按此键清除单重。 6.【累计】键:按此键进入计数累计状态(数量为零时无效)。此时,重量窗显 示“Add”,单重窗显示“X”,其中“X”表示累计的次数,个数窗显示为累计总个数。在累计状态下,除【累计】键外,按任何键均可恢复称重状态,等待下一次累计,原累计数据均保存在内存中。 7.【累清】键:清除内存的累计数据,退出累计状态,“累计”标志消失。 8. 【取样】键:在秤上放足样品,以数字键输入取样数量(显示在单重窗),待 重量稳定后按此键,此时所设定个数将显示在个数窗,单重窗则显示根据取样计算出的单重值。如果计算出的单重值小于分度值的80%,则单重不足标志点亮。 如果取样的重量小于分度值的4倍,则取样不足标志点亮 如需更改取样数量,可先按【清除】键,再输入新数量。若前次设定已超过3秒,则免按【清除】键,直接输入新数量即可。 单重最多为四位小数时,单重值最大不能超过1Kg,否则会出现计算错误。 9. 开/关背光:按住【置零】键3-4秒,背光被打开或被关闭。 10.调单重小数位数:通过键盘输入单重时,当单重为零时,按数字键“0”可以 修改单重小数部分的位数; 11.修改称重速度:在正常工作状态下,同时按“取样”、“5”,重量窗显示 “SPEEd”,单重窗显示当前速度“SPd*”,数量窗无显示,按“去皮”键,选择称重速度,按“累计”键确认。称重速度数值越大,称重速度越慢,抗振性能越好。

最新:简易电子秤设计说明书(内含电路图)

目录 第一章设计任务 (1) 1.1简述电子称国内外发展现状和发展趋势 1.2电子称的优势 第二章总体设计与方案选定 (4) 2.1理论基础 2.2基本原理 第三章电路调试与实验 (5) 3.1设计方案 3.2方案介绍及选定 3.2.1方案介绍 3.2.2方案选定 3.3系统各部分的设计 3.3.1传感器的设计 3.3.2传感器的选择 3.3.3测试电路设计 3.3.4主要芯片介绍 3.3.5方案分析 3.4调试方法和实验分析 3.4.1调试方法 3.4.2实验结果误差分析 3.4.3设计中产生错误的分析 第四章设计总结体会 (16) 4.1设计总计体会 附录 (17) 附录1 电路 附录2 PCB图

第一章设计任务 1.1简述电子称国内外发展现状和发展趋势 国内发展 50年代中期电子技术的渗入推动了衡器制造业的发展。60年代初期出现机电结合式电子衡器以来,经过40多年的不断改进与完善,我国电子衡器从最初的机电结合型发展到现在的全电子型和数字智能型。电子衡器制造技术及应用得到了新发展。电子称重技术从静态称重向动态称重发展:计量方法从模拟测量向数字测量发展;测量特点从单参数测量向多参数测量发展,特别是对快速称重和动态称重的研究与应用。电子称重技术基本达到国际上20世纪90年代中期的水平,少数产品的技术已处于国际领先水平。国内的电子秤市场中,1009左右量程的电子秤精度一般为0.019即10mg。在研究方法上,电子称重系统的工作原理一般是将作用在承载器上的质量或力的大小,通过压力传感器转换为电信号,并通过控制电路来处理该电信号。但就总体而言,我国电子衡器产品的数量和质量与工业发达国家相比还有较大差距,其主要差距是技术与工艺不够先进、工艺装备与测试仪表老化、开发能力不足、产品的品种规格较少、功能不全、稳定性和可靠性较差等。 国外发展 在国际上,一些发达国家在电子称重力一面已经达到了较高的水平。特别是在准确度和可靠性等方面有了很大的提高。在称重传感器方面,国外电子秤产品的品种和结构又有创新,技术功能和应用范围不断扩大, 1)美国Revere公司研制出PUS型具有大气压力补偿功能的拉压两用的称重传感器,用于高准确度检验平台,称重平台,准确度可达5000d。 2)德国HBM公司研制成功C2A、 C16A两种不同结构的1-100t具有耐压外壳保护的防爆称重传感器,其防爆性能符合欧洲EN50014和EN50018d级标准。 3)美国斯凯梅公司研制出新一代高准确度不锈钢F6Ox系列5-5000kg称重传感器,准确度6000d。用于湿度大,腐蚀性强的环境中,而且防水。 4)德国塞特内尔公司研制出以被青铜为弹性体材料,快速称重用200型称重传感器。其特点是线性好,固有频率高,动态响应快。独创油阻尼装置与过载保护装置一体化,保证称量时速度快,工作寿命长。组装3一30kg电子平台秤,准确度可达4000d。

友声电子秤说明书

友声电子秤说明书 一、技术指标: 1.内装免维护充电蓄电池,充电可同时开机使用。 2?开机自动置零。 3.零点自动跟踪。 4.累计次数1~100次。 5.电源:交流220V (+10% -10%), 50Hz,内置4V/4Ah免维护可充电蓄电池。 6 .工作温度范围:0 C ~+40C。 7.相对湿度w 85%RH 二、操作方法: 将电子秤置于结实平整的台面上,四脚调整至水平泡位于中央,使用专用秤盘时,必须先放上专用秤盘,然后开启电源,使零位标志点亮,决不能长期在“去 皮”标志点亮情况下使用,否则零位自动跟踪功能消失,零位会产生漂移。 1.开机:打开电源,系统显示笔划及自检,然后进入正常称重状态。 2.【置零】键:重量显示置零。置零范围w 4%FS去皮状态下无效。 3.【去皮】键:最大去皮范围<显示数值99999 (1)按此键,重量显示为零,并点亮 去皮标志。(2)将原称重物取下,重量显示为负值,按【去皮】键,称重复零,去皮标志熄灭。 4.0~9键:输入数据,单重窗显示从右到左循环输入。隔3秒后,按任一数字键, 均可清除原数据,并同时输入该键的数字。 5.【清除】键:在称重状态下,按此键清除单重。 6.【累计】键:按此键进入计数累计状态(数量为零时无效)。此时,重量窗显示 “ Add',单重窗显示“ R”,其中“ R”表示累计的次数,个数窗显示为累计总个数。在累计状态下,除【累计】键外,按任何键均可恢复称重状态,等待下一次累计,原累计数据均保存在内存中。 7.【累清】键:清除内存的累计数据,退出累计状态,“累计”标志消失。 8.【取样】键:在秤上放足样品,以数字键输入取样数量(显示在单重窗),待重量 稳定后按此键,此时所设定个数将显示在个数窗,单重窗则显示根据取样计算出的单重值。如果计算出的单重值小于分度值的80%则单重不足标志点亮。如果取样的重量小于分度值的4倍,则取样不足标志点亮 如需更改取样数量,可先按【清除】键,再输入新数量。若前次设定已超过3秒, 则免按【清除】键,直接输入新数量即可。 单重最多为四位小数时,单重值最大不能超过1Kg,否则会出现计算错误。 9.开/关背光:按住【置零】键3-4秒,背光被打开或被关闭。 10.调单重小数位数:通过键盘输入单重时,当单重为零时,按数字键“0”可以修 改单重小数部分的位数; 11.修改称重速度:在正常工作状态下,同时按“取样”、“ 5”,重量窗显示 “SPEEd,单重窗显示当前速度“ SPdR',数量窗无显示,按“去皮”键,选择称重速度,按“累计”键确认。称重速度数值越大,称重速度越慢,抗振性能越好。 12.重量报警设定(可选功能):

电子台秤说明书

TCS-60型交直流两用电子台秤使用说明书安庆市亚星电子衡器有限公司

一、概述 亚星牌TCS-60型交直流两用电子台秤,是本公司最新开发的新产品。该产品采用了高性能八位单片机和高精度传感器技术,计量迅速准确、性能稳定可靠。与TCS-A型系列产品相比具有直流电池供电的特点,更加适合于商业买卖计量,是文明经商之必备用品。 本产品的特点如下: 1、外形小巧,操作方便,装置简单。 2、具有零位自动跟踪功能,故零位不受微风的影响,从而保证称量准确。 3、采用防水型轻触键盘,按键时发出“嘟嘟”声。 4、为了保证公平买卖,具有双面显示功能,显示器采用红色LED发光数码管。 5、具有自动清除单价的功能。 6、具有金额累计、次数累计功能。 二、特点及使用须知 1、TCS-60交直流两用电子台秤使用6V/5Ah大容量铅酸免维护可充电电池作为 直流电源,充满一次可连续使用20小时。 2、正常使用情况下,插上交流电源,电源打开电源开关,电子秤自动切换到交 流电源,并自动对蓄电池充电,此时电子秤金额显示“电池”▽标志灭,“充电”▼标志亮,当电源充满时,自动关断充电电路,“充电”▽标灭,“充满” ▼指示灯亮。 3、在电源供电情况下,打开电子秤电源开关,金额显示窗下“电池”▼标志指 示灯亮,说明是后备直流电池供电。若连续使用至电池容量不足时,“不足” ▼标志指示灯亮,提示用户液压对蓄电池充电此时,电子秤在继续使用数分钟后,出现“dC Lo”,将停止称量计量。 4、在电池供电情况下,为了节电,在秤盘上无重量时,约十几秒后,显示器自 动熄灭,此时若按清除键或放上计量物品,电子秤会自点亮显示。 5、蓄电池容量出现不足时,充电时间需要约7-8小时。 6、建议使用直流电源为主的用户每使用2个白天,即在夜间对电池充电一次。 7、在使用过程中,交直流电源突然切换时,若出现不正常显示,只需重新开机 一次即可正常使用。 三、产要技术功能 1、交直流两用三窗显示计价功能(可选交流、交直流计重仪表) 2、规格:30kg、60kg、100kg、150kg、300kg、600kg 准确度符合OIM L○Ⅲ级秤的要求 3、开关、置零、去皮等功能 4、不锈钢大平面秤台 5、台面尺寸:550×460mm 400×300mm 480×360mm可选 6、额定电压:220vac-15%+10% 50Hz 6VDC/5Ah铅酸免维护可充电蓄电池

电子称说明书

PANTHER型称重仪表 一.性能和功能特点: 有防尘式(台/墙式)和面板式两种. 最大分度数10000. TraxDSP防振动技术. 1.电源电压100、120、230VAC三种,频率49~63Hz,功耗12W. 2.传感器激励电压5VDC,可驱动8只350欧传感器. 3.一个双向RS232串行口,参数可选,可发送称重数据或接收ASCⅡ命令. 4.一个输入点(打印、去皮、清零、单位转换功能可选); 三个输出点(两个预置点,一个零允差). 5.可用于复合型防爆秤. 6.命名规则:(例:PTPN-1810-023) PT XX X X X X XXX 终端外形秤的类型选购件#1 选购件#2 备用市场 PN-面板式 1-模拟秤 0-无 0-无继电为0 023- HN-防尘式 8-模拟输器输出中国 (台/墙式) 出(传感器 1-3 Optos 个数>4的继电器输 秤不能用) 出(面板式) 二.安装接线: 1.电源: 1 2 3 4 接线 NEUT 100V 120V 230V 2.传感器连接: 1 2 3 4 5 6 7 +EXC +SEN +SIG SH -SIG -SEN -EXC (绿) (黄) (白) (橘) (红) (兰) (黑) 3.串行/并行接口: 1 2 3 4 5 6 7 8 9 TXD RXD GND +5VDC OUT1 OUT2 OUT3 GND IN1 (RS232) (输出TTL电平,吸入电流20mA,输出电流15mA,MAX:24V) 4.模拟输出: +5V Alarm 0-10V N.C. GND 4-20mA 电源状态输出 0-10V输出空地 4-20mA输出 5.固态继电器输出:(负载能力:3A,28~240VAC,50~60Hz) TB1-1 TB1-2 TB2-1 TB2-2 TB3-1 TB3-2 交流输出1 交流输出2 交流输出3 J1口输出(TTL电平):1,2(地);3,4(输出3);5,6(输出2);7,8(输出1);9,10(+5VDC). 连接主板:白黑GND; 灰紫OUT3; 兰绿OUT2; 黄橙OUT1; 红棕+5VDC. 6.跨接器和设定开关: W1:2mV/V和3mV/V选择; S1-1:ON-设定,OFF-称重; S1-2:OFF; S1-3:OFF;

电子秤使用说明书

电子料斗秤 秤重显示仪使用说明书

一、概述 电子料斗秤称重显示仪高精度放大器和高速高精度双A/D转换器,采用 双斗轮流加放料称重方式进行质量计量。具有快速高精度的特点,静态精度达 1/1000。用此仪表制造的电子料斗秤广泛用于仓储、粮食等颗粒物料的计量。 二、主要技术指标 1、A/D转换速度:50次/秒;分辨率:100000。 2、使用温度:-10~+40℃;相对湿度:<90%。 3、电源:~220V 50Hz 三、仪表外形 四、基本称重设定 在停机状态,“工作”指示灯熄灭,且标定允许插头插到允许状态(EN),按“密码”键,显示“PS”,此时输入密码“99”后按“输入”键,显示“Sen 1.5”。表示选择传感器的灵敏度为 1.5mV/V。按“↑.↓”键,可选传感器 灵敏度为0.5、1.0、2.0、2.5、3.0、3.5、4.0mV/V。选定后按“输入”键,显示的“d 0.1”,表示分度值为0.1,按“↑.↓”键,可选分度值为0.001、 0.002、0.005、0.01、0.02、0.05、0.1、0.2、0.5、1、2、5、10、20、50。 选定后按“输入”键,显示的“n 3000”,表示最大分度数。根据实际使用情况用数字键输入适当的分度数。按“输入”键,显示“Unt 0”,表示重量单位。0为kg;1为t,用“↑.↓”键选定后按

“输入”键,显示“But 9600”,表示通讯波特率为9600,,用“↑.↓” 键可选择1200、2400、4800、9600,选定后按“输入”键,结束设定,返回 称重显示。 五、标定 在停机状态下,“工作”指示灯熄灭,且标定允许插头插到允许状态(EN),按“密码”键,显示“PS ”此时输入“98”按“输入”键,下显示“CAL 00”上显示为空秤内码。在确认空载后按“输入”键,下显示“--------” 数秒后显示“300.0”,表示满量程加载值,如不是该秤的满量程,则由数字 键输入实际加载砝码值。此时加砝码,待稳定后按“输入”键,显示“--------” 数秒后标定结束,自动返回称重状态。 注:在标定时,将显示切换到所要标定的称量斗,分别进行标定。如标定过 程中,显示“Error”,表示标定失败,请检查传感器的接线是否正确或加载 值太小。如仅对零位进行校正,不进行量程校正,则在量程校正时,将加载 值设为0,按“输入”键即可。 六、时间/日期的显示与设置 1、在停机状态下,“工作”指示灯熄灭,按“时间/日期”键,显示“t 09.28.30”表示9时28分30秒,此时可输入正确的时间,按“输入”键, 完成时间设置返回称重状态。 2、在停机状态下,“工作”指示灯熄灭,按“时间/日期”键两次,显示 “d2000.08.03”,表示2000年8月3日,此时可输入正确的日期,完成日 期设置返回称重状态。 七、货号设定与显示 在停机状态下,“工作”指示灯熄灭,按“货号”键,显示“F1234”表示货 号为1234。用数字键输入新的货号(4位数)。按“输入”键,结束货号设 定,返回称重状态。 八、显示切换 在停机状态下,“工作”指示灯熄灭,按“A/B”键,称重显示切换显示A斗 或B斗的重量,相应的指示灯亮。 九、置零 在停机状态下,“工作”指示灯熄灭,按“置零”键,分别将两个斗重量值 置零,置零范围±50%F.S。 注:电子料斗秤在上电初始化时,可作零位初始化。 十、定值设定与显示 在停机状态下,“工作”指示灯熄灭,按“定值设定”键,显示“Set 200.0”, 表示原设定值为200.0kg。用数字键输入新的设定值,按“输入”键,显示 “A220.0”,表示单斗报警范围。当任一个斗的重量超过此值时,报警指示灯亮, 同时蜂鸣器叫及发出料仓控制信号。根据实际要求,输入报警值,按“输入”键, 结束定值设定,返回称重状态。 十一、总量设定 在停机状态下,“工作”指示灯熄灭,按“总量设定”键,显示“H 16850.5”, 表示原总量设定值为16850.5kg,用数字键输入新的总量设定值,按“输入”键 结束定值设定,返回称重状态。 注:当累计值达到时,自动停止进料,发出料仓控制信号,工作停止。 十二、辅助设定

电子台秤说明书

电子台秤说明书

TCS-60型交直流两用电子台秤 使用说明书 安庆市亚星电子衡器有限公司一、概述

亚星牌TCS-60型交直流两用电子台秤,是本公司最新开发的新产品。该产品采用了高性能八位单片机和高精度传感器技术,计量迅速准确、性能稳定可靠。与TCS-A型系列产品相比具有直流电池供电的特点,更加适合于商业买卖计量,是文明经商之必备用品。 本产品的特点如下: 1、外形小巧,操作方便,装置简单。 2、具有零位自动跟踪功能,故零位不受微风的影响,从而保证称量准确。 3、采用防水型轻触键盘,按键时发出“嘟嘟”声。 4、为了保证公平买卖,具有双面显示功能,显示器采用红色LED 发光数码管。 5、具有自动清除单价的功能。 6、具有金额累计、次数累计功能。 二、特点及使用须知 1、TCS-60交直流两用电子台秤使用6V/5Ah大容量铅酸免维护可 充电电池作为直流电源,充满一次可连续使用20小时。 2、正常使用情况下,插上交流电源,电源打开电源开关,电子 秤自动切换到交流电源,并自动对蓄电池充电,此时电子秤金额显示“电池”▽标志灭,“充电”▼标志亮,当电源充满时,自动关断充电电路,“充电”▽标灭,“充满”▼指示灯亮。

3、在电源供电情况下,打开电子秤电源开关,金额显示窗下 “电池”▼标志指示灯亮,说明是后备直流电池供电。若连续使用至电池容量不足时,“不足”▼标志指示灯亮,提示用户液压对蓄电池充电此时,电子秤在继续使用数分钟后,出现“dC Lo”,将停止称量计量。 4、在电池供电情况下,为了节电,在秤盘上无重量时,约十几 秒后,显示器自动熄灭,此时若按清除键或放上计量物品,电子秤会自点亮显示。 5、蓄电池容量出现不足时,充电时间需要约7-8小时。 6、建议使用直流电源为主的用户每使用2个白天,即在夜间对 电池充电一次。 7、在使用过程中,交直流电源突然切换时,若出现不正常显 示,只需重新开机一次即可正常使用。 三、产要技术功能 1、交直流两用三窗显示计价功能(可选交流、交直流计重仪 表) 2、规格:30kg、60kg、100kg、150kg、300kg、600kg 准确度符合OIML○Ⅲ级秤的要求 3、开关、置零、去皮等功能 4、不锈钢大平面秤台 5、台面尺寸:550×460mm 400×300mm 480×360mm可选 6、额定电压:220vac-15%+10% 50Hz

梅特勒-托利多电子台秤PP说明书

SCS系列 电子地上衡 使用说明书(PP)

本手册版权归梅特勒-托利多(常州)称重设备系统有限公司所有,未经许可不得翻印、修改或引用! METTLER TOLEDO为梅特勒-托利多公司的注册商标! METTLER TOLEDO保留修改本说明书的权利

PP 系列 目录 使用说明书 131070R05 目 录录 1 安全及注意事项...........................................................................................................................................................1 2 概述. (2) 2.1 结构组成................................................................................................................................................................2 2.2 产品型号及规格系列............................................................................................................................................3 2.3 配用传感器性能....................................................................................................................................................3 2.4称重显示仪表 (4) 3 安装 (5) 3.1 安装前的准备工作................................................................................................................................................5 3.2 安装.......................................................................................................................................................................5 3.3 称重显示仪表连接 (6) 4 检定和操作 (8) 4.1 检定.......................................................................................................................................................................8 4.2 操作.. (8) 5 维护保养 (9) 5.1 一般故障排除........................................................................................................................................................9 5.2 更换传感器 (9) 6 随机资料目录.............................................................................................................................................................10 7 备品备件 (11)

电子计重台秤使用说明书

电子计重台秤是我公司推出的产品,采用八位单片微处理器技术,A/D采用快速积分原理,A/D转换速度>40次/秒,具有精度高、性能稳定可靠、操作使用方便等特点。 §1概述 §1. 1精度:符合OIMLⅢ级秤标准。 §1.2 显示:重量显示为6位LED 0.8英寸大显示- §1.3 键盘:按键式键盘 6 键(累清累计功能保持去皮置零)。 §1.4 电源电压交流:~220V (+ 10%~-15%)、50 Hz、<10 W 直流:带免维护可充电电池(6V、4Ah),当电池充足后可连续使用40小时。 开机自动检测免维护电池电压并显示电压值、接入交流电后自动充电。 §1.5 储藏环境温度:-10℃~+50℃工作环境温度:0℃~+40℃ 储藏湿度:≤70% RH 无结露工作湿度:≤90 % RH 无结露 §1.6 主要功能:欠电压自动关机,计数,上下限设置,零位自动跟踪,键盘标定,累计,保持,超载报警。 (1). 当采用交流电供电时,检查交流电源是否正常,在秤台上不放任何东西,开启电源开关,称重仪表自动检测机内免维护可充电池电压,显示“dc x. xx”。并自动进入充电状态。 (2). 在没有交流电的场合,若机内免维护可充电池容量比较充足的情况下(电池容量不足,不能上电),开启电源开关,此时采用机内可充电电池供电。 (3). 显示器自检后,仪表自动捕捉零位,如有下列情况发生,则表示零位不正常: 若显示:“HHHHHH”,且发出“嘀、嘀、嘀-”的报警声,则表示零位太大。 若显示:“LLLLLL”,且发出“嘀、嘀、嘀-”的报警声,则表示零位太小。 (4). 在没有交流电的场合,若电池电压低于5.40V,则仪表会自动关机。 §2使用方法 §2. 1 置零 当空秤状态下显示的重量≤4%满量程,按【置零】键有效,零位指示灯亮。 §2.2 去皮 在毛重为正的状态下(毛重≤100%满量程),按【去皮】键有效,去皮指示灯亮。若移去全部皮重再按【去皮】键,则回到未去皮状态。 §2.3 保持 在称重的任何时候,接下【保持】键,则当时显示的称重数据就被锁定,不再随重量的变化而变化,同时保持指示灯亮,如再次接下【保持】键,则退出保持状态,在保持状态下显示的数据虽不会变化,但在重量超载时仍会报警. §2.4 累计 在有重量且稳定的状态下,按下【累计】键,则该重量被累计下来,在空秤状态下,按下【累计】键,则会杲示累计值和累计次数。 §2.5 累清 接下【累请】键,则前几次的累计值会被清除。 §2.6 F(计数功能) 接下【F】键,仪表显示“J= 0”,此时加上一定数量的要计数的物品然后用<置零> 和<去皮> 键输入所加物品的数量,再接下<保持> 键既可. 如在计数状态下再接下 键就可退出计数状。 §2.7 上下限设置 先按下<置零> 键不要松,再接下<去皮> 键,仪表会显示“HIGH”,此时可用<置零>和<去皮>键输入上限值,按下<保持> 键后仪表会显示“LO”,此时可用<置零> 和<去皮> 键输入下限值,按下<保持>键后结束。启动方法:先按下<置零> 键

佰伦斯电子计价秤标定说明书 文件详细

BPS(贴片省电)系列内部设置,标定说明 一:内部设置 1;按住[1],[9]键不放开机, 显示888888 888888 888888 2;放开[1],[9]键,当电子秤自检的同时按住[去皮]键一秒后, 显示—CAL— 3;按[3]键,进入显示速度设置, 显示SP=0 SP=0显示速度快 SP=1显示速度 SP=2显示速度稍慢 SP=3显示速度慢 按[累计]键循环选择 4;按[去皮]键进入零点跟踪设置, 显示AO=1 AO=0无零点跟踪 AO=1零点跟踪1 AO=2零点跟踪2 AO=3零点跟踪3 按[累计]键可循环选择 5;按[去皮]键进入背光设置(仅限示BPS液晶显示), 显示BL=3 BL=0无背光 BL=1一直背光 BL=2自动背光 BL=3按背光键背光 按[累计]键可循环选择 6;按[去皮]键进入强制回零设置, 显示CT=1 CT=0无强制回零 CT=1有强制回零 按[累计]键可循环选择 7;按[去皮]键进入输入方式设置, 显示DJ=0 DJ=0输入单价时以元位起显示 DJ=1输入单价时以分位起显示 按[累计]键可循环选择 8;按[去皮]键进入省电速度设置(仅限于BPSR灯管显示), 显示SH=1 SH=0省电时 0.000 0.00 0.00 SH=1省电时 0 SH=2省电时 0 0 SH=3省电时 0 0 0 按[累计]键可循环选择

按[去皮]键进入LED亮度设置,(仅限于BPSR灯管显示), 显示LD=2 LD=1 LED亮度较暗 LD=2 LED亮度较亮 LD=3 LED亮度亮 按[累计]键可循环选择 9,按[去皮]键 显示—CAL— 10内部设置完华,重新开机。 二:标定说明 1,按住[1],[9]键不放同时开机, 显示888888 888888 888888 2,放开[1],[9]键,当电子秤自检的同时按住[去皮]键一钞后 显示—CAL— 3,依次按[7],[8],[9],[4]键,电子秤自动搜索内码,并伴有“哗”“哗”声,且显示14068 14068 --------- 重量栏,单价栏数字在跳动, 4,当搜索完毕后,“哗”“哗”声止, 显示14068 14068 ----------- 5,按[置零]键,显示 0 14068 ----------- 6,此时放上欲标定的标准砝码于秤盘的中央 7,待稳定后,在数字键上输入与放在秤盘中央的标定砝码相符的数字,如:5KG 则输入“5”“0”“0”“0” 8,待稳定后,按[去皮]键,显示5.000 0.00 0.00 9,标定完毕

相关主题