搜档网
当前位置:搜档网 › Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent

Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent

Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent
Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent

Contents lists available at ScienceDirect

Electrochemistry Communications

journal homepage:

https://www.sodocs.net/doc/3a5583281.html,/locate/elecom

Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent:New insights

Paula Sebastián a ,Elvira Gómez b ,Víctor Climent a ,Juan M.Feliu a ,?

a Instituto de Electroquímica,Universidad de Alicante,Apdo.99,03080Alicante,Spain

b

Grup d'Electrodeposicióde Capes Primes i Nanoestructures (GE-CPN),Dep.Ciència de Materials i Química Física and Institut de Nanociència i Nanotecnologia (IN2UB),Universitat de Barcelona,08028Barcelona,Spain

A R T I C L E I N F O

Keywords:Single crystal

Deep eutectic solvent Interface

Underpotential deposition Chloride

A B S T R A C T

The electrodeposition of copper on a polycrystalline gold electrode and on Au(hkl)single crystals was investigated in a deep eutectic solvent (DES).The DES employed consisted of a mixture of choline chloride and urea (1:2).The Au(hkl)/DES interface was studied using cyclic voltammetry in the capacitive region.The blank voltammograms showed characteristic features,not previously reported,that demonstrate the surface sensitivity of this solvent.Copper electrodeposition was then studied and it was found that this takes place through the formation of an underpotential deposition (UPD)adlayer,demonstrating the surface sensitivity of this process.Voltammetric pro ?les showed similarities with those obtained in aqueous solutions containing chloride,suggesting that the copper UPD in this DES is strongly in ?uenced by the presence of chloride.

1.Introduction

Since it was discovered that ionic liquids (ILs)are e ?ective solvents,their use in electrochemical processes has been widespread [1,2].The instability of the early forms of these liquids has been overcome in the search for air and water stable ILs.Among these,deep eutectic solvents (DESs)are often used because they are both environmentally friendly and relatively cheap.These room temperature ionic liquids are prepared by mixing a hydrogen-bond donor with a quaternary ammo-nium salt [1,3–9].

Given their excellent ability to solvate metal ions,DESs have been widely employed in electrodeposition processes.Di ?erent aspects of the prepared coatings have been studied:morphology,stress,corrosion,even the ?rst stages of the deposition process [10–18].However,very few studies have been devoted to the interaction of solvent molecules with the electrode surface and the possible e ?ect of this interaction on the electrodeposition process [19,20].In this work,the deposition of copper on gold from a DES composed of a urea:choline chloride (2:1molar ratio)has been studied,focusing on the interaction between the components of the solution and the substrate.Both polycrystalline and single crystal gold electrodes were employed and the Au(hkl)|DES interface was investigated.

2.Experimental

Working electrodes were prepared from single crystal beads,as reported elsewhere [21].The polycrystalline sample was a polyoriented single crystal bead,Au(poly).A Cu wire was used as the reference electrode and a gold wire as the counter electrode.The potentials were further referred to the Ag|AgCl|3M KCl reference electrode.All working electrodes were ?ame-annealed and cooled to the ambient temperature in argon before immersion in the cell.The electrochemical experiments were performed in a small volume cell and controlled by a μ-Autolab instrument (Eco-Chemie,Ultrecht,The Netherlands).The temperature of all the experiments was kept at 40°C using a thermo-statted bath.

Urea (Merck p.a.)and choline chloride (Across,99%)were mixed (molar rate 2:1)at a low temperature (T <40°C).Before the experi-ment,the DES was kept under vacuum (P <0.002mbar)and at 30°C overnight under stirring [22].CuCl and CuCl 2(p.a.quality)were also purchased from Merck.3.Results and discussion

A detailed voltammetric study of the capacitive potential region between ?0.95and 0.40V vs Ag|AgCl was performed on Au(poly),revealing singular features of the Au(poly)|DES interface (Fig.1A).The voltammogram shows a capacitive current (capacity around

https://www.sodocs.net/doc/3a5583281.html,/10.1016/j.elecom.2017.03.020

Received 9March 2017;Received in revised form 30March 2017;Accepted 30March 2017?

Corresponding author.

E-mail address:juan.feliu@ua.es (J.M.Feliu).

Electrochemistry Communications 78 (2017) 51–55

Available online 31 March 2017

1388-2481/ ? 2017 Elsevier B.V. All rights reserved.

50μF cm ?2)that increases linearly with the scan rate.Overlapping this capacitive current,a few broad peaks (w,a and b)and one small,quite sharp peak (c)appear in the positive scan.The counter peaks also appear in the reverse scan,demonstrating quasi-reversible behavior.The lack of perfect reversibility can be ascribed to the high viscosity and low mobility of ions in solution.The appearance of these peaks is most likely related to 2D phase transitions involving the species of the electrolyte.In particular,the sharp peaks have been ascribed to phase transitions in the anion adlayer,and were previously reported in aqueous solution [23–25]and recently in the [Emmim][Tf 2N]room temperature ionic liquid [26].It should be noted that the concentration of chloride in the solvent is around 4.8M [27,28],so a strong e ?ect from chloride adsorption is expected.The low current intensity of these peaks is due to the small size of the corresponding facets of the Au bead.Single crystal electrodes were therefore employed to explore this capacitive region in more detail.Fig.1B and C show the cyclic voltammograms obtained with Au(111)and Au(100)in contact with the DES.As expected,the response is sensitive to the surface structure.For the Au(111)orientation,the group of peaks labelled as a,b and c (Fig.1B)in the positive scan appears at approximately the same potential position as the corresponding peaks for the polycrystalline bead (Fig.1A).There is also a new small peak at higher potentials (d,Fig.1B)not observed on Au(poly).These results show that the voltammetric pro ?le of Au(poly)has a major contribution from the (111)orientation,because these facets are the largest (disordered regions do not contribute sharp peaks).After reversing the scan,a similar group of peaks was found in the negative scan,but the lack of symmetry between positive and negative scans is now more evident,supporting the theory that structuring of the solvent takes place slowly.Other possible contributions to the voltammogram are related to the existence of surface reconstruction,which is strongly linked to anion adsorption as previously observed on Au surfaces in aqueous electro-lytes [23].Cyclic voltammograms were also recorded for Au(100)(Fig.1C),with a pro ?le that di ?ers clearly from the previous one.In the high potential region,a group of quasi-reversible peaks is observed (x,y,z and the counter peaks x ′,y ′and z ′)while at about ?0.25V vs Ag|AgCl a more prominent peak (w)appears in the positive scan.The latter is also observed for Au(poly),but to a much lesser extent,most likely re ?ecting the fact that the contribution from the (100)facets is very small in the polyoriented bead.This peak is also similar to that ascribed to the lifting of the hexagonal reconstruction characteristic of (100)surfaces [23,29].The counter peak was not clearly identi ?ed and two broad peaks (v ′and w ′)were found instead,suggesting that the surface reconstruction is slow and irreversible.

It is important to highlight that all of the cyclic voltammetry recorded between ?0.95and 0.40V vs Ag|AgCl was stable in consecutive scans,including the results for Au(111),contrary to what has been reported in [Emmim][Tf 2N][26].It is evident that the complexity of the voltammetric response re ?ects the particular nature of the solvent.How the solvent network is structured in the Au (hkl)|DES interface probably mainly involves the chloride,but the urea and choline also both contribute [30,31].

Finally,the potential window voltammograms from the blank solution on Au(hkl)and Au(poly)were recorded (Fig.1D),showing a pair of surface-insensitive broad peaks in the negative scan.Similar peaks have been observed for other metal surfaces and assigned to an earlier step in the massive reduction of the solvent.In the positive scan,no relevant oxidation features were recorded before the massive oxidation of the solvent.After attaining the oxidation limit,a reduction peak appears in the reverse scan,which increases on increasing the upper potential limit.In any case,the electrochemical window is not >2.3V,being smaller than that of conventional RTILs (3–5V)[2].

After measuring the blank response from the solvent,copper electrodeposition was studied,?rstly using a poly(Au)electrode.

E vs Ag|AgCl / V E vs Ag|AgCl / V

E vs Ag|AgCl / V

E vs Ag|AgCl / V

Fig.1.Cyclic voltammograms for (A)Au(poly),(B)Au(111)and (C)Au(100)electrodes in contact with the DES,(D)large potential window voltammograms for (a)Au(poly),(b)Au

(100)and (c)Au(111).Scan rate:50mV/s.

52

Fig.2shows the cyclic voltammograms for copper electrodeposition on the gold bead in 10mM CuCl solution.The Cu(I)state is stabilized by chloride complexation.A quasi-reversible Cu(II)–Cu(I)redox process appears around 0.29V,well separated from the Cu(I)–Cu electrodepo-sition [17,28,32].The cyclic voltammogram for Cu(I)electrodeposition shows a rapid increase in the cathodic current with a di ?usion-controlled maximum.On reversing the scan,a sharp oxidation peak appears,demonstrating the easy dissolution of the copper deposit,probably because the high chloride concentration in the DES favors it.Interestingly,on reversing the scan at the beginning of the main reduction current the typical nucleation loop does not show [33],suggesting that the initial steps of the copper electrodeposition could involve the formation of one copper sub-monolayer before the nuclea-tion and growth regime is reached [34,35].Fig.2B shows the cyclic voltammogram recorded just before the bulk deposition of copper.Around ?0.37and 0.06V two pairs of peaks (dashed line)appear,which could be related to copper UPD,mainly in the ordered domains.The total charge integrated in the potential region between ?0.50and 0.16V is ca.146μC cm ?2(without subtracting the double layer contribution).On slightly increasing the negative limit (?0.6V vs Ag|AgCl),a small peak (a)overlaps with the bulk deposition.In the positive scan,a broad oxidation peak (peak a ′)shifted with respect to the oxidation of bulk copper (b ′)is observed.The charge integrated in the cathodic scan for peak (a)(between ?0.50and ?060V,without double layer correction)amounts to ca.140μC cm ?2.A preliminary explanation of these results is that a second monolayer or even a few monolayers could grow layer by layer over the ?rst UPD layer before reaching the growth regime,as previously reported [36].Moreover,the current density within the potential region between ?0.50and 0.16V,considered here to be the UPD region,increases linearly with the scan rate (Fig.2C and D).This result shows that the whole process (both the UPD and the minor capacitive contribution)takes place on the surface.

Our results therefore support the view that UPD is the step before copper bulk deposition in the DES,since copper UPD was previously reported on gold electrodes in aqueous electrolytes [37]and also in this DES on platinum electrodes [32].

In order to gain more insight into the copper UPD step,single crystals were employed.Fig.3A and B show the Cu UPD potential range on Au(111)and Au(100),respectively.The Cu UPD on Au(111)involves two groups of peaks.The ?rst pair of peaks is located at the most positive potentials (0.10V vs Ag|AgCl),while the other pair is located near the onset of the copper deposition (centered around ?0.42V vs Ag|AgCl).Similar groups of signals were reported in aqueous solutions containing chloride,a medium in which it became clear that the speci ?c nature of the anions a ?ects the UPD process [37,38].In sulphate-containing solutions the more positive pair of peaks was assigned to the formation of a (√3×√3)R30°honeycomb [39].The second pair of peaks was assigned to a full copper monolayer.The presence of chloride shifts the position of the peaks and also a ?ects the reversibility.Moreover,the chloride induces the transformation of the (√3×√3)R30°to a (5×5),corresponding to the ?rst UPD peak,with the chloride ions lying on top of the copper adlayer and forming a bilayer structure lattice [38,40,41].Because chloride interacts strongly with copper,it is expected that the high chloride concentration in the DES plays an important role in the ?nal structure of the UPD adlayers.However,the voltammetric pro ?le that we report here shows a few di ?erences from those previously reported in aqueous solutions,since the two groups of peaks appear more separated in the potential range and show less reversibility.These di ?erences can be attributed to the presence of the other species in the DES (choline and urea),since the addition of organic compounds can modify the UPD region [42–44].The charge involved within these characteristic UPD peaks (i.e.subtracting a constant pseudo-capacitance value as measured at ?0.5V,180μF cm ?2)is around 240μC cm ?2,a ?gure that ap-

-1.0-0.50.00.50

50

100

150

j

/ A c m -2

E vs Ag|AgCl / V A

-0.6-0.4-0.20.00.2

-20

-10

10

E vs Ag|AgCl / V

b'

a'

B

C /F c m -2

j /A c m -2

x 4

a

-0.6-0.4-0.2

0.0

0.2

-20

-1001020

E vs Ag|AgCl / V

C

d

j / A c m -2

j / A c m -2

5mV 10mV 20mV 30mV 40mV 50mV

c

v / mV s -1

Fig.2.Cyclic voltammograms for copper electrodeposition on Au(poly)from a 10mM CuCl +DES solution:(A)and (B)di ?erent potential limits (dashed line in B is just an enlargement of the black curve).Scan rate at 5mV/s.(C)Copper UPD recorded at di ?erent scan rates.(D)Plots of current densities (squares)and pseudocapacitance (j/v )(triangles)of the UPD region vs the scan rate.Open and ?lled symbols correspond to the maximum values measured at peaks c and d respectively,from Fig.2C.The vertical line in Fig.2A marks the reversible potential for bulk copper deposition.

53

proaches the corresponding value for a whole copper monolayer (220μC cm ?2),assuming here that the copper deposition only involves the transfer of one electron (Cu(I)–Cu),and neglecting any coulometric contribution from anion adsorption [45].

The cyclic voltammogram for copper UPD on Au(100)shows only a pair of quasi-reversible peaks around 0.142V vs Ag|AgCl.The corre-sponding charge for the UPD feature,integrated after subtracting the pseudo-capacitance measured at ?0.50V (70μF cm ?2),is around 130μC cm ?2(while the total charge for a whole copper monolayer deposited on Au(100)is ca.190μC cm ?2[45]).

The pro ?le reported here is very similar to that recorded in chloride-containing aqueous solutions.However,while a sharp peak is observed in the positive scan,the corresponding counter peak splits into a very thin peak overlapped with a broader one in the negative scan.This result provides evidence that the nature of the DES a ?ects the UPD process,although a strong interaction between the copper adlayer and the chloride is also expected [36,46,47].

It is worth pointing out that the onset of the UPD process takes place immediately after the ?rst Cu(II)/Cu(I)electron transfer,even when CuCl 2(Cu(II))is the copper source (not shown),at the potential at which Cu(I)is stabilized (Fig.3C and D,dashed lines).This result strongly suggests that copper UPD on a gold electrode in a choline chloride –urea based DES takes place from the stable Cu(I)–chloride complex.From these data it is di ?cult to know whether the charge involved in the UPD region corresponds only to the Cu(I)–Cu reduction or whether there is also a contribution from the adsorption of one of more of the DES species on the copper adlayer,most likely chloride [41,48].

Finally,on enlarging the negative scan (Fig.3C and D,solid lines),the beginning of copper bulk deposition is observed.While only one

oxidation peak appears on Au(111),two oxidation peaks were detected on Au(100)as well as a broader and less prominent peak that extends to the 0.0V potential limit.These features could be related to the earlier formation of some copper adlayers before the growth regime is reached [36].Further work is needed to fully understand the phenomenon of metal UPD in DESs.

4.Conclusions

Voltammetric experiments were conducted for di ?erent Au surfaces in contact with a eutectic mixture of urea and choline chloride (DES),revealing that the interfacial behavior is structure sensitive.Several sharp and characteristic peaks that had not been previously described were observed overlapping the capacitive current recorded for each electrode.

Copper deposition on gold electrodes was also investigated,taking advantage of the fact that Cu(I)solutions can be used.It was found that bulk copper deposition is preceded by the formation of a UPD copper adlayer.Copper UPD on Au(111)and Au(100)showed characteristic sharp peaks and similar pro ?les to those recorded in chloride-contain-ing aqueous solutions.Chloride is therefore probably involved in the UPD formation.These preliminary results indicate that UPD in the DES takes place from the stabilized Cu(I)–Cl complex.

Con ?ict of interest

The authors declare no con ?ict of interest.

-0.4

-0.2

0.0

0.2

-10

-50510

15A

-0.4-0.20.00.2

-10

-5051015

20B

-0.5

0.0

0.5

-30

-20-100102030

40C

j / A c m -2

j /A c m -2

j /A c m -2

-0.5

0.0

0.5

-30

-20-100102030

40 E vs Ag|AgCl / V

E vs Ag|AgCl / V E vs Ag|AgCl / V

D

E vs Ag|AgCl / V

j /A c m -2

Fig.3.Cyclic voltammograms for Cu UPD deposition on Au(hkl)electrodes,from a 10mM CuCl +DES solution.(A)Au(111),(B)Au(100).Potential limits showing the Cu(II)–Cu(I)reduction (dashed line)and the onset of bulk deposition (solid line)on:(C)Au(111),(D)Au (100).Scan rate:5mV/s.

54

Acknowledgements

Financial support from MINECO through projects CTQ2016-76221-P(AEI/FEDER,UE)and TEC2014-51940-C2-2-R(AEI/FEDER,UE)are greatly acknowledged.P.Sebastian also acknowledges MECD for FPU grant.

References

[1]M.Armand,F.Endres,D.R.MacFarlane,H.Ohno,B.Scrosati,Ionic-liquid materials

for the electrochemical challenges of the future,Nat.Mater.8(2009)621–629. [2]M.C.Buzzeo,R.G.Evans,https://www.sodocs.net/doc/3a5583281.html,pton,Non-haloaluminate room-temperature

ionic liquids in electrochemistry—a review,ChemPhysChem5(2004)1106–1120.

[3]P.Bonh?te,A.-P.Dias,N.Papageorgiou,K.Kalyanasundaram,M.Gr?tzel,

Hydrophobic,highly conductive ambient-temperature molten salts,Inorg.Chem.

35(1996)1168–1178.

[4] A.P.Abbott,G.Capper,D.L.Davies,R.K.Rasheed,V.Tambyrajah,Novel solvent

properties of choline chloride/urea mixtures,https://www.sodocs.net/doc/3a5583281.html,mun.(2003)70–71. [5] A.P.Abbott,D.Boothby,G.Capper,D.L.Davies,R.K.Rasheed,Deep eutectic

solvents formed between choline chloride and carboxylic acids:versatile alter-

natives to ionic liquids,J.Am.Chem.Soc.126(2004)9142–9147.

[6] A.P.Abbott,R.C.Harris,K.S.Ryder,Application of hole theory to de?ne ionic

liquids by their transport properties,J.Phys.Chem.B111(2007)4910–4913. [7] E.L.Smith,A.P.Abbott,K.S.Ryder,Deep eutectic solvents(DESs)and their

applications,Chem.Rev.114(2014)11060–11082.

[8] C.A.Nkuku,R.J.LeSuer,Electrochemistry in deep eutectic solvents,J.Phys.Chem.

B111(2007)13271–13277.

[9] F.Endres,S.Zein El Abedin,Air and water stable ionic liquids in physical

chemistry,Phys.Chem.Chem.Phys.8(2006)2101–2116.

[10]Q.Zhang,Q.Wang,S.Zhang,X.Lu,X.Zhang,Electrodeposition in ionic liquids,

ChemPhysChem17(2016)335–351.

[11] A.R.Hillman,K.S.Ryder,C.J.Zaleski,V.Ferreira,C.A.Beasley,E.Vieil,Application

of the combined electrochemical quartz crystal microbalance and probe beam

de?ection technique in deep eutectic solvents,Electrochim.Acta135(2014)42–51.

[12]M.Li,Z.Wang,R.G.Reddy,Cobalt electrodeposition using urea and choline

chloride,Electrochim.Acta123(2014)325–331.

[13] A.P.Abbott,K.El Ttaib,G.Frisch,K.S.Ryder,D.Weston,The electrodeposition of

silver composites using deep eutectic solvents,Phys.Chem.Chem.Phys.14(2012) 2443–2449.

[14] A.P.Abbott,A.Ballantyne,R.C.Harris,J.A.Juma,K.S.Ryder,Bright metal coatings

from sustainable electrolytes:the e?ect of molecular additives on electrodeposition of nickel from a deep eutectic solvent,Phys.Chem.Chem.Phys.19(2017)

3219–3231.

[15]H.Yang,X.Guo,N.Birbilis,G.Wu,W.Ding,Tailoring nickel coatings via

electrodeposition from a eutectic-based ionic liquid doped with nicotinic acid,Appl.

Surf.Sci.257(2011)9094–9102.

[16] A.Florea,L.Anicai,S.Costovici,F.Golgovici,T.Visan,Ni and Ni alloy coatings

electrodeposited from choline chloride-based ionic liquids–electrochemical

synthesis and characterization,Surf.Interface Anal.42(2010)1271–1275. [17]P.Sebastián,E.Torralba,E.Vallés,A.Molina,E.Gómez,Advances in copper

electrodeposition in chloride excess.A theoretical and experimental approach,

Electrochim.Acta164(2015)187–195.

[18]P.Sebastián,E.Vallés,E.Gómez,Copper electrodeposition in a deep eutectic

solvent.First stages analysis considering Cu(I)stabilization in chloride media,

Electrochim.Acta123(2014)285–295.

[19]R.Costa,M.Figueiredo,C.M.Pereira,F.Silva,Electrochemical double layer at the

interfaces of Hg/choline chloride based solvents,Electrochim.Acta55(2010)

8916–8920.

[20]M.Figueiredo,C.Gomes,R.Costa,A.Martins,C.M.Pereira,F.Silva,Di?erential

capacity of a deep eutectic solvent based on choline chloride and glycerol on solid electrodes,Electrochim.Acta54(2009)2630–2634.

[21] A.Rodes,E.Herrero,J.M.Feliu,A.Aldaz,Structure sensitivity of irreversibly

adsorbed tin on gold single-crystal electrodes in acid media,J.Chem.Soc.Faraday Trans.92(1996)3769–3776.

[22]M.Gnahm,D.M.Kolb,The puri?cation of an ionic liquid,J.Electroanal.Chem.651

(2011)250–252.

[23] D.M.Kolb,Reconstruction phenomena at metal–electrolyte interfaces,Prog.Surf.

Sci.51(1996)109–173.

[24]J.Lipkowski,Z.Shi,A.Chen,B.Pettinger,C.Bilger,Ionic adsorption at the Au(111)

electrode,Electrochim.Acta43(1998)2875–2888.

[25]J.Clavilier,The role of anion on the electrochemical behaviour of a{111}platinum

surface;an unusual splitting of the voltammogram in the hydrogen region,J.

Electroanal.Chem.107(1979)211–216.

[26]P.Sebastián,V.Climent,J.M.Feliu,Characterization of the interfaces between Au

(hkl)single crystal basal plane electrodes and[Emmim][Tf2N]ionic liquid,

https://www.sodocs.net/doc/3a5583281.html,mun.62(2016)44–47.

[27] A.P.Abbott,G.Frisch,H.Garrett,J.Hartley,Ionic liquids form ideal solutions,

https://www.sodocs.net/doc/3a5583281.html,mun.47(2011)11876–11878.

[28] A.P.Abbott,K.El Ttaib,G.Frisch,K.J.McKenzie,K.S.Ryder,Electrodeposition of

copper composites from deep eutectic solvents based on choline chloride,Phys.

Chem.Chem.Phys.11(2009)4269–4277.

[29] A.Cuesta,M.Kleinert,D.M.Kolb,The adsorption of sulfate and phosphate on Au

(111)and Au(100)electrodes:an in situ STM study,Phys.Chem.Chem.Phys.2

(2000)5684–5690.

[30]S.Chen,C.Hwuang,H.Tu,C.Wu,S.Yau,L.Fan,Y.Yang,In situ STM study of the

adsorption and electropolymerization of o-,m-,and p-ethylaniline molecules on Au

(111)electrode,Phys.Chem.Chem.Phys.12(2010)9276–9284.

[31]T.W.T.Dretschkow,Structural transitions in organic adlayers—a molecular view,

in:K.Wandelt(Ed.),Solid Liquid Interface Properties and Processes—A Surface

Science,Springer-Verlag,2003.

[32]T.Tsuda,L.E.Boyd,S.Kuwabata,C.L.Hussey,Electrochemistry of copper(I)oxide

in the66.7–33.3mol%urea–choline chloride room-temperature eutectic melt,J.

Electrochem.Soc.157(2010)F96–F103.

[33]S.Fletcher,C.S.Halliday,D.Gates,M.Westcott,T.Lwin,G.Nelson,The response of

some nucleation/growth processes to triangular scans of potential,J.Electroanal.

Chem.Interfacial Electrochem.159(1983)267–285.

[34] A.I.Danilov,E.B.Molodkina,A.V.Rudnev,Y.M.Polukarov,J.M.Feliu,Kinetics of

copper deposition on Pt(111)and Au(111)electrodes in solutions of di?erent

acidities,Electrochim.Acta50(2005)5032–5043.

[35] A.I.Danilov,E.B.Molodkina,Y.M.Polukarov,V.Climent,J.M.Feliu,Active centers

for Cu UPD–OPD in acid sulfate solution on Pt(111)electrodes,Electrochim.Acta

46(2001)3137–3145.

[36]R.J.Randler,D.M.Kolb,B.M.Ocko,I.K.Robinson,Electrochemical copper

deposition on Au(100):a combined in situ STM and in situ surface X-ray di?raction

study,Surf.Sci.447(2000)187–200.

[37] E.Herrero,L.J.Buller,H.D.Abru?a,Underpotential deposition at single crystal

surfaces of Au,Pt,Ag and other materials,Chem.Rev.101(2001)1897–1930.

[38]Z.Shi,S.Wu,J.Lipkowski,Coadsorption of metal atoms and anions:Cu UPD in the

presence of SO42?,Cl?and Br?,Electrochim.Acta40(1995)9–15.

[39]T.Hachiya,H.Honbo,K.Itaya,Detailed underpotential deposition of copper on

gold(111)in aqueous solutions,J.Electroanal.Chem.Interfacial Electrochem.315

(1991)275–291.

[40]H.Matsumoto,I.Oda,J.Inukai,M.Ito,Coadsorption of copper and halogens on Pt

(111)and Au(111)electrode surfaces studied by scanning tunneling microscopy,J.

Electroanal.Chem.356(1993)275–280.

[41]Z.Shi,S.Wu,J.Lipkowski,Investigations of Cl?adsorption at the Au(111)

electrode in the presence of underpotentially deposited copper atoms,J.

Electroanal.Chem.384(1995)171–177.

[42] C.M.Whelan,M.R.Smyth,C.J.Barnes,The in?uence of heterocyclic thiols on the

electrodeposition of Cu on Au(111),J.Electroanal.Chem.441(1998)109–129.

[43]M.H.H?lzle,C.W.Apsel,T.Will,D.M.Kolb,Copper deposition onto Au(111)in the

presence of thiourea,J.Electrochem.Soc.142(1995)3741–3749.

[44] F.Endres,A.Schweizer,The electrodeposition of copper on Au(111)and on HOPG

from the66/34mol%aluminium chloride/1-butyl-3-methylimidazolium chloride

room temperature molten salt:an EC-STM study,Phys.Chem.Chem.Phys.2(2000)

5455–5462.

[45]H.Angerstein-Kozlowska,B.E.Conway,A.Hamelin,L.Stoicoviciu,Elementary

steps of electrochemical oxidation of single-crystal planes of Au—I.Chemical basis

of processes involving geometry of anions and the electrode surfaces,Electrochim.

Acta31(1986)1051–1061.

[46] F.A.M?ller,O.M.Magnussen,R.J.Behm,In situ STM studies of Cu underpotential

deposition on Au(100)in the presence of sulfate and chloride anions,Phys.Rev.B

51(1995)2484–2490.

[47]N.Ikemiya,S.Miyaoka,S.Hara,In situ observations of the initial stage of

electrodeposition of Cu on Au(100)from an aqueous sulfuric acid solution using

atomic force microscopy,Surf.Sci.327(1995)261–273.

[48]S.Wu,Z.Shi,J.Lipkowski,A.P.Hitchcock,T.Tyliszczak,Early stages of copper

electrocrystallization:electrochemical and in situ X-ray absorption?ne structure

studies of coadsorption of copper and chloride at the Au(111)electrode surface,J.

Phys.Chem.B101(1997)10310–10322.

55

铜电解槽精炼车间工业设计

铜电解槽精炼车间工业设 计 Newly compiled on November 23, 2020

铜电解槽精炼车间工艺设计 一、概述 1、粗铜经火法精炼后仍含有一点数量的杂质。这些杂质的存在会使铜的某些物理性质和机械性能变坏,不能满足电气工业对铜的要求。因此,粗铜在火法精炼后需要电解精炼以除去有害杂质。铜的电解精炼以火法精炼产出的铜为阳极,以电解产出的薄铜片为阴极,以硫酸和硫酸铜水溶液作电解液。在直流电作用下,阳极铜电化学溶解,在阴极上沉积,杂质则进入阳极泥和电解液中,从而实现铜于杂质的分离。 下图为铜电解精炼一般工艺流程图: 种板阳极 阳极 阳极泥 送阳极泥 处理法精炼 结晶硫酸铜粗硫酸 图1-1铜电解精炼一般工艺流程图: 2、铜阳极 铜电解精炼的原料是火法精炼后烧铸而成的铜阳极。生产中应尽量获得质量良好的铜阳极板。 二、技术条件及技术经济指标的选择 1、操作技术条件 ⑴、电流密度

电流密度是指单位面积上通过的电流安培数。电流密度的范围为200-360A /m 2.。种板电解槽电流密度比普通电解槽电流密度稍低,本设计中普通电解槽电流密度取300 A /m 2,种板电解槽电流密度取230A /m 2。 ⑵、电解液成分 电解液成分主要由硫酸和硫酸铜水溶液组成。其铜和硫酸的含量视电流密度、阳极成分和电解液的纯净度等条件而定。在电解生产中,必须根据具体条件加以掌握,以控制电解液的含铜量处于规定的范围。 ⑶、极距 极距一般指同极中心距。本设计取极距为90mm 。 ⑷、阳极寿命和阴极周期 阳极寿命根据电流密度、阳极质量及残极率来确定,一般为18-24天。阴极周期与电流密度、阳极寿命及劳动组织等因素有关,一般为阳极寿命的1/3。本设计中阳极寿命为18天,阴极寿命为6天。 2、技术经济指标 ⑴、电流效率 电流效率是指电解过程中,阴极实际析出量占理论量的百分比。本设计中电流效率为% ⑵、残极率 残极率是指产出残极量占消耗阳极量的百分比。本设计中残极率17%。 ⑶、电解回收率 铜电解回收率反应在电解过程中铜的回收程度,其计算方法如下: 铜电解回收率×100 %

铜铟镓硒(CIGS)薄膜太阳能电池研究

铜铟镓硒(CIGS)薄膜太阳能电池研究 【摘要】:铜铟镓硒Cu(InGa)Se_2(CIGS)薄膜太阳能电池,具有转换效率高、成本低、稳定性好等特点,是最有发展前景的薄膜太阳能电池之一。到目前为止,基于三步共蒸发工艺制备的CIGS薄膜太阳能电池的效率已达19.99%,是所有薄膜太阳能电池中最高的。尽管这种制备方法有很多优点,制备成分均匀的大面积电池却具有难以克服的困难,不能满足大规模产业化的要求。在CIGS薄膜太阳能电池产业化进程中,克服其层间的附着力差,制备符合化学计量比具有黄铜矿结构的多晶薄膜吸收层是必须解决的两个最重要的工艺技术。本论文主要研究一种工艺简单、可控、适合产业化需要的技术工艺,即溅射制备合金预制膜后硒化的制备方法。研究采用的溅射系统,是本中心自行设计研制的三靶共溅设备,阴极大小为3英寸,衬底基座可以旋转,以保证制备薄膜的均匀。首先,在碱石灰玻璃衬底上制备厚度约1微米的钼电极,在溅射过程中通过改变工作气压,使Mo电极具有类似层状结构,消除了内应力的影响。通过扫描电镜分析,薄膜表面具有鱼鳞状结构,从而增加了Mo电极和CIGS吸收层之间的接触面积。Mo电极和玻璃衬底之间,及其和CIGS吸收层之间的附着力得到显著提高。然后,在沉积有Mo电极的玻璃衬底上,通过共溅射的方法制备约700纳米厚度的Cu(InGa)预制层薄膜,靶材采用CuIn和CuGa合金靶。硒化采用低温和高温过程依次进行的2步方法,采用固态硒源,硒化室是一个半密封的石墨盒。通过在高温区保温30分钟,制备出了性能优异的CIGS

吸收层薄膜,具有(112)晶面择优取向,显示明显的黄铜矿单一结构。薄膜表面平整,晶粒大小均匀、排列紧密,晶粒大小达到3到5微米。用化学水浴法,制备厚度约70纳米的CdS过渡层。分别采用醋酸镉和硫尿作为镉源和硫源。研究了ZnS薄膜的制备工艺,对无镉电池的制备做了初步探索。最后用射频磁控溅射的方法,研究了常温下制备透明导电材料IT0和ZnO的制备工艺,研究了溅射功率和溅射气压对薄膜性能的影响。所制备的透明导电薄膜在可见光谱范围内,透过率到达80%到90%,方块电阻达到15Ω/□以下。在CIGS薄膜太阳能中,作为上电极材料,具有广泛的应用前景。通过大量的实验,优化了背电极Mo、吸收层CIGS、过渡层CdS(ZnS)、本征氧化锌i-ZnO和搀杂氧化锌n-ZnO(或者ITO)的制备工艺。最后,制备出了结构为Glass/Mo/CIGS/CdS/i-ZnO/n-ZnO/A1的CIGS电池器件。对器件的性能做了测试分析,在没有减反射层的情况下,转化效率达到7.8%。该研究采用的CIGS薄膜太阳能电池的制备工艺简单、过程容易控制、设备和材料费用低,没有采用剧毒的气源,适合大规模产业化的要求,为以后进一步的研究开发做了技术储备。【关键词】:CIGS薄膜太阳能电池TCO磁控溅射合金靶固态硒源硒化 【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2009

铜编织带软连接标准和类型

铜编织带软连接标准和类型,用途和工艺简介:铜编织带软连接又名铜编织线软连接,用冷压方法约束而成,是在编织带两边焊接铜管,通过处理做成软连接导线材料:铜编织线、铜编织带、镀锡铜编织线、镀锡铜编织带、铜绞线。铜编织带是用无氧铜丝编织,线经0.10mm,0.12mm,0.15mm单丝,根据客户要求,柔软度,通电强度等特制而成。,可根据客户不同的需求打孔,镀锡等。 接触面材料:OT端子、DT端子、铜管(表面可根据客户要求镀银、锡、镍等) 压接方法:用冷压的方法制成,依照厚度要求或根据客户参数要求选用不同的冲床、液压机进行压接。 绝缘材料:雅杰公司标准规划无绝缘材料,可根据客户要求运用PVC绝缘套管或热宿管加以绝缘维护固定。 工艺:用裸铜线、铜编织线,作为导体,两头选用铜端子,接头标准按客户要求 出产,用冷压方法约束而成。可根据客户要求镀锡镀银。再通过特别处理,做成高强度大电流软连接。 产品功能:导电率高,表面平整,亮光,接触面好,导电功能优越。适用性强,柔软度佳,设备便当,易散热,耐曲折。

适用范围:雅杰产品首要用于非水平方向的带电运动及中、低压断路器,适用于各种高低压电器、真空电器、矿用防爆开关及轿车、机车、轿车电池、动力电池等相关产品做软连接用。广泛用于发电机、变压器、开关、母线、工业电炉、整流设备、电解锻炼设备、焊接设备及其他大电流设备中做柔性导电联接。 优势:处理了传统母线在运用过程中易发热、高能耗等缺陷,具有节能降耗、导电功能超群、运用寿命长、免维护、外形漂亮、设备便当等特征。本公司选用先进的原子扩散工艺,专业出产各种高低压电器设备用软连接、导电带、母线弹性节。 钻孔:雅杰公司标准规划无钻孔要求,可根据图纸或客户参数要求在接触面钻孔。 特别规划:可根据用户要求或图纸参数要求进行辅佐的车床、洗床、切床等设备加工。

铜电解槽精炼车间工业设计

铜电解槽精炼车间工业 设计 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

铜电解槽精炼车间工艺设计 一、概述 1、粗铜经火法精炼后仍含有一点数量的杂质。这些杂质的存在会使铜的某些物理性质和机械性能变坏,不能满足电气工业对铜的要求。因此,粗铜在火法精炼后需要电解精炼以除去有害杂质。铜的电解精炼以火法精炼产出的铜为阳极,以电解产出的薄铜片为阴极,以硫酸和硫酸铜水溶液作电解液。在直流电作用下,阳极铜电化学溶解,在阴极上沉积,杂质则进入阳极泥和电解液中,从而实现铜于杂质的分离。 下图为铜电解精炼一般工艺流程图: 种板阳极 阳极 阳极泥 送阳极泥 处理法精炼 结晶硫酸铜粗硫酸 图1-1铜电解精炼一般工艺流程图: 2、铜阳极 铜电解精炼的原料是火法精炼后烧铸而成的铜阳极。生产中应尽量获得质量良好的铜阳极板。 二、技术条件及技术经济指标的选择 1、操作技术条件 ⑴、电流密度

电流密度是指单位面积上通过的电流安培数。电流密度的范围为200-360A /m 2.。种板电解槽电流密度比普通电解槽电流密度稍低,本设计中普通电解槽电流密度取300 A /m 2,种板电解槽电流密度取230A /m 2。 ⑵、电解液成分 电解液成分主要由硫酸和硫酸铜水溶液组成。其铜和硫酸的含量视电流密度、阳极成分和电解液的纯净度等条件而定。在电解生产中,必须根据具体条件加以掌握,以控制电解液的含铜量处于规定的范围。 ⑶、极距 极距一般指同极中心距。本设计取极距为90mm 。 ⑷、阳极寿命和阴极周期 阳极寿命根据电流密度、阳极质量及残极率来确定,一般为18-24天。阴极周期与电流密度、阳极寿命及劳动组织等因素有关,一般为阳极寿命的1/3。本设计中阳极寿命为18天,阴极寿命为6天。 2、技术经济指标 ⑴、电流效率 电流效率是指电解过程中,阴极实际析出量占理论量的百分比。本设计中电流效率为% ⑵、残极率 残极率是指产出残极量占消耗阳极量的百分比。本设计中残极率17%。 ⑶、电解回收率 铜电解回收率反应在电解过程中铜的回收程度,其计算方法如下: 铜电解回收率×100 %

铜编织线价格

厂家直销@质量保障https://www.sodocs.net/doc/3a5583281.html, 铜编织线是制作软连接材料,廊坊伟兴金属材料有限公司位于河北廊坊大城旺村崔四岳工业园区,是专业生产制作编织线软连接,编织线,软绞线,电刷线,防玻套,电器软连接,汽车电缆线,铜排软连接,新能源汽车电池包连接线等产品的专业化厂家,本公司所生产的产品主要是用于航天,军工等装备制造,汽车,电子,新能源汽车,电器制造各方面。 下面为大家介绍关于铜编织线的产品特点及其发展趋势。铜编织线是采用优质软态圆铜线(0.10mm、0.15mm、0.20mm)或镀锡软态圆铜线(0.10mm、0.15mm、0.20mm),以多股(24、36、48锭)经单层或多层编织而成。其产品型号有TZ-20、TZX-20、TZ-15、TZX-15、TZ-10、TZX-10六种。 铜编织线产品发展方向 我国将电线电缆产品按其用途分成五大类,即:裸电线、绕组线、电气装备用电线电缆、电力电缆和通信电缆(包括光缆)。目前,我国这五类产品生产量(价值量)大体上分别占电线电缆总产量的18%、19%、22%、31%和10%。专家分析指出:现阶段我国电线电缆的产品

厂家直销@质量保障https://www.sodocs.net/doc/3a5583281.html, 结构比较落后,技术含量低的产品比重过大,技术含量高的产品比重过小。而发达国家如美国上述五类产品所占比例分别为10%、10%、49%、13%和18%,产品结构明显优于我国。虽然我国的电线电缆行业在生产规模、品种发展和产品等级上已发生较大变化,但在发展中还存在三个主要问题: (1)规模增长过猛目前,电线电缆行业总体能力大于需求一倍以上,各大类产品2000年的预测需求数均小于目前生产能力。 (2)低水平重复建设多近几年,电线电缆行业对产品结构的调整重视不够,产品结构矛盾依然突出,高水平产品满足不了需要。例如,从大类看,我国裸电线产量占近1/5,发达国家只占1/10。而在裸电线中,架空线和普通的钢芯铝绞线又占了绝大多数。

电解铝工艺流程-编写

电解铝工艺流程 电解铝就就是通过电解得到得铝,现代金属铝得生产主要采用冰晶石-氧化铝融盐电解法。生产工艺流程如图1所示。

1、铝电解工艺 直流电通入电解槽,电解槽温度控制在940-960℃,熔融冰晶石就是溶剂,氧化铝作为溶质,以炭素体作为阳极,铝液做为阴极,使溶解于电解质中得氧化铝在槽内得阴、阳两极发生电化学反应。在阴极电解析出金属铝,在阳极电解析出与气体.铝液定期用真空抬包析出,经过净化澄清后,浇铸成商品铝锭. 阳极气体经净化后,废气排空,回收得氟化物等返回电解槽. 电解铝得主要设备就是电解槽,现代铝工业主要有两种形式得槽式分别为自焙阳极电解槽与预焙阳极电解槽。以下为两种槽得比较: 图一:两种类型电解槽得比较 目前世界上大部分国家及生产企业都在使用大型预焙槽,槽得电流强度 很大,不仅自动化程度高,能耗低,单槽产量高,而且满足了环保法规得要求。 从铝电解槽得发展来瞧,目前电流强度达到17-22KA得大型化各类阳极电解槽,产铝量为1200-1500Kg/d,电能消耗降低到13、5KW*H。下图为一

种铝电解槽参数 图二:一种铝电解槽配置图 2、电解烟气干法净化 2、1干法净化原理 干法净化就就是以某种固体物质吸附另一种气体物质所完成得净化过程。具有吸附作用得物质称吸附剂,被吸附得物质叫吸附质。铝电解含氟烟气得干法净化使用电解铝生产用得氧化铝,作为吸附剂吸附烟气中得氟化氢等大气污染物来完成对烟气得净化。氧化铝对氟化氢得吸附过程分三个步骤: (1)氟化氢在气相中不断扩散,通过氧化铝表面气膜到达氧化铝表面.

(2)氟化氢受氧化铝离子极化得化学键力得作用,形成化学吸附。 (3)被吸附得氟化氢与氧化铝发生化学反应,生成表面化合物―氟化铝。氟化氢得吸附率可达98%~99%,沥青烟得吸附率在95%以上。载有氟与沥青烟得氧化铝由布袋除尘器分离后供电解使用。回收得氟返回电解槽可补充电解生产过程中损失得氟元素,沥青焦油返槽后可逐步被烧掉。 2、2干法净化工艺流程 图3干法净化工艺流程图 干法净化工艺流程包括电解槽集气、吸附反应、气固分离、氧化铝输送、机械排风等五个部分,如图3所示。 (1)电解槽集气。电解槽散发得烟气呈无组织扩散状态,为了有效地控制污染,必须对电解槽进行密封。收集得烟气通过电解槽得排烟支管汇

如何计算铜编织带软连接的截面积

如何计算铜编织带软连接的截面积? 简介:铜编织带软连接又叫铜编织线软连接,用冷压方法压制而成,是在编织带两边焊接铜管,经过处理做成软连接,可根据客户不同的需求打孔,镀锡等。 导线材料:铜编织线、铜编织带、镀锡铜编织线、镀锡铜编织带、铜绞线。铜编织带是用无氧铜丝编织,线经0.10mm,0.12mm,0.15mm单丝,根据客户要求,柔软度,通电强度等特制而成。 接触面材料:OT端子、DT端子、铜管(表面可根据客户要求镀银、锡、镍等) 压接方式:用冷压的方式制成,按照厚度要求或根据客户参数要求采用不同的冲床、液压机进行压接。 绝缘材料:本公司标准设计无绝缘材料,可根据客户要求使用PVC绝缘套管或热宿管加以绝缘保护固定。 工艺:用裸铜线、铜编织线,作为导体,两端采用铜端子,接头尺寸按客户要求 生产,用冷压方法压制而成。可根据客户要求镀锡镀银。再通过特殊处理,做成高强度大电流软连接。 产品性能:导电率高,表面平整,光亮,接触面好,导电性能优越。适用性强,柔软度佳,安装方便,易散热,耐弯曲。 适用范围:主要用于非水平方向的带电运动及中、低压断路器,适用于各种高低压电器、真空电器、矿用防爆开关及汽车、机车、汽车电池、动力电池等相关产品做软连接用。广泛用于发电机、变压器、开关、母

线、工业电炉、整流设备、电解冶炼设备、焊接设备及其他大电流设备中做柔性导电连接。 优势:解决了传统母线在使用过程中易发热、高能耗等缺点,具有节能降耗、导电性能超群、使用寿命长、免维护、外形美观、安装方便等特点。本公司采用先进的原子扩散工艺,专业生产各种高低压电器设备用软连接、导电带、母线伸缩节。 钻孔:雅杰电子标准设计无钻孔要求,可根据图纸或客户参数要求在接触面钻孔。 特殊设计:可根据用户要求或图纸参数要求进行辅助的车床、洗床、切床等设备加工。 铜编织带软连接是铜编织带作为导体,两端选用铜管,铜管表面镀锡处置,接头标准按客户需要出产,再通过格外处置,做成软连接、软接地。导电率高、抗疲劳能力强。 铜编织带软连接规格(截面积)计算公式: 拿25平方来说,常规的规格是48*30*1/0.15,48指机器的碇数,即由多少股铜丝组成。30指每股里面有30根铜丝,1指单层,有时候我们会看到2,3等数字,则表示双层、三层。斜杠后面的0.15是指铜丝的单丝线径是0.15mm。 圆的面积计算公式:圆周率?半径?半径, 所以铜编织线的计算公式就是总共多少根铜丝*圆周率?半径?半径,即1440*0.075*0.075*3.14=25.434平方,标称25平方。

山铝电解铝厂电解槽设计特点

《山东冶金》2006年第4期 -------------------------------------------------------------------------------- 山铝电解铝厂电解槽设计特点 王庆义 (山东工业职业学院,山东淄博256414) 摘要:山铝电解铝厂在技术改造中采用200kA预焙阳极电解槽取代60kA自焙槽,该槽型具有优异的磁流体稳定性,合理的电热场设计,采用了窄加工面、阳极升降、“船形”槽壳、实腹板梁等多项先进技术和高性能的内衬材料。目前,电解槽已连续生产986天,电流效率达到了94.5 %,吨铝直流电能消耗13100 kW.h,氟化氢和粉尘等主要污染物排放量全部达到了国家排放标准。 关键词:电解槽;技术改造;设计特点;电流效率 中图分类号:TF821文献标识码:A文章编号:1004-4620(2006)04-0031-02 Design Characteristics of the Electrolytic Tank in the Electrolytic Aluminum Plant of Shanlv WANG Qing-yi (Shandong Industrial Vocational College, Zibo 256414, China) Abstract:200kA prebaked anode cell is adopted by in the Electrolytic Aluminum Plant of Shandong Aluminum Co., Ltd instead of 60kA self-baking cell in technical modification. This prebaked anode cell has excellent magnetohydrodynamic stability and reasonable electric heating field design and adopts new techniques such as narrow treating surface, the anode rise and drop, ship-pattern pot shell and solid web plate girder; and inner lining of high performance. The electrolytic tank has kept running for 986 days up to now,the power yield reaches 94.5 %,while the direct electric power consumption is only 13100 kW.h, furthermore, the discharge of main pollutants such as hydrogen fluoride and dust etc is up to the national effluent standard. Key words:electrolytic tank; technical modification; design characteristic; power yield 1 前言 山东铝业股份有限公司电解铝厂(简称山铝电解铝厂)60kA自焙槽工艺始建于1958年,由于自焙槽自身的结构特点,难以实现自动化控制和解决电解烟气污染的问题,因此技术经济指标较差,生产成本也相对较高。自焙槽与预焙槽在电流效率上相差约4%~5%,吨铝直流电耗相差1000kW.h左右,造成能源与资源的浪费。为此,山铝电解铝厂从2002年起开始对自焙槽实施预焙化改造,采用200kA预焙阳极电解槽取代60kA自焙槽,以彻底解决自焙槽烟气的环境污染问题,为提高电解铝厂技术装备水平,实现低耗高效奠定了基础。 2 200kA预焙阳极电解槽的设计特点 现代铝电解槽以高效、节能、长寿为特征,而电解槽的设计无疑十分关键。铝生产的实践证明,电解槽的稳定性是获得良好生产指标的根本保证。磁流体的稳定性、热平衡、电解

电解铝工艺流程-编写

电解铝工艺流程 电解铝就是通过电解得到的铝,现代金属铝的生产主要采用冰晶石-氧化铝融盐电解法。生产工艺流程如图1所示。

1. 铝电解工艺 直流电通入电解槽,电解槽温度控制在940-960℃,熔融冰晶石是溶剂,氧化铝作为溶质,以炭素体作为阳极,铝液做为阴极,使溶解于电解质中的氧化铝在槽内的阴、阳两极发生电化学反应。在阴极电解析出金属铝,在阳极电解析出CO和 CO气体。铝液定期用真空抬包析出,经过净化澄清后,浇铸成2 商品铝锭。阳极气体经净化后,废气排空,回收的氟化物等返回电解槽。 电解铝的主要设备是电解槽,现代铝工业主要有两种形式的槽式分别为自焙阳极电解槽和预焙阳极电解槽。以下为两种槽的比较: 图一:两种类型电解槽的比较 目前世界上大部分国家及生产企业都在使用大型预焙槽,槽的电流强度 很大,不仅自动化程度高,能耗低,单槽产量高,而且满足了环保法规的要求。从铝电解槽的发展来看,目前电流强度达到17-22KA的大型化各类阳极 电解槽,产铝量为1200-1500Kg/d,电能消耗降低到13.5KW*H。下图为一

种铝电解槽参数 图二:一种铝电解槽配置图 2. 电解烟气干法净化 2.1干法净化原理 干法净化就是以某种固体物质吸附另一种气体物质所完成的净化过程。具有吸附作用的物质称吸附剂,被吸附的物质叫吸附质。铝电解含氟烟气的干法净化使用电解铝生产用的氧化铝,作为吸附剂吸附烟气中的氟化氢等大气污染物来完成对烟气的净化。氧化铝对氟化氢的吸附过程分三个步骤: (1)氟化氢在气相中不断扩散,通过氧化铝表面气膜到达氧化铝表

面。 (2)氟化氢受氧化铝离子极化的化学键力的作用,形成化学吸附。 (3)被吸附的氟化氢和氧化铝发生化学反应,生成表面化合物―氟化铝。氟化氢的吸附率可达98%~99%,沥青烟的吸附率在95%以上。载有氟和沥青烟的氧化铝由布袋除尘器分离后供电解使用。回收的氟返回电解槽可补充电解生产过程中损失的氟元素,沥青焦油返槽后可逐步被烧掉。 2.2干法净化工艺流程 图3干法净化工艺流程图 干法净化工艺流程包括电解槽集气、吸附反应、气固分离、氧化铝输送、机械排风等五个部分,如图3所示。 (1)电解槽集气。电解槽散发的烟气呈无组织扩散状态,为了有效

铜铟镓硒薄膜太阳能电池的研究进展及展望

铜铟镓硒薄膜太阳能电池的研究进展及展望 摘要:铜铟镓硒薄膜太阳能电池是多元化合物薄膜电池的重要一员,由于其优越的 综合性能,已成为全球光伏领域研究热点之一。本文阐述了铜铟镓硒薄膜太阳能电 池的特性和竞争优势;介绍了国内外在铜铟镓硒薄膜太阳能电池领域的研究现状; 最后探讨了铜铟镓硒薄膜太阳能电池的应用展望。 关键词:太阳能电池;薄膜;铜铟镓硒;展望 近几年,世界各国加速发展各种可再生能源替代传统的化石能源,以解决日益加剧的温室效应、环境污染和能源枯竭等全球危机。作为理想的清洁能源,太阳能永不枯竭,正成为当今世界最具发展潜力的产业之一。目前,太阳能电池市场主要产品是单晶硅和多晶硅太阳能电池,占市场总额的80%以上。由于晶硅电池的高成本和生产过程的高污染,成本更低、生产过程更加环保的薄膜太阳能电池得到快速发展。现阶段,有市场前景的薄膜太阳能电池有3种,分别是非晶硅、碲化镉(CdTe)和铜铟镓硒(CuInGaSe2,一般简称CIGS)薄膜太阳能电池。作为直接带隙化合物半导体,铜铟镓硒吸收层吸收系数高达105cm-1,转化效率是所有薄膜太阳能电池中最高的,已成为全球光伏领域研究热点之一,即将成为新一代有竞争力的商业化薄膜太阳能电池。 1 铜铟镓硒薄膜太阳能电池的特性和竞争优势 太阳能电池的材料一般要求主要包括:半导体材料的禁带宽度适中;光电转化效率比较高;材料制备过程和电池使用过程中,不存在环境污染;材料适合规模化、工业化生产,且性能稳定。经过数十年电子工业的研究发展,作为半导体材料硅的提炼、掺杂和加工等技术已经非常成熟,所以,现在的商品太阳能电池主要硅基的[1]。但是,硅是间接带隙半导体材料,在保证电池一定转化效率前提下,其吸收层厚度一般要求150~300微米以上,理论极限效率为29%,按目前技术路线,提升效率的难度已经非常巨大[2]。同时考虑到加工过程近40%的材料损耗,材料成本是硅太阳能电池的最主要构成。另外,其材料生产过程的高温提炼、高温扩散导致其制备过程能耗高,这使其能量偿还周期长,整体成本高。尽管经过近几年的规模化发展,市场价格得到大幅下降,其每瓦成本仍高于2美元。如果再考虑到其制备过程的高污染,更增加了其环境治理社会成本,这些都严重制约了其竞争优势。相比较,薄膜太阳能电池具有较大的成本下降空间,同时它能够以多种方式嵌入屋顶和墙壁,非常适合光电一体化建筑和大型并网电站项目。在这种情况下,薄膜太阳能电池引起了人们的重视,近几年成了科技工作者的研究重点。从全球范围来看,光伏产业近期仍将以高效晶体硅电池为主。但向薄膜

电解槽设计模版

课程设计说明书 题 目: 年产x x 万吨铝电解槽设计 学生姓名: 学 院: 材料科学与工程 班 级: 冶金06-x x 指导教师: 2009年xx 月 学校代码: 10128 学 号:xxxxxxxxxxx

内蒙古工业大学课程设计(论文)任务书 课程名称:冶金工程课程设计学院:班级:冶金06 - xx 学生姓名: ___ 学号: _ 指导教师: 一、题目 铝电解槽的设计(年产铝量20万吨) 二、目的与意义 1.通过课程设计,巩固、加深和扩大在冶金工程专业课程及相关课程教育中所学到的知识,训练学生综合运用这些知识去分析和解决工程实际问题的能力。 2.学习冶金炉设计的一般方法,了解和掌握常用冶金设备或简单冶金设备的设计方法、设计步骤,为今后从事相关的专业课程设计、毕业设计及实际的工程设计打好必要的基础。 3.使学生在计算、制图、运用设计资料。熟练有关国家标准、规范、使用经验数据、进行经验估算等方面受全面的基础训练。 三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 设计年产量20万吨的电解槽,冶金工程基础课程设计一般要求学生完成以下工作:电解槽装配图一张(0 号图纸);零件工作图一张(铝电解母排);设计计算说明书一份(要求用A4 纸)。 四、工作内容、进度安排 课程设计可分为以下几个阶段进行。 1.设计准备 (1)阅读和研究设计任务书,明确设计任务与要求;分析设计题目。 (2)参阅有关内容,明确并拟订设计过程和进度计划。 2.装配草图的设计与绘制 (1)装配草图的设计准备工作,主要是分析和选定设计方案。 (2)初绘装配草图。 (3)完成装配草图,并进行检查与修正。 3.装配工作图的绘制与完成 (1)绘制装配图。 (2)标注尺寸、配合及零件序号。 (3)编写零件明细表、标题栏、技术特性及技术要求等。 五、主要参考文献 [1]成大先主编.机械设计手册.第一卷.第五版.北京:化学工业出版社1969. [2]郭鸿发主编.冶金工程设计设计基础.第一册.北京:冶金工业出版社,2006. [3]唐谟唐主编.火法冶金设备.中南大学出版社,2003. 审核意见 系(教研室)主任(签字) 指导教师下达时间年月日 指导教师签字:_______________

年产2.8万吨电解槽厂房设计.

东北大学有色冶金课程设计 (铜电解) 题目:年产2.8万吨铜电解车间设计班级:冶金工程1103 姓名:马林林 学号:20110075

目录 1.概述 ............................................................................................. - 3 - 1.1电解精炼的目的和任务................................................................................................ - 3 - 1.2电铜的质量标准............................................................................................................ - 3 - 1.2.1高纯阴极铜(Cu-CATH-1)化学成分.................................................................. - 3 - 1.2.2一号铜化学成分的质量分数............................................................................. - 4 - 1.3铜电解一般工艺流程.................................................................................................... - 4 - 2.冶金计算..................................................................................... - 5 - 2.1已知条件........................................................................................................................ - 5 - 2.2 计算............................................................................................................................... - 5 - 3.主体设备设计............................................................................. - 7 - 3.1电解槽材质与结构........................................................................................................ - 7 - 3.2商品电解槽总数............................................................................................................ - 8 - 3.3电解槽的极板数............................................................................................................ - 8 - 3.4电解槽尺寸的确定........................................................................................................ - 9 - 3.5种板电解槽数................................................................................................................ - 9 - 3.6净液量及脱铜槽数...................................................................................................... - 10 - 3.6.1净液量............................................................................................................... - 10 - 3.6.2脱铜槽数........................................................................................................... - 11 - 3.7槽边导电排、槽间导电板和阴极导电棒的选择与计算.......................................... - 11 - 3.7.1槽边导电排....................................................................................................... - 11 - 3.7.2 槽间导电板...................................................................................................... - 12 - 3.7.3 阴极导电棒...................................................................................................... - 12 - 3.8设计总结........................................................................................................................ - 9 - 4.图纸 ........................................................................................... - 12 - 5.参考文献................................................................................... - 12 -

关于编制铜铟镓硒CIGS薄膜太阳能电池项目可行性研究报告编制说明

铜铟镓硒CIGS薄膜太阳能电池项 目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司 编制时间:https://www.sodocs.net/doc/3a5583281.html, 高级工程师:高建

关于编制铜铟镓硒CIGS 薄膜太阳能电池项 目可行性研究报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (8) 2.1项目提出背景 (8) 2.2本次建设项目发起缘由 (8) 2.3项目建设必要性分析 (8) 2.3.1促进我国铜铟镓硒CIGS薄膜太阳能电池产业快速发展的需要 (9) 2.3.2加快当地高新技术产业发展的重要举措 (9) 2.3.3满足我国的工业发展需求的需要 (9) 2.3.4符合现行产业政策及清洁生产要求 (9) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (10) 2.3.6增加就业带动相关产业链发展的需要 (10) 2.3.7促进项目建设地经济发展进程的的需要 (11) 2.4项目可行性分析 (11) 2.4.1政策可行性 (11) 2.4.2市场可行性 (11) 2.4.3技术可行性 (12) 2.4.4管理可行性 (12) 2.4.5财务可行性 (13) 2.5铜铟镓硒CIGS薄膜太阳能电池项目发展概况 (13)

铜编织带规格参数

铜编织带顾名思义是通过编织的方式制作而成的,而编织工艺有很多,为常用的就是牵引线相互交叉编织。具体的操作方式如下: 首先将铜线经络筒、卷纬形成纬线管后,插在编织机的固定齿座上,并沿8字形轨道回转移动。在锭数数量不同的基础上,得到的铜编织带外形也有有区别的,如果锭数为偶数的话将编织成管状的铜编织带;如果锭数为奇数,织成的铜编织带就是扁片状。 随着对编织机进行的技术改造,不仅工艺的效率有了很大的提高,编织成的产品质量也有了明显改善,从而使得铜编织带的应用范围更广。 铜编织带/线采用优质裸铜圆丝或镀锡铜圆丝编织而成的带状导体,采用目前国内先进的8代多头编织机生产,机台规格齐全、产品种类丰富、日单产量大,可满足各类结构产品的需求。 组成结构:(1)股数*根数*套数/单丝线径 (2)股数*根数*密数/单丝线径 产品型号:TZ(代表紫铜编织带/线)TZX(代表镀锡铜编织带/线) (1)TZ-15/10TZ-代表材质(紫铜线)15代表单丝线径0.15mm,10-代表截面积10平方 (2)TZX-12/12TZX-代表材质(镀锡铜线)12代表单丝线径0.12mm,12-代表截面积12平方产品分类:

(1)紫铜编织带/线:材质为紫铜圆线,其编织常规线径为0.12mm、0.15mm,产品表面平整,电阻小,颜色为金黄色也称之为铜本色,紫铜编织带/线电气参数(20℃)不大于0.0223Ωmm2/m (2)镀锡铜编织带/线:材质为镀锡圆线,其编织常规单丝线径为0.12mm、0.15mm,产品表面光洁、抗氧化,颜色为银灰色,镀锡铜编织带/线 电气参数:(20℃)不大于0.0234Ωmm2/m常用规格:2mm2、2.5mm2、3.5mm2、4mm2、6mm2、8mm2、10mm2、12mm2、16mm2、20mm2、25mm2、35mm2、50mm2、75mm2、95mm2、100mm2、120mm2 常用单丝线径:0.10mm、0.12mm、0.15mm,也可根据用户要求定制单丝0.04、0.05、0.06、0.07、0.08、0.20、0.25的编织带/线 性能特点:导电率高、载流量大、电阻小用途:常用于电气装置、开关电器、电炉、蓄电池、设备、机械、汽车、接地等行业,主要用于导电、输电、非水平方向的带电运动及中低压电器中作为电力配套元件使用。

中国铜铟镓硒(CIGS)薄膜太阳能电池未来发展趋势报告

2010-2012年中国铜铟镓硒(CIGS)薄膜太阳能电池市场全景调查及未来发展趋势报告 报告简介 报告目录、图表部份 目录 第一章铜铟镓硒(CIGS)薄膜太阳能电池概述 1 第一节太阳能电池的分类 1 一、硅系太阳能电池 1 二、多元化合物薄膜太阳能电池 3 三、聚合物多层修饰电极型太阳能电池 3 四、纳米晶化学太阳能电池 5 第二节铜铟硒(CIS)薄膜太阳能电池介绍7 一、CIS太阳电池的结构7 二、CIS太阳电池的特点7 三、生产高效CIS太阳电池的难点8 第三节铜铟镓硒(CIGS)薄膜太阳能电池介绍8 一、CIGS太阳能电池基本概念8 二、CIGS太阳电池的结构9 三、CIGS薄膜太阳电池的优势9 四、CIGS薄膜三种制备技术的特点10 第二章2008-2009年世界CIGS薄膜太阳能电池产业发展状况分析12 第一节2008-2009年世界薄膜太阳能电池的发展分析12 一、全球薄膜太阳能电池产业迅速发展12 二、三种薄膜太阳能电池进入规模生产12 三、薄膜太阳能电池企业纷纷布局14 第二节2008-2009年世界CIGS薄膜太阳能发展概况14

二、全球CIGS电池发展现状16 三、全球铜铟镓硒太阳能电池领导厂商发展概况19 第三节2009-2012年世界CIGS薄膜太阳能电池产业发展趋势分析21 第三章2008-2009年世界主要国家CIGS薄膜太阳能电池发展分析23 第一节2008-2009年世界CIGS薄膜太阳能企业发展动态23 一、IBM与TOK将共同开发新型CIGS太阳能电池23 二、德国SOLIBRO开始提供CIGS太阳能电池23 三、IBM涂布法CIGS太阳能电池转换效率突破12.8%24 四、VEECO公司CIGS薄膜太阳能电池设备获得订单24 五、亚化宣布进军CIGS薄膜太阳能领域25 第二节2008-2009年美国CIGS薄膜太阳能电池发展分析25 一、美国化合物太阳能电池专利权人分析25 二、美国CIGS化合物太阳能电池研发状况26 三、美国CIGS化合物太阳能电池厂商商业化动向27 四、2008年美国CIGS电池转换效率再创历史新高28 第三节2008-2009年日本CIGS薄膜太阳能研发状况28 一、日本研制成功CIGS太阳电池新制法28 二、日本采用CIGS太阳电池技术成功试制图像传感器29 三、日本量产型CIGS型太阳电池模块光电转换率实现15.9% 30 四、日本柔性CIGS太阳能电池单元转换率达全球之首31 第四章2008-2009年国外CIGS太阳电池主要生产企业运营透析32 第一节美国GLOBAL SOLAR ENERGY INC.(GSE)32 一、公司概况32 二、2008年GSE美国CGIS太阳能电池生产厂投产32 三、世界最大CIGS薄膜太阳能电池阵在GSE投入使用32 第二节日本的HONDA SOLTEC CO.,LTD 33 一、公司概况33 二、本田SOLTEC开发出CIGS型太阳能电池33

铜电解槽精炼车间工业设计

铜电解槽精炼车间工艺设计 一、概述 1、粗铜经火法精炼后仍含有一点数量的杂质。这些杂质的存在会使铜的某些物理性质和机械性能变坏,不能满足电气工业对铜的要求。因此,粗铜在火法精炼后需要电解精炼以除去有害杂质。铜的电解精炼以火法精炼产出的铜为阳极,以电解产出的薄铜片为阴极,以硫酸和硫酸铜水溶液作电解液。在直流电作用下,阳极铜电化学溶解,在阴极上沉积,杂质则进入阳极泥和电解液中,从而实现铜于杂质的分离。 下图为铜电解精炼一般工艺流程图: 阳极 阳极泥电解液电解液电铜阳极泥残极 送电解返火法送阳极泥处理送阳极泥返火 精炼槽精炼处理法精炼 粗硫酸 返火法精炼生产精制硫酸镍返回电解精炼 图1-1铜电解精炼一般工艺流程图: 2、铜阳极 铜电解精炼的原料是火法精炼后烧铸而成的铜阳极。生产中应尽量获得质量良好的铜阳极板。 二、技术条件及技术经济指标的选择 1、操作技术条件

⑴、电流密度 电流密度是指单位面积上通过的电流安培数。电流密度的范围为200-360A /m 2.。种板电解槽电流密度比普通电解槽电流密度稍低,本设计中普通电解槽电流密度取300 A /m 2,种板电解槽电流密度取230A /m 2。 ⑵、电解液成分 电解液成分主要由硫酸和硫酸铜水溶液组成。其铜和硫酸的含量视电流密度、阳极成分和电解液的纯净度等条件而定。在电解生产中,必须根据具体条件加以掌握,以控制电解液的含铜量处于规定的范围。 ⑶、极距 极距一般指同极中心距。本设计取极距为90mm 。 ⑷、阳极寿命和阴极周期 阳极寿命根据电流密度、阳极质量及残极率来确定,一般为18-24天。阴极周期与电流密度、阳极寿命及劳动组织等因素有关,一般为阳极寿命的1/3。本设计中阳极寿命为18天,阴极寿命为6天。 2、技术经济指标 ⑴、电流效率 电流效率是指电解过程中,阴极实际析出量占理论量的百分比。本设计中电流效率为% ⑵、残极率 残极率是指产出残极量占消耗阳极量的百分比。本设计中残极率17%。 ⑶、电解回收率 铜电解回收率反应在电解过程中铜的回收程度,其计算方法如下: 铜电解回收率×100 % ⑷、槽电压 槽电压由电解液电阻引起的电压降,金属导体电压降,接触点电压降,克服阳极泥电阻的电压降,浓差极化引起的电压降等组成。普通槽槽电压一般为~;种板槽电压一般为~。 三、主体设备设计

相关主题