搜档网
当前位置:搜档网 › 大学物理第十章答案讲解

大学物理第十章答案讲解

大学物理第十章答案讲解
大学物理第十章答案讲解

第十章

一、填空题

易:1、质量为0.10kg 的物体,以振幅1cm 作简谐运动,其角频率为1

10s -,则物体的总能量为, 周期为 。(4510J -?,0.628s )

易:2、一平面简谐波的波动方程为y 0.01cos(20t 0.5x)ππ=-( SI 制),则它的振幅为 、角频率为 、周期为 、波速为 、波长为 。(0.01m 、20π rad/s 、 0.1s 、 40m/s 、4m )

易:3、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为 ,振子的振动角频率为 。(200N/m ,10rad/s )

易:4、一横波的波动方程是y = 0.02cos2π(100t – 0.4X )( SI 制)则振幅是_________,波长是_ ,频率是 ,波的传播速度是 。(0.02m ,2.5m ,100Hz ,250m.s -1)

易:5、两个谐振动合成为一个简谐振动的条件是 。(两个谐振动同方向、同频率)

易:6、产生共振的条件是振动系统的固有频率与驱动力的频率 (填相同或不相同)。(相同)

易:7、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。(偶数)

易:8、弹簧振子系统周期为T 。现将弹簧截去一半,仍挂上原来的物体,作成一个新的弹簧振子,则其振动周期为 T 。(T )

易:9、作谐振动的小球,速度的最大值为,振幅为

,则

振动的周期为

;加速度的最大值为

。(

3

,2105.4-?)

易:10、广播电台的发射频率为 。则这种电磁波的波长

为 。(468.75m )

易:11、已知平面简谐波的波动方程式为 则

时,在X=0处相位为 ,在

处相位为 。

(4.2s,4.199s)

易:12、若弹簧振子作简谐振动的曲线如下图所示,则振幅;

圆频率

;初相

。(10m,

1.2

-s rad π

,0)

中:13、一简谐振动的运动方程为2x 0.03cos(10t )3

π

π=+

( SI 制),则频率ν为 、周期T 为 、振幅A 为 ,

初相位?为 。(5Hz , 0.2s , 0.03m ,

23

π) 中:14、一质点同时参与了两个同方向的简谐振动,它们的震动方程分别为10.05cos(4)()x t SI ωπ=+和20.05cos(1912)()x t SI ωπ=+, 其合成运动的方程x = ;()12

cos(05.0π

ω-

=t x )

中:15、A 、B 是在同一介质中的两相干波源,它们的

位相差为π,振动频率都为100Hz ,产生的波以10.0m/s

的速度传播。波源A 的振动初位相为

3

π

,介质中的P 点与A 、B 等距离,如图(15)所示。A 、B 两波源在P 点所引起的振动的振幅都为10.0210m -?。则P 点的振动是 (填相长或相消)。(相消)

中:16、沿同一直线且频率相同的两个谐振动,

,

,A

1

的合振动的振幅为

.(21A A +)

中:17、一横波的波动方程为

若 ,

则X=2

处质点的位移为 ,该处质点的振动速度为 ,

加速度为 。(-0.01m,0)

难:18、一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示,若t =0时:

(1)振子在负的最大位移处,则初位相为 ;(π) (2)振子在平衡位置向正方向运动,则初位相为 ;(0) (3)振子在位移为

2A 处,且向负方向运动,则初位相为 ;(3

π

) 难:19、频率为100HZ 的波,其波速为250m/s ,在同一条波线上,相距为0.5m 的两点的位相差为: (π4.0)

难:20、如图(20)所示,1S 和2S ,是初相和振幅均相同的相干波源,相距4.5λ,设两波沿1S 2S 连线传播的强度不随距离变化,则在连线上1S 左侧各点和2S 右侧各点是 (填相长或相消)。(相消)

二、选择题

易:1、下列叙述中的正确者是 ( ) (A )机械振动一定能产生机械波;

(B )波动方程中的坐标原点一定要设在波源上; (C )波动传播的是运动状态和能量; (D )振动的速度与波的传播速度大小相等。

易:2、一列机械波从一种介质进入另一种介质,下列说法正确的是( )

(A )波长不变; (B )频率不变; (C )波速不变; (D )以上说法都不正确。

易:3、一平面简谐波在弹性介质中传播,在介质质元从平衡位置运动到最大位移处的过程中( )

(A)它的动能转换成势能; (B)它的势能转换成动能;

(C)它从相邻的一段质元获得能量,其能量逐渐增大; (D)它把自己的能量传给相邻的一段质元,其能量逐渐减小。 易:4、频率为100Hz,传播速度为300m/s 的平面简谐波,波线上两点振

动的相位差为31

,则此两点相距 ( )

(A )2m ; (B)2.19m ; (C) 0.5m ; (D)28.6m 。

易:5、人耳能辨别同时传来的不同的声音,是由于 ( ) A .波的反射和折射; B.波的干涉; C.波的独立传播特性; D.波的强度不同。

易:6、一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的14时,其动能为振动势能的 ( )

(1)916; (2)1116; (3)1316; (4)15。

易:7、一单摆装置,摆球质量为m .摆的周期为T 。对它的摆动过程,下述哪个说法是错误的?(设单摆的摆动角很小) ( )

(A) 摆线中的最大张力只与振幅有关,而与m 无关; (B)周期T 与m 无关;

(C)T与振幅无关

(D)摆的机械能与m和振幅都有关。

易:8、一弹簧振子作简谐振动,当其偏离平衡位置的位移大小为振幅的1/4时,其势能为振动总能量的()

A.1/16 ; B.15/16 ;

C.9/16 ;

D.13/16。

易:9、对于机械横波,在波峰处相应质元的能量为()

(A)动能为零,势能最大;

(B)动能为零,势能为零;

(C)动能最大,势能为零;

(D)动能最大,势能最大。

易:10、一平面简谐波在弹性媒质中传播时,在波线上某质元正通过平衡位置,则此质元的能量是()

(A)动能为零,势能为零;

(B)动能为零,势能最大;

(C)动能最大,势能最大;

(D)动能最大,势能为零。

易:11、人耳能辨别同时传来的不同频率的声音,这是因为()(A)波的反射和折射;(B)波的干涉;

(C)波的独立传播特性;(D)波的叠加原理。

易:12、一质点作简谐振动x=6cos。某时刻它在

处,且向x轴负向运动,它要重新回到该位置至少需要经历的时间为()

(A) (B)

(C) (D)

易:13、一质点以周期T作谐振动,试从下列所给数值中找出质点由平衡位置到最大位移一半处的时间为()

(A)

(B)

(C)

(D)

易:14、两个小球1与2

分别沿轴作简谐振动,已知它们的振动周期

各为

时,小球2的相位超前小球1的相位

。当s t 3

1

=

时,两球振动的相位差为( )

(A)

(B) (C)

(D)

易:15、将一物体放在一个沿水平方向作周期为1s 的简谐振动的平板上,物体与平板间的最大静摩擦系数为0.4。要使物体在平板上不致滑动,平板振动的振幅最大只能为( )

(A

) (B

(C

(D

中:16、横波以波速υ沿x 轴负向传播,t 时刻波形曲线如图16,则该时刻( )

(1)A 点振动速度大于零;(2)B 点静止不动;

(3)C 点向下运动;(4)D 点振动速度小于零;

中:17、有两个沿X 轴作谐振动的质点,它们的频

率ν,振幅A 在X=-A /2处也向负向运动,则两者的相位为( )

A.π/2;

B.2π/3;

C.π/6;

D.5π/6 。

中:18、一远洋货轮,质量为m ,浮在水面时其水平截面积为S 。设在水面附近货轮的水平截面积近似相等,设水的密度为ρ,且不计水的粘滞阻力。货轮在水中作振幅较小的竖直自由运动是简谐运动,则振动周期为

( )

(1)2m

gs

ρπ

; (2)m

gs

ρπ

21 (3)

gs

m

ρπ

2 ; (4)

gs

m

ρπ

21

中:19、两个质点各自作简谐振动,它们的振幅相同,周期相同,第一个质点的震动方程为1cos()x A t ωα=+,当第一个质点从平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为:( )

(1)

21cos()2x A t ωαπ=++; (2)21

cos()

2x A t ωαπ=+-; (3)

23

cos()

2x A t ωαπ=--; (4)2cos()x A t ωαπ=-+; 中:20、两个质点各自作简谐振动,它们的振幅相同,周期相同,第一个质点的震动方程为1cos()x A t ωα=+,当第一个质点从平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为:( )

(1)

21cos()2x A t ωαπ=++; (2)21

cos()

2x A t ωαπ=+-; (3)

23

cos()

2x A t ωαπ=--; (4)2cos()x A t ωαπ=-+; 中:21、一平面简谐波表达式为0.05sin (12)()y x SI π=--,则该波的频率、波速及波线上各点的振幅依次为( )

(1)11,,0.0522-; (2)1

,1,0.052-;

(3)11

,,0.0522; (4)2,2,0.05;

中:22、在波动方程 中, 表示( )

(A )波源振动相位; (B )波源振动初相;

(C )X 处质点振动相位; (D )X 处质点振动初相。

难:23、一质点沿X 轴作简谐振动,振动方程为:

)

)(21

2cos(1042SI t X ππ+?=-,从t=0时刻起,到质点位置在x=-2cm 处,且向x

轴正方向运动的最短时间间隔为 ( )

(A )18s ; (B )1

4s ; (C )512s ; (D )13s 。

难:24、质点作简谐振动,震动方程为cos()x A t ωφ=-,当时间

1

2t T =(T 为周期)时,质点的速度为: ( )

(1)sin A ωφ-; (2) sin A ωφ; (3)cos A ωφ-; (4)cos A ωφ。

难:25、一平面谐波沿X 轴负方向传播。已知

处质点的振动方程为

,波速为 ,则波动方程为( )

A.])

(cos[?υ

ω+++

=x b t A y

B. ])(cos[?υ

ω++-=x

b t A y C. ])(cos[?υ

ω+-+=x

b t A y D. ])(cos[?υ

ω+--=x

b t A y

三、判断题

易:1、篮球在泥泞的地面上的跳动是简谐振动。( √ ) 易:2、波动图像的物理意义是表示介质中的各个质点在不同时刻离开

平衡位置的情况。( √ )

易:3、作简谐振动的弹簧振子,在平衡位置时速度具有最大值。( √ ) 易:4、驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的一种特殊形式的衍射现象。( × )

易:5、波动过程是振动状态和能量的传播过程。( √ )

易:6、火车以一定的速度在静止的空气中行驶,则静止站在路边的人听到火车驶近时的警笛声波频率降低了。( × )

易:7、只要有波源,就可以产生机械波;( × )

易:8、人能够同时听到不同方向传来的声音是因为声音具有独立传播特性;( √ )

易:9、 手机发出的电磁波和光波一样,是典型的横波;( √ ) 易:10、 实验室里的任何两列机械波都可以产生干涉现象;( × ) 四、计算 题

易:1、一轻弹簧的下端挂一重物,上瑞固定在支架上,弹簧伸长了

9.8l cm =,如果给物体一个向下的瞬时冲击力,使它具有11m s -?的向下的

速度,它就上下振动起来。试证明物体作简谐振动。

(解答:见例10-1)

易:2、 如图(计算题2图)所示为弹簧振子的x-t 图线,根据图中给出的数据,写出其运动方程。

解:由振动图线知,m A 1.0=

当0=t 时,m x 05.00=;当s t 1=时,0=x 。将0=t ,m x 05.00=代入)cos(0?ω+=t A x ,得

?cos 1.005.0=,

即:5.0cos =?,3

π

=

又0=t 时,?ωυsin 00A -=,由图知0υ>0,要求?sin <0 所以:3

π

?-

=

将s t 1=,0=x 代入)cos(0?ω+=t A x ,得:3

1cos(1.00π

ω-?=

即:03cos(=-π

ω

因为:2

3

π

π

ω=

-

所以:6

5πω=

谐振动方程为:))(3

65cos(

1.0m t x π

π-=

易:3、两分振动分别为1cos x t ω=(m

)和22x t πω?

?=+ ???

(m ),若在

同一直线上合成,求合振动的振幅A 及初相位?。

解:因为2

12π

???=-=?

故合振动振幅为:)(2)2

cos(2212

221m A A A A A =++=π

合振动初相位为:

3

)]

cos cos /()sin sin arctan[(22112211π

?????=++=A A A A

易:4、一平面简谐波的波动表达式为??

? ??

-=1010cos 01.0x t y π (SI )求:(1)

该波的波速、波长、周期和振幅; (2)x =10m 处质点的振动方程及该质点在t =2s 时的振动速度; (3)x =20m ,60m 两处质点振动的相位差。

(解答:见例10-8)

易:5、某平面简谐波在t=0和t=1s 时的波形如(计算题5图)图所示,试求:(1)波的周期和角频率;(2)写出该平面简谐波的表达式。

(解答:见例10-9)

易:6、一余弦波,其波速为3101m s -?,频率为1KHz ,在截面面积为

222.0010m -?的管内空气中传播,若在5s 内通过截面的能量为22.5010J ?,求:

(1)通过截面的平均能流; (2)波的平均能流密度; (3)波的平均能量密度。 (解答:见例10-11)

易:7、车上一警笛发射频率为1500Hz 的声波。该车正以20m/s 的速度向某方向运动,某人以的5m/s 速度跟踪其后,已知空气中的声速为330m/s ,求该人听到的警笛发声频率以及在警笛后方空气中声波的波长。

(解答:见例10-15)

易:8、质量m 0.02kg =的小球作简谐振动,速度的最大值max 0.04m/s υ=,振幅A=0.02m ,当t 0=时,υ=-0.04m/s 。试求:(1) 振动的周期;(2) 谐振动方程.

解(1)根据速度的最大值公式max A υω=, 得 max

0.04

2()0.02

rad s A

υω==

=

则周期

22 3.14()2

T s ππ

ω

=

=

= (2)由振幅公式2

20

20

ω

v x A +

=,

得 2

00x ===

又由?cos 0A x =,得?cos 0A =

即 0cos =?,2

32

π

π

?或

=

因为0t =时,0.04/0m s υ=-<,所以取2

π

?=

谐振动方程为0.02cos(2)2

x t π

=+

易:9、一平面简谐波沿x 轴正向传播,波速υ=6m/s .波源位于x 轴原点处,波源的振动曲线如(计算题9图)图中所示。求:(1)波源的振动方程;(2)波动方程.

解 (1)由图3得:0.01,A m =

2T s =

则1222

s T ππωπ-=

== 当0=t 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法(如图所示),可得该质点的初相为2

π

?-

=。

波源位于x 轴原点处,则波源的振动方程为

00.01cos()()2

y t m π

π=-

(2)将已知量代入简谐波动方程的一般形式cos[()]x

y A t ω?υ

=-+,

得 0.01cos[(]()6

2

x y t m π

π=--

易:10、平面简谐波的振幅为3.0cm ,频率为50H Z ,波速为200m/s ,沿X 轴负方向传播,以波源(设在坐标原点O)处的质点在平衡位置且正向y 轴负方向运动时作为计时起点.求:(1)波源的振动方程;(2)波动方程。

解: (1)波源的角频率为 2250100()rad s ωπνππ==?= 又根据初始条件:0=t 时,00cos y A ?==,得2

π

?=-

或2

π

?=

因为 0s i n 0A υω?=-< 所以,波源的初相 2

π

?=

波源的振动方程为00.03cos(100)2

y t m π

π=+

(2)波动方程为cos[()]x

Y A t u

ω?=++

0.03cos[100()2002x t π

π=+

+ 0.03cos(100)()22

x t m ππ

π=++

易:11、一物体沿X 轴作简谐运动,振幅为0.06m ,周期为2.0s ,t=0 时位移为0.03m ,且向X 轴正向运动,求:t=0.5s 时物体的位移、速度和加速度。

(解答:见例10-5)

易:12、如(计算题12图)图所示,一劲度系数为k 的轻弹簧,竖直悬挂一质量为m 的物体后静止,再把物体向下拉,使弹簧伸长后开始释放,判断物体是否作简谐振动?

解:设弹簧挂上物体后伸长为L ,根据胡克定律

kl mg =

取悬挂物体静止处(平衡位置)为坐标原点。向下建立x 轴(如图12),则任一位置x 处

22)(dt

x

d m x l k mg =+-

于是

022=+kx dt x d m , 022=+x m k

dt

x d

令m

k

=

2

ω 02

22=+x dt

x d ω 此式是简谐振动的微分方程,说明物体在做简谐振动。其周期为

k

m T π

ω

π

22==

中:13、如图13所示,质量为22.0010kg -?的子弹,以

1400m s -?的速度射入并嵌在木块

中,同时使弹簧压缩从而作简谐运

动。设木块的质量为 3.98kg ,弹簧的劲度系数

为411.0010N m -??。若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐运动方程。

解:如图10(1)

,振动系统的角频率为150s ω-=

=

=

由动量守恒定律得振动系统的初速度即子弹和木块的共同运动初速度0υ为

111120012

(),2m m m m m s m m υ

υυυ-=+=

=?+

由题意得:10000,0,2,0t x m s υυ-===?>

所以,00.04A m υ

ω

=

== 图10(2)给出了弹簧振子的旋转矢量图,从图中可知初相位02

π

?=-,

则运动方程为0.04cos(50)2

x t π

=-

中:14、一平面简谐波以速度u=20m.s 1-沿直线传播。已知在传播路径上某点A (如图14)的简谐运

y=(t s m )4cos()10312--?π。

(1)以点A 为坐标原点,写出波动方程;

(2)以距点A 为5m 处的点B 为坐标原点,写出波动方程;

(3)写出传播方向上点C 、点D 的简谐运动方程(各点间距见图一); 解:(1)20(4cos[1032x

t y A -

?=-π (2))]20

5

(4cos[1032--

?=-x t y B π (3))6.24cos(1032ππ+?=-t y C

)8.14cos(1032ππ-?=-t y D

中:15、已知谐振动方程为:cos()x A t ω?=+,振子质量为m ,振幅为A ,试求(1)振子最大速度和最大加速度;(2)振动系统总能量;(3)平均动能和平均势能。

解:(1)由已知条件知,振动速度为

sin()dx

v A t dt

ωω?=

=-+ 最大速度为

A v m ω=

振动加速度为

)cos(2?ωω+-==

t A dt

dv

a 最大加速度为

A a m 2ω=

(2)振动系统总能量为

2222

1

21A m kA E ω==

(3)平均动能为

2241

A m E k ω=

平均势能为

224

1

A m E p ω=

中:16、一弹簧振子沿x 轴做谐振动,已知振动物体最大位移为X m =0.4m ,最大回复力为F m =0.8N ,最大速度为V m =0.8m/s ,又知t=0时的初位移为0.2m ,且初速度与所选x 轴方向相反。试求(1)振动能量;(2)振动方程。

解:振幅为m x A m 4.0==

劲度系数为m N A F k m

/2== 角频率为)/(24

.08.0s rad A F m ππ

ω==

= (1) 振动能量为)(16.04.022

1212

2J kA E =??==

(2) 由已知条件知?cos 4.02.0= 0sin 2.4.0?-?π

故3

π

?=

振动方程为)3

2cos(4.0SI t x π

π+

=

中:17、质量为0.10 kg 的物体,作振幅为0.01m 的简谐振动,其最大加速度为4.0 m / s 2。求:(1)振动的周期;(2)物体在何处时动能和势能相等;(3)物体位于A/ 2处时,其动能为多少?

解:(1)振动的周期为

)(314.0102022s T ===

=

π

πω

π

, (其中,A a m 2ω=,A

a m

=ω) (2)设振子在0x 处动能和势能相等,则有

2202

1

.212121kA E kx ==,得 m A

x 301007.72

2-?±=±

= (3)物体位于A/ 2处时,其动能为

E A k A k E E E P k 4

3

2(21222=-=-=

中:18、一平面简谐波沿x 轴的正方向传播,其传播速度为11m s υ-=?、振

幅为3

1.010

A m -=?、周期为T=2.0s ,距原点为4m 处的质点的振动方程为cos()y A t ω?=+,已知在t=0时刻,该质点的振动位移为00y =,振动速度为

310 1.010u m s π--=??。试求: (1)平面简谐波表达式; (2)t=1s 时刻各质点的位移分布; (3)x=0.5m 处质点的振动规律。

(解答:见例10-10)

中:19、一物体作谐运动,其质量为22.010kg -?、振幅为22.010m -?,周期为4.0s 。当t=0时,位移为22.010m -?。求t=0.5s 时,物体所在的位置及其所受的力、动能、势能、总能量。

(解答:见例10-6)

难:20、A 、B 是在同一介质中的两相干波源,它

们的位相差为π,振动频率都为100Hz ,产生的波以10.01m s -?的速度传播。波源A 的振动初位相为

3

π

,介质中的P 点与A 、B 等距离,如20题图所示。A 、B 两波源在P 点所引起的振动的振幅都为10.0210m -?。求P 点的振动方程。如果A 、B 的位相差为

2

π

,则又如何? (解答:见例10-12)

难:21、1S 和2S ,是初相和振幅均相同的相干波源,相距4.5λ,设两波沿1S 2S 连线传播的强度不随距离变化,求在连线上两波叠加为加强的位置。

(解答:见例10-13)

难:22、一个质点沿x 轴作简谐运动,振幅A=0.06m ,周期T=2s ,初始时刻质点位于0x =0.03m 处且向x 轴正方向运动。求:(1)初相位;(2)在0.03x m =-处且向x 轴负方向运动时物体的速度和加速度以及质点从这一位置回到平衡位置所需要的最短时间。

(解答:见例10-5)

大学物理第十章原子核物理答案

第16章 原子核物理 一、选择题 1. C 2. B 3. D 4. C 5. C 6. D 7. A 8. D 二、填空题 1. 171076.1?,13 1098.1? 2. 2321)(c m m m -+ 3. 1.35放能 4. 9102.4? 5. 117.8 6. 2321`c h m m m -+ 7 . 67.5MeV ,67.5MeV/c ,22 1036.1?Hz 8. 121042.2-? 9. 1.49MeV 10. 115kg 三、填空题 1. 解:设从t =0开始做实验,总核子数为N 0,到刻核子数为N 由于实验1.5年只有3个铁核衰变,所以 1<<τt ,)1(0τ t N N -≈ t =0时,铁核总数为 31274 0106.310 66.1104.6?=??=-N t =1.5年时,铁核总数为 )1(300τ t N N N -≈-=由此解得 3131 00108.15.13 106.3?=??=-=t N N N τ年

设半衰期为T ,则当t =T 时有2/0N N =,由τ/0e t N N =得τ/e 2 1T = 所以, 31 311025.1693.0108.12ln ?=??==τT 年 2. 解:设氢核和氮核的质量分别为N H m m 、,被未知粒子碰撞后速度分别为v H 和v N ; 未知粒子的质量为m , 碰撞前速度为v ,与氢核碰撞后为v 1,与氮核碰撞后为v 2 未知粒子与氢核完全弹性碰撞过程满足关系 H H 1v m mv mv += 2H H 2122 12121v m mv mv += 未知粒子与氮核完全弹性碰撞过程满足关系 N N 2v m mv mv += ● 2N N 2122 12121v m mv mv += ? 联立 ~?得 2 N N 2 H H N H )()(m m m m m m E E ++= 带入数据,可解得 03.1H =m m 由其质量比值可知,未知粒子的质量与氢核的质量十分接近,另由于它在任意方向的磁场中都不偏转,说明它不带电.由此判断该新粒子是中子. 3. 解:与第一组α粒子相对应的衰变能为 α1α12264.793MeV 4.879MeV 4222 A E K A ==?=- 与第二组α粒子相对应的衰变能为 α2α2 2264.612MeV 4.695MeV 4222A E K A ==?=- 226 86Rn 的两能级差为 ()α1α2 4.879 4.695MeV 0.184MeV E E E ?=-=-= 光子的能量与此两能级差相对应,所以光子的频率为 619 19340.18410 1.60218910Hz 4.4510Hz 6.62610 E h ν--????===??

大学物理习题答案--第一章

第一章作业解 1-7液滴法是测定液体表面张力系数的一种简易方法。将质量为m 的待测液体吸入移液管,然后让液体缓缓从移液管下端滴出。可以证明 d n mg πγ= 其中,n 为移液管中液体全部滴尽时的总滴数,d 为液滴从管口落下时断口的直径。请证明这个关系。 证:当液滴即将滴下的一刻,其受到的重力与其颈部上方液体给予的张力平衡 F g m =' d r L F πγπγγ===2 n m m = ', d n m πγ= 得证:d n mg πγ= 1-8 在20 km 2的湖面上下了一场50 mm 的大雨,雨滴半径为1.0 mm 。设温度不变,雨水在此温度下的表面张力系数为7.3?10-2N ?m -1。求释放的能量。 解:由 S E ?=?γ 雨滴落在湖面上形成厚为50 mm 的水层,表面积就为湖面面积,比所有落下雨滴的表面积和小,则释放的表面能为: )4(2 S r n E -?=?πγ 其中,3 43 r Sh n π= 为落下的雨滴数,r 为雨滴半径 J r h S E 8 3 3 6 2 1018.2)110 0.110503( 102010 3.7)13( ?=-???????=-=?---γ 1-9假定树木的木质部导管为均匀的圆柱形导管,树液完全依靠毛细现象在导管内上升,接触角为45°,树液的表面张力系数1 2 10 0.5--??=m N γ。问要使树液到达树木的顶部,高 为20 m 的树木所需木质部导管的最大半径为多少? 解:由朱伦公式:gr h ρθ γcos 2= 则:cm gh r 5 3 2 10 6.320 8.91012 /210 0.52cos 2--?=??????= = ρθ γ 1-10图1-62是应用虹吸现象从水库引水的示意图。已知虹吸管粗细均匀,其最高点B 比水库水面高出m h 0.31=,管口C又比水库水面低m h 0.52=,求虹吸管内的流速及B点处的

大学物理课后题答案

习 题 四 4-1 质量为m =的弹丸,其出口速率为300s m ,设弹丸在枪筒中前进所受到的合力 9800400x F -=。开抢时,子弹在x =0处,试求枪筒的长度。 [解] 设枪筒长度为L ,由动能定理知 2022121mv mv A -= 其中??-==L L dx x Fdx A 00)9 8000400( 9 40004002 L L - = 而00=v , 所以有: 22 300002.05.09 4000400??=-L L 化简可得: m 45.00 813604002==+-L L L 即枪筒长度为。 4-2 在光滑的水平桌面上平放有如图所示的固定的半圆形屏障。质量为m 的滑块以初速度0v 沿切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,试证明:当滑块从屏障的另一端滑出时,摩擦力所作的功为() 12 1220-= -πμe mv W [证明] 物体受力:屏障对它的压力N ,方向指向圆心,摩擦力f 方向与运动方向相反,大小为 N f μ= (1) 另外,在竖直方向上受重力和水平桌面的支撑力,二者互相平衡与运动无关。 由牛顿运动定律 切向 t ma f =- (2) 法向 R v m N 2 = (3) 联立上述三式解得 R v a 2 t μ-= 又 s v v t s s v t v a d d d d d d d d t === 所以 R v s v v 2 d d μ -= 即 s R v v d d μ-=

两边积分,且利用初始条件s =0时,0v v =得 0ln ln v s R v +- =μ 即 s R e v v μ -=0 由动能定理 2 022 121mv mv W -= ,当滑块从另一端滑出即R s π=时,摩擦力所做的功为 () 12 1212122020220-=-=--πμ πμ e mv mv e mv W R R 4-3 质量为m 的质点开始处于静止状态,在外力F 的作用下沿直线运动。已知 T t F F π2sin 0=,方向与直线平行。求:(1)在0到T 的时间内,力F 的冲量的大小;(2)在0到2T 时间内,力F 冲量的大小;(3)在0到2T 时间内,力F 所作的总功;(4)讨论质点的运动情况。 [解]由冲量的定义?=1 2 d t t t F I ,在直线情况下,求冲量I 的大小可用代数量的积分,即 ?= 1 2 d t t t F I (1) 从t =0到 t=T ,冲量的大小为: ?= =T t F I 01d ?-=T T T t T F t T t F 0 00]2cos [2d 2sin πππ=0 (2) 从t =0到 t =T /2,冲量的大小为 π πππ0000 0022 2 2]2cos [2d 2sin d TF T t T F t T t F t F I T T T =-=== ?? (3) 初速度00=v ,由冲量定理 0mv mv I -= 当 t =T /2时,质点的速度m TF m I v π0== 又由动能定理,力F 所作的功 m F T m F mT mv mv mv A 22022 22022 20222212121ππ===-= (4) 质点的加速度)/2sin()/(0T t m F a π=,在t =0到t =T /2时间内,a >0,质点 作初速度为零的加速运动,t =T /2时,a =0,速度达到最大;在t =T /2到t =T 时间内,a <0,但v >0,故质点作减速运动,t =T 时 a =0,速度达到最小,等于零;此后,质点又进行下一

大学物理课后练习习题答案详解.docx

第一章质点运动学 1、( 习题: 一质点在 xOy 平面内运动,运动函数为 x = 2t, y = 4 t 2 8 。( 1)求质点的轨道方程; ( 2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。 解:( 1)由 x=2t 得, y=4t 2 -8 ( 2)质点的位置 : r r 由 v d r / dt 则速度: r r 由 a d v / d t 则加速度: 则当 t=1s 时,有 r r 可得: y=x 2-8 r 即轨道曲线 r r (4t 2 r 2ti 8) j r r r v 2i 8tj r r a 8 j r r r r r r r 2i 4 j , v 2i 8 j , a 8 j 当 t=2s 时,有 r r r r r r r r r 4i 8 j , v 2i 16j , a 8 j 2、(习题): 质点沿 x 在轴正向运动,加速度 a kv , k 为常数.设从原点出发时速度为 v 0 ,求运动方程 x x(t) . 解: dv kv v 1 t kdt v v 0 e kt dt dv v 0 v dx v 0e k t x dx t kt dt x v 0 (1 e kt ) dt v 0 e k 3、一质点沿 x 轴运动,其加速度为 a 4 t (SI) ,已知 t 0 时,质点位于 x 10 m 处,初速度 v 0 .试求其位置和时间的关系式. 解: a d v /d t 4 t d v 4 t d t v t 4t d t v 2 t 2 dv d x 2 x t 2 3 2 x t d t x 2 t v /d t t /3+10 (SI) x 0 4、一质量为 m 的小球在高度 h 处以初速度 v 0 水平抛出,求: ( 1)小球的运动方程; ( 2)小球在落地之前的轨迹方程; v v ( 3)落地前瞬时小球的 dr , dv , dv . dt dt dt 解:( 1) x v 0 t 式( 1) y 1 gt 2 式( 2) v v 1 2 v h r (t ) v 0t i (h - gt ) j 2 2 ( 2)联立式( 1)、式( 2)得 y h 2 gx 2 2v 0 v v v v v v ( 3) dr 2h dr v 0i - gt j 而落地所用时间t 所以 v 0i - 2gh j dt g dt v v dv g 2 t g 2gh dv v 2 2 2 ( gt ) 2 dt g j v x v y v 0 dt 2 2 1 2 ( gt ) ] 2 2gh) [v 0 ( v 0 1 2

大学物理标准答案第10章

第十章 静电场中的导体与电介质 10-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A )升高 (B )降低(C )不会发生变化 (D )无法确定 分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A )N 上的负电荷入地 (B )N 上的正电荷入地 (C )N 上的所有电荷入地(D )N 上所有的感应电荷入地 题 10-2 图 分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= =(B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4== 题 10-3 图

分析与解达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C )若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D )介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E )介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5对于各向同性的均匀电介质,下列概念正确的是( ) (A )电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B )电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C )在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D )电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

大学物理答案第10章

第十章 静电场中的导体与电介质 10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 题 10-2 图 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4= = 题 10-3 图

分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理学-习题解答-习题10

第十章 10-1 无限长直线电流的磁感应强度公式为B =μ0I 2πa ,当场点无限接近于导线时(即 a →0),磁感应强度B →∞,这个结论正确吗?如何解释? 答:结论不正确。公式a I B πμ20=只对理想线电流适用,忽略了导线粗细,当a →0, 导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。 10-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理 ∑?=?i i I l d B 0μρ ρ 得 0=??l d B ρ ρ,说明圆形环路L 内的电流代数和为零, 并不是说圆形环路L 上B 一定为零。 10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B ? 的大小是否相等? (2)在闭合曲线c 上各点的B ? 是否为零?为什么? 解: ?μ=?a l B 08d ? ? ? μ=?ba l B 08d ? ? ?=?c l B 0d ?? (1)在各条闭合曲线上,各点B ? 的大小不相等. (2)在闭合曲线C 上各点B ?不为零.只是B ? 的环路积分为零而非每点0=B ?. 习题10-2图

题10-3图 10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论? 答:两个垂直的电流元之间相互作用力不是等值、反向的。 B l Id F d ρρρ ?= 2 0?4r r l Id B d ?=? ?πμ 2 21 2122110221212201112)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ 2 12 12112 20212121102212)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ ))?()?((42 12 121221************r r l d l d r r l d l d I I F d F d ??+??-=+? ρ?ρρρπμ 2 122112 210212112221212102112) (?4))?()?((4r l d l d r I I r l d r l d l d r l d I I F d F d ?ρ? ρ?ρρρ??=?-?=+πμπμ 一般情况下 02112≠+F d F d ρ ρ 由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。 10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 答:弹簧会作机械振动。 当弹簧通电后,弹簧内的线圈电流可看成是同向平行 的,而同向平行电流会互相吸引,因此弹簧被压缩,下端 会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。 10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强 度;(2)x 为何值时,B 值最大,并给出最大值B max . 习题10-4图 r 12 r 21 习题10-5图 y

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理答案第17章

大学物理答案第17章

17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。 解:单缝衍射中央明条纹的宽度为 a f x λ 2=? 代入数据得 mm x 461.510 1.0101.54610 5023 9 2 =????=?--- 17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。 解:单缝衍射极小的条件 λθk a =sin 依题意有 m a μλ 26.70872 .0108.6325sin 9 =?==- 17-5 波长为20m 的海面波垂直进入宽50m 的港口。在港内海面上衍射波的中央波束的角宽是多少? 解:单缝衍射极小条件为 λθk a =sin

依题意有 011 5.234.0sin 5 2 sin 20sin 50===→=--θθ 中央波束的角宽为0 475 .2322=?=θ 17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。 解:单缝衍射明纹条件为 2 ) 12(sin λ θ+=k a 依题意有 2)122(2)132(2 1λλ+?=+? 代入数据得 nm 6.4287 60057521=?== λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。 (1)瞳孔最大直径为7.0mm ,入射光波长为550nm 。星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。视网膜上星体的像的直径多大? (3)视网膜中央小凹(直径0.25mm )中的柱状感光细胞每平方毫米约1.5×105个。星体的像照亮了几个这样的细胞?

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理第十章答案讲解

第十章 一、填空题 易:1、质量为0.10kg 的物体,以振幅1cm 作简谐运动,其角频率为1 10s -,则物体的总能量为, 周期为 。(4510J -?,0.628s ) 易:2、一平面简谐波的波动方程为y 0.01cos(20t 0.5x)ππ=-( SI 制),则它的振幅为 、角频率为 、周期为 、波速为 、波长为 。(0.01m 、20π rad/s 、 0.1s 、 40m/s 、4m ) 易:3、一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的倔强系数为 ,振子的振动角频率为 。(200N/m ,10rad/s ) 易:4、一横波的波动方程是y = 0.02cos2π(100t – 0.4X )( SI 制)则振幅是_________,波长是_ ,频率是 ,波的传播速度是 。(0.02m ,2.5m ,100Hz ,250m.s -1) 易:5、两个谐振动合成为一个简谐振动的条件是 。(两个谐振动同方向、同频率) 易:6、产生共振的条件是振动系统的固有频率与驱动力的频率 (填相同或不相同)。(相同) 易:7、干涉相长的条件是两列波的相位差为π的 (填奇数或偶数)倍。(偶数) 易:8、弹簧振子系统周期为T 。现将弹簧截去一半,仍挂上原来的物体,作成一个新的弹簧振子,则其振动周期为 T 。(T ) 易:9、作谐振动的小球,速度的最大值为,振幅为 ,则 振动的周期为 ;加速度的最大值为 。( 3 4π ,2105.4-?)

易:10、广播电台的发射频率为 。则这种电磁波的波长 为 。(468.75m ) 易:11、已知平面简谐波的波动方程式为 则 时,在X=0处相位为 ,在 处相位为 。 (4.2s,4.199s) 易:12、若弹簧振子作简谐振动的曲线如下图所示,则振幅; 圆频率 ;初相 。(10m, 1.2 -s rad π ,0) 中:13、一简谐振动的运动方程为2x 0.03cos(10t )3 π π=+ ( SI 制),则频率ν为 、周期T 为 、振幅A 为 , 初相位?为 。(5Hz , 0.2s , 0.03m , 23 π) 中:14、一质点同时参与了两个同方向的简谐振动,它们的震动方程分别为10.05cos(4)()x t SI ωπ=+和20.05cos(1912)()x t SI ωπ=+, 其合成运动的方程x = ;()12 cos(05.0π ω- =t x ) 中:15、A 、B 是在同一介质中的两相干波源,它们的 位相差为π,振动频率都为100Hz ,产生的波以10.0m/s

大学物理17章答案.docx

第17章量子物理基础 17.1根据玻尔理论,计算氢原子在斤=5的轨道上的动量矩与其在第一激发态轨道上的动量矩之比. [解答]玻尔的轨道角动量量子化假设认为电子绕核动转的轨道角动量为 L =mvr =n — N2TC , 对于第一激发态,n = 2,所以 厶仏2 = 5/2? 17.2设有原子核外的3p态电子,试列出其可能性的四个量子数. [解答]对于3p态电子,主量子数为n = 3, 角量子数为/=1, 磁量子数为mi = - 1), I -1, 自旋量子数为m s = ±1/2. 3p态电子的四个可能的量子数(斤丿,叫叫)为 (3,1 丄1/2), (3,1,1,? 1/2), (3丄0,1/2), (3,1,0,-1/2),(3,1,?1,1/2), (3,1,-1,-1 ⑵. 17.3实验表明,黑体辐射实验曲线的峰值波长九和黑体温度的乘积为一常数,即入』=b = 2.897xl(y3m?K?实验测得太阳辐射波谱的峰 值波长九= 510nm,设太阳可近似看作黑体,试估算太阳表面的温度.

[解答]太阳表面的温度大约为 T_ b _ 2.897X10-3 ~ 510x10—9 =5680(K)? 17.4实验表明,黑体辐射曲线和水平坐标轴所围成的面积M (即单位时间内从黑体单位表面上辐射出去的电磁波总能量,称总辐射度) 与温度的4次方成正比,即必=〃,其中^=5.67xl0-8W m_2 K-4.试由此估算太阳单位表面积的辐射功率(太阳表面温度可参见上题). [解答]太阳单位表面积的辐射功率大约为 A/=5.67xl0-8x(5680)4 = 5.9xl07(W-m-2)? 17.5宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于3K黑体辐射.求: (1)此辐射的单色辐射强度在什么波长下有极大值? (2)地球表面接收此辐射的功率是多少? [解答](1)根据公式UT=b,可得辐射的极值波长为 九=b/T= 2.897X10_3/3 = 9.66x104(m). (2)地球的半径约为7? = 6.371x10%, 表面积为 5 = 47T T?2. 根据公式:黑体表面在单位时间,单位面积上辐射的能量为M = al4, 因此地球表面接收此辐射的功率是 P = MS= 5.67x 1 (T8x34x4 兀(6.371 x 106)2

相关主题