搜档网
当前位置:搜档网 › 大跨悬索桥对称和非对称架梁施工颤振稳定性研究

大跨悬索桥对称和非对称架梁施工颤振稳定性研究

大跨悬索桥对称和非对称架梁施工颤振稳定性研究
大跨悬索桥对称和非对称架梁施工颤振稳定性研究

 万方数据

 万方数据

 万方数据

 万方数据

 万方数据

大跨悬索桥对称和非对称架梁施工颤振稳定性研究

作者:魏志刚, 葛耀君, 杨詠昕, Wei Zhigang, Ge Yaojun, Yang Yongxin

作者单位:同济大学,上海,200092

刊名:

土木工程学报

英文刊名:CHINA CIVIL ENGINEERING JOURNAL

年,卷(期):2008,41(6)

参考文献(8条)

1.Ge Y J;Tanaka H Aerodynamic stability of long-span suspension bridges under erection[外文期刊] 2000(12)

2.Del Arco D;Aparicio A Improving the wind stability of suspension bridges during construction[外文期刊] 2001(8)

3.Tanaka H;Gimsing N Aerodynamic stability of nonsymmetrically erected suspension bridge girders[外文期刊] 1999(1/2)

4.JTG/T D60-1-2004.公路桥梁抗风设计规范

5.刘竹钊;何宪飞;陈艾荣大跨悬索桥施工过程颤振稳定分析[期刊论文]-同济大学学报(自然科学版) 2002(05)

6.Zhang X Investigation on aerodynamic stability of long-span suspension bridges under erection[外文期刊] 2004(1)

7.Zhang X;Sun B Aerodynamic stability of cable-stayedsuspension hybrid bridges[期刊论文]-Journal of Zhejiang University Science A 2005(08)

8.Tanaka T;Yoshimura T;Gimsing N A study on improving the design of hybrid stress-ribbon bridges and their aerodynamic stability[外文期刊] 2002(12/15)

本文链接:https://www.sodocs.net/doc/3d6031308.html,/Periodical_tmgcxb200806011.aspx

大跨径混合梁斜拉桥的动力特性分析

大跨径混合梁斜拉桥的动力特性分析 发表时间:2018-12-13T09:25:46.667Z 来源:《建筑模拟》2018年第27期作者:范晓杰 [导读] 本文以一个大跨径的混合梁斜拉桥为例,采用大型有限元分析软件madis civil建立模型,用子空间迭代法对模态进行求解,得出了自振频率、振型,并结合混合梁斜拉桥的结构特点分析其动力特性。 范晓杰 浙江省嘉兴市交通工程质量安全监督站 314000 摘要:本文以一个大跨径的混合梁斜拉桥为例,采用大型有限元分析软件madis civil建立模型,用子空间迭代法对模态进行求解,得出了自振频率、振型,并结合混合梁斜拉桥的结构特点分析其动力特性。在此基础上考虑分别在横向和纵向输入地震波,用反应谱法分析产生的影响。结果表明,前十阶振型中竖向振型较多,频谱较为密集,没有出现扭转振型,纵向、横向的振型耦联效应较小等,为目前其他同类型混合梁斜拉桥的动力特性分析研究提供参考。 一、工程概况 永川长江大桥主桥全长1008m,跨径布置为(64+68+68+608+68+68+64)m的7跨半漂浮体系混合梁斜拉桥,边跨设置1个过渡墩,2个辅助墩。索塔采用宝瓶型钢筋混凝土索塔,塔高分别为196.7m、207.4m。边跨为预应力PK断面混凝土箱梁,中跨也为同外形的PK断面钢箱梁,梁高3.5m,宽37.6m。拉索为双索面扇形构造,边跨11对索间距为10m,7对索间距为8m,主跨索间距为15m。 二、斜拉桥的动力特性分析 结构的动力响应取决于结构本身的动力特性和外部荷载的激励,所以在进行抗风稳定、抗震分析时往往得先进行自振特性分析。 采用子空间迭代法计算自振频率及相应的振型如表3.1所列。 表3.1桥梁的自振特性 一阶振型为纵飘,这是由于斜拉桥的设计主要考虑控制结构的横向和竖向变位,而允许纵向移动,很好的提高了桥梁的抗震能力。 二阶振型为主梁对称竖弯,主梁的竖弯也会引起桥塔的纵向弯曲,从表3.1中可以发现在前十阶振型中出现较多的主梁对称和反对称竖弯,因此在抗震设计中要着重考虑主梁的竖向和桥塔的纵向位移。 三阶振型为主梁对称横弯,这说明了主梁的横向刚度较小,抗风稳定性较差,在抗震设计中也应该注意控制。 结构的一阶对称竖弯、横弯振型出现在2、3阶,根据经验这符合大跨度斜拉桥的动力特性的一般特点。 表3.1中没有出现扭转振型,这符合双索面、箱梁布置的斜拉桥动力特性,抗扭刚度较大。 本桥的前十阶振型自振频率在0.0823~0.8684,说明结构的模态比较密集,在动荷载作用下许多振型容易被引起强烈的振动。 在前十阶振型中出现了很多的主梁竖向弯曲,这是由于混合梁斜拉桥中钢箱梁的刚度小于混凝土梁的刚度而引起的。 为了分析本桥的纵、横向的耦联效应,分别在纵向、横向输入地震波。考虑该桥所在区域抗震设防烈度为7度,场地类别为Ⅰ类,选择主梁的内力值进行分析,结果如表3.2所示,塔顶、跨中的位移如表3.3所示。 表3.2 主梁内力值分析结果 表3.3 塔顶、跨中位移值(单位:mm) 横向地震反应引起的主梁反应主要是y方向的剪力和弯矩,且混凝土梁的反应大于钢箱梁;而x方向、z方向的剪力及弯矩都较小。纵向地震反应时主梁x、z方向剪力及弯矩较大,说明在输入纵向地震反应时结构会产生竖向内力,混凝土梁的反应亦大于钢箱梁。

矮塔斜拉桥挂索施工总结

矮塔斜拉桥挂索施工总结 1 工程概况 2.1、塔梁结构:该矮塔斜拉桥为(75+2×125+75)米三塔单索面预应力混凝土部分斜拉桥。采用塔梁固结、中间主塔墩梁固结、另两个主塔墩梁分离的体系,主塔结构高24.5m,主塔采用钢筋混凝土独柱实心矩形截面,顺桥长 3.0m,横桥向宽2m,布置在中央隔离带上,并与主梁固接。此处桥梁内侧波形梁护栏改为0.5米宽的防撞护墙,以便放置索塔。塔身上部设有鞍座,以便拉索通过。每根斜拉索对应一个鞍座,斜拉索横桥面呈两排布置,鞍座亦设两排,鞍座采用分丝管结构形式,预埋于混凝土塔内,斜拉索逐根穿过分丝管。 2.2、斜拉索布置: 斜拉索为单索面,布置在中央隔离带上。每个塔上设有9对18根斜拉索,全桥共108根(两联)。塔上竖向索距为100cm,梁上纵向标准索距为4.0m。拉索采用双排索,拉索在塔上通过鞍座,两侧对称锚于箱梁体的横梁上。斜拉索采用OVM250-31、34、37可换索式斜拉索体系,锚具内为灌注环氧砂浆的拉索群锚,索体为带PE护套的低松驰环氧钢绞线,强度等级为1860Mpa,每根拉索由31、34或37根Фj15.24mm单根环氧钢绞线组成。索体采用三层防护措施,由内向外依次为环氧树脂和油脂层;钢绞线外热挤PE层和索外面套的HDPE整圆式套管。采用先单根挂索张拉,再整体张拉的施工工艺。

2.3、斜拉索构造体系 斜拉索由锚固段+过渡段+自由段+抗滑锚固段+塔柱内索鞍段+抗滑锚固段+自由段+过渡段+锚固段构成。 2.3.1锚固段:主要由锚板、夹片、锚固螺母、锚筒、密封装置、防松装置及保护罩组成。在锚固段锚具中,夹片、锚板、锚筒、锚固螺母是加工上主要控制件,也是结构上的主要受力件;密封装置主要起防止漏浆、防水的密封作用。它由隔板、o型密封圈、内外密封板、密封圈构成; 防松装置主要由锁紧螺母和压板构成,在钢绞线单根张拉结束后安装,对夹片起防松、挡护作用;保护罩安装在锚具后端,并内注无粘结筋专用防护油脂,主要对外露钢绞线起防护作用。 2.3.2过渡段:主要由预埋管及垫板、减振器组成。预埋管及垫板在体系中起支承作用,同时垫板正下方最低处设有排水槽,以便施工过程中临时排水;减振器对索体的横向振动起减振作用,从而提高索的整体寿命。

预应力混凝土连续梁桥

一预应力混凝土连续梁桥 1.力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 2.立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小

江肇西江特大桥矮塔斜拉桥主塔施工方案(索鞍式)

2010年11期(总第71期 )作者简介:罗庆湘(1981-),男,重庆人,工程师,主要从事高速公路建设与管理。 1工程概况 江肇西江特大桥主桥共四个主塔,塔号为29#~32#塔,主塔为独柱式刚劲混凝土结构,截面为八边形,并在顺桥上刻有0.1m ,宽0.7m 的景观饰条。主塔高度为30.5m (含索顶以上4m 装饰段),主塔截面等宽段顺桥向宽5m ,横桥向宽2.5m ;塔底5m 范围,顺桥向厚为5m ,横桥向由2.5m 渐变到3.1m 。 图1主塔一般构造图 本桥斜拉索采用扇形布置,梁上间距4m ,塔上间距0.8m ,拉索通过预埋钢导管穿过塔柱,在主梁上张拉。斜拉索采用Φs 15.2mm 环氧涂层钢绞线斜拉索,标准强度为1860MPa ,斜拉索规格分别为43-Φs 15.2mm 和55-Φs 15.2mm ,采用钢绞线拉索群锚体系。斜拉索为单索面双排索,布置在主梁的中央分隔代处,全桥共128 根斜拉索。钢绞线外层采用HDPE 护套。减振装置及锚具采用斜拉索专用材料。 2施工方案简介 主塔分六节施工,其中最大施工节段为5.4m ;主塔内设劲性骨架,用于钢筋和索鞍定位;模板施工采用无支架翻模施工,模板采用定型钢模板,均设有阴阳缝,由模板厂加工,现场拼装。考虑到主塔外观,该主塔模板不采用对拉杆在塔身中间穿过来固定模板,而采用桁架式模板翻模施工,塔吊辅助翻模。 3主塔施工流程 图2主塔施工流程 江肇西江特大桥矮塔斜拉桥主塔施工方案 罗庆湘,闫化堂 (广东省长大公路工程有限公司,广东 广州 510000) 摘 要:江肇西江特大桥主塔为独柱式刚劲混凝土结构,截面为八边形;主塔高度为30.5m ,主塔截面等宽段顺 桥向宽5m ,横桥向宽2.5m ;本桥斜拉索采用扇形布置,梁上间距4m ,塔上间距0.8m ;拉索通过预埋钢导管穿过塔柱;采用C60混凝土。本文介绍了江肇西江特大桥主塔施工方案,重点介绍了劲性骨架设计及施工、索鞍定位以及混凝土防裂等。 关键词:矮塔斜拉;主塔;施工方案中图分类号:U44 文献标识码: B 265

连续梁桥ansys命令流

. !!连续梁桥 /prep7 et,1,4 !!!!定义梁单元 et,2,21 !!!!定义mass21单元 !!定义粱材料!!泊松比!!密度 mp,ex,2,3.45e10 !!直线段梁材料和1M段梁材料mp,nuxy,2,0.2 mp,dens,2,3302.153125 mp,ex,3,3.45e10 mp,nuxy,3,0.2 mp,dens,3,3301.658695 mp,ex,4,3.45e10 mp,nuxy,4,0.2 mp,dens,4,3299.906778 mp,ex,5,3.45e10 mp,nuxy,5,0.2 mp,dens,5,3298.327219 mp,ex,6,3.45e10 mp,nuxy,6,0.2

. mp,dens,6,3292.351605 mp,ex,7,3.45e10 mp,nuxy,7,0.2 mp,dens,7,3284.137255 mp,ex,8,3.45e10 mp,nuxy,8,0.2 mp,dens,8,3271.802136 mp,ex,9,3.45e10 mp,nuxy,9,0.2 mp,dens,9,3260.41903 mp,ex,10,3.45e10 mp,nuxy,10,0.2 mp,dens,10,3248.193657 mp,ex,11,3.45e10 mp,nuxy,11,0.2 mp,dens,11,3235.117644 mp,ex,12,3.45e10 mp,nuxy,12,0.2 mp,dens,12,3221.585664

. mp,ex,13,3.45e10 mp,nuxy,13,0.2 mp,dens,13,3208.826871 mp,ex,14,3.45e10 mp,nuxy,14,0.2 mp,dens,14,3194.279207 mp,ex,15,3.45e10 mp,nuxy,15,0.2 mp,dens,15,3179.924673 mp,ex,16,3.45e10 mp,nuxy,16,0.2 mp,dens,16,3166.445716 mp,ex,17,3.45e10 mp,nuxy,17,0.2 mp,dens,17,3152.555731 mp,ex,18,3.45e10 mp,nuxy,18,0.2 mp,dens,18,3138.312105 mp,ex,19,3.45e10

南澳大桥矮塔斜拉桥主塔施工技术总结

南澳大桥矮塔斜拉桥主塔

施工技术总结 摘要: 本文以广东省南澳大桥主墩工程实例为依托,详细介绍了采用翻模法施工塔柱时钢管脚手架布置、劲性骨架设置及钢筋、模板、混凝土等关键

工艺;以及采用牛腿支架法施工上横梁支架设计安装、钢筋、模板、混凝土等关键工艺;为类似工程提供参考。

1工程概况 1.1地理位置 广东省南澳大桥工程起点桩号为 K1 + 110.00,位于莱芜旅游度假 区治安岗处,与S336 (莱美路)相接。路线在柴井围上桥后江湾海 峡,于南澳长山尾苦路坪接入环岛公路,项目终点 K12+190.00,环 岛公路接入点桩号约为 K9+550。全线总长11080m ,其中桥梁全长 9341m ,占路线总长84.31%,道路全长1739m ,占路线总长15.69% 全线采用2车道二级公路标准修建,设计时速 80km/h ,路基宽 度12m ,主桥宽度14m ,桥面净宽11m 。 1.2桥型布置 主桥全长490m ,为预应力混凝土矮塔斜拉桥,桥型布置为 126+238+126m ,见主桥桥型布置示意图。本段桥梁桩号范围 K9+755?K10+245 ,平面位于直线上,立面位于以K10+000为变坡 点、两侧各3%纵坡、半径8000m 的竖曲线上。 项目所在地理位置如下图所示: ■iilhiH f' F 賓 議,上三舌 4th 南澳大桥项目地理位置图

主桥桥型布置示意图 1.3施工部位划分 南澳大桥主塔由下塔柱、上塔柱及横梁组成,上塔柱、横梁均为 单箱单 室截面,下塔柱为实心截面,材料采用 C50混凝土,承台顶 高程为+6.000m ,塔顶高程为+75.415m ,塔高69.415m ,下塔柱高 31.415m ,上塔柱 30m 。 主塔总体施工节段划分示意图 2下塔柱施工 2.1下塔柱结构形式 下塔柱位于承台与0#块之间,分为南、北两个塔柱,为单箱单室 空心 结构,横桥向设R=300.75m 竖向大半径圆曲线,上端伸入主桥 0# 块中,下 岂 I i 11 I [ I 川 萬f J U 二:」H :.a. IB 戶 Tms 一 二厂 J II U III I fl f I JU mi ........... I M Ml I u T ) [ II [ELIL

连续梁桥

连续梁桥 两跨或两跨以上连续的梁桥,属于超静定体系。连续梁在恒活载作用下,产生的支点负弯矩对跨中正弯矩有卸载的作用,使内力状态比较均匀合理,因而梁高可以减小,节省材料,且刚度大,整体性好,超载能力大,安全度大,桥面伸缩缝少。 连续梁桥是中等跨径桥梁中常用的一种桥梁结构,预应力混凝土连续梁桥是其主要结构形式,它具有接缝少、刚度好、行车平顺舒适等优点,在30-120m跨度内常是桥型方案比选的优胜者。而横张预应力混凝土技术在T型梁、箱型梁、空心板桥三座常规跨径简支梁桥中的应用,取得了明显的技术经济效益。为拓宽横张预应力技术的应用范围,将其应用到更大跨度的连续梁桥中就显得尤为必要了。 主梁是连续支承在几个桥墩上。在荷载作用时,主梁的不同截面上有的有正弯矩,有的有负弯矩,而弯矩的绝对值均较同跨径桥的简支梁小。这样,可节省主梁材料用量。连续梁桥通常是将3~5孔做成一联,在一联内没有桥面接缝,行车较为顺适。连续梁桥施工时,可以先将主梁逐孔架设成简支梁然后互相连接成为连续梁。或者从墩台上逐段悬伸加长最后连接成为连续梁。近一、二十年,在架设预应力混凝土连续梁时,成功地采用了顶推法施工,即在桥梁一端(或两端)路堤上逐段连续制作梁体逐段顶向桥孔,使施工较为方便。连续梁桥主梁内有正弯矩和负弯矩,构造比较复杂。此外,连续梁桥的主梁是超静定结构,墩台的不均匀沉降会引起梁体各孔内力发生变化。因此,连续梁一般用于地基条件较好、跨径较大的桥梁上。1966年建成的美国亚斯托利亚桥,是目前跨径最大的钢桁架连续梁桥,它的跨径为376米。 顶推法 顶推法【incremental launching method】多应用于预应力钢筋混凝土等截面连续梁桥和斜拉桥梁的施工。指的是梁体在桥头逐段浇筑或拼装,用千斤顶纵向顶推,使梁体通过各墩顶的临时滑动支座面就位的施工方法。

悬臂与连续体系梁桥基本概念

1、 悬臂梁桥:将简支梁梁体加长,并越过支点就成为悬臂梁桥。 悬臂梁桥的结构类型:悬臂梁桥有单悬臂梁和双悬臂梁两种。单悬臂梁是简支梁的一端从支点伸出以支承一孔吊梁的体系。双悬臂梁是简支梁的两端从支点伸出形成两个悬臂的体系。 悬臂梁桥的构造特点: (1)立面布置:单悬臂梁桥一般做成三跨,中间带挂梁边孔成为锚孔。双悬臂梁桥有单孔悬臂梁桥和多孔悬臂梁桥。单孔悬臂梁桥桥头两端不设桥台,仅设搭板完成主桥与路堤的衔接,多用于人行天桥;多孔悬臂梁桥需每隔一孔设挂梁。 (2)横截面形式:与等截面简支梁不同,悬臂梁桥锚跨跨中承受正弯矩,支点附近承受较大负弯矩,故支点截面底部受压区需大面积加强,通常采用的横截面形式为T 形截面和箱形截面。 悬臂梁桥的优缺点:悬臂梁桥一般为静定结构,结构内力不受地基变形影响,对基础要求较低。悬臂梁桥虽然在力学性能上优于简支梁桥,可适用于更大跨径的桥梁方案,但由于悬臂梁桥的某些区段同时存在正、负弯矩,无论采用何种主梁截面形式,其构造较为复杂;而且跨径增大以后,梁体重量快速增加,不易采用装配式施工,往往要在费用昂贵、速度缓慢的支架上现浇。 悬臂梁桥的计算: (1)恒载内力计算:恒载包括主梁自重内力1G S 和二期恒载(栏杆、灯柱等)引起的内力2G S 。 1()()G L S g x y x dx =??, 式中1G S 为主梁自重内力(弯矩或剪力),()g x 为主梁自重集度,()y x 为相应主梁内力影响线坐标。 (2)活载内力计算: (1()c k i k i S m q m P y =+μ)ξΩ+ 式中m 为悬臂梁桥的荷载横向分布系数,y 为内力影响线竖标,其他分别为冲击系数、荷载折减系数、车道荷载等。

矮塔斜拉桥施工控制要点

矮塔斜拉桥施工控制要点 矮塔斜拉桥施工控制要点 摘要:本文以津沪联络线特大桥矮塔斜拉桥为背景,介绍矮塔斜拉桥索塔和拉索施工控制要点。 关键词:斜拉桥施工控制 中图分类号:TU74 文献标识码:A 文章编号: 一、工程概况 津沪联络线特大桥-跨外环线斜拉桥段为4跨 (64.6m+115m+115m+64.6m) 一联360.6m单箱三室预应力混凝土矮塔斜拉桥,全桥位于直线及缓和曲线上。线路为双线,线间距4.2m,轨道形式为有砟轨道。桥梁结构采用三塔双柱式双索面预应力矮塔斜拉桥。 二、矮塔斜拉桥施工索塔和拉索施工控制要点 斜拉桥属于组合体系桥,它的上部结构由主梁、拉索和索塔三种构件组成。支撑体系以拉索受拉和索塔受压为主。该桥中塔采用塔墩固结体系,边塔采用塔梁固结体系。 (一)索塔施工控制要点 主塔形式为双柱式,距名义梁顶面以上结构高为15m,采用实心截面,中塔与边塔采用相同尺寸,塔底横桥向宽为2m,纵桥向宽为3.7m,墩身斜率为40:1。由于索塔截面不规则,且高度仅为15米,索塔施工采用搭架分节立模浇注法。斜拉桥的平面位置、轴线控制、截面尺寸、预埋件制作、安装精度等要求较高。且索塔施工系高空作业范畴,为此施工应特别注意严格遵守有关高空作业安全技术规定。主塔中未布设预应力钢筋。索塔断面尺寸较小,而且轴向压力非常大,故在施工中对索塔的尺寸和轴线位置的准确性应有一定的要求。对于索塔轴向的允许偏差应考虑下面两个原则,其一,偏差值对结构物受力的影响甚微;其二,施工中达到的精度。沿塔高每米高度允许偏差值为0.5mm,即倾角正切值tgα=1/2000。按照H/2000的垂

直度偏差允许值计算。 1、施工控制要点: 1)支架和操作平台应有足够的强度、刚度和稳定性,并应设置安全护栏,支架还应具有足够的抗风稳定性。支架顶端应有防雷击装置。 2)索塔砼性能良好,具有较高的弹性模量和较小的砼收缩、徐变性能,应采用高集料、低水灰比,低水泥用量,适量掺加粉煤灰和泵送剂,以满足缓凝、早强、高强、阻锈、低水化热、小收缩、可泵性好等要求。 3)建立完善的测量系统,索塔施工应用绝对高程放样,消除累计误差。应对其平面位置、垂直度、倾斜度、锚箱位置、锚箱各孔道的角度以及各部分几何尺寸进行检查,以上各项检查的误差必须在允许范围之内。 4)节段模板的强度、刚度和稳定性应满足要求。模板轴线、标高、垂直度或斜度、模内尺寸、预埋件和预留孔位置、内表面平整度和拼缝高差等检测项目,应满足设计和规范要求。 5)、斜拉索锚索管的定位与固定。安设斜拉索管道时,应设置稳定的钢筋骨架固定管道,防止在浇注混凝土时移位,在管道测量定位时,应考虑斜拉索应重力垂直而导致其端部角位移时的方向、位置、标高的改变。 6)、塔身混凝土浇注时应掌握均匀分层,有塔中向两端的原则。每次浇注的混凝土均应在混凝土的初凝时间内完成,并注意加强养护。 (二)、斜拉索施工施工要点 在斜拉索中恒载引起的内力平衡主要依靠索、塔及主梁的轴力来实现,因此,索力的微小偏差均能在主梁引起较大弯矩,这一点是施工阶段计算的重点。本桥采用的斜拉索为矮塔斜拉桥专用的高强钢绞线,抗拉强度为1860MPa的高强低松弛环氧喷涂钢绞线。采用可调换式250AT-31群锚体系,斜拉索锚头外露部分及预埋钢管均采用80μm 锌加防腐涂料防护。斜拉索为双索面,立面为半扇形布置。每索塔设7对斜拉索,斜拉索规格为31-7φ5,单根钢绞线规格直径为15.2mm,

预应力混凝土简支梁桥、连续梁桥和刚架桥的设计构造特点和对比分析

预应力混凝土简支梁桥、连续梁桥和刚架桥的设计构造特点和对比分析 A、装配式预应力混凝土简支梁桥的构造与设计 装配式钢筋混凝土简支梁桥,常用的经济合理跨径在20m 以下。跨径增大时,不但钢材耗量大,而且混凝土开裂现象也往往比较严重,影响结构的耐久性。为了提高简支梁的跨越能力,可采用预应力混凝土结构。目前,世界上预应力混凝土简支梁的最大跨径已达76m 。但是,根据建桥实践,当跨径超过50m 后,不但结构笨重,施工困难,经济性也较差。因此,我国桥规明确指出:预应力混凝土简支梁桥的标准跨径不宜大于50m 。 一、横截面设计 1.横截面形式装配式预应力混凝土简支梁桥的横截面类型基本上与钢筋混凝土梁桥类似,通常也做成T 形、I 形,但为了方便布置预应力束筋和满足锚头布置的需要,下部一般都设有马蹄或加宽的下缘。有时为了提高单梁的抗扭刚度并减小截面尺寸,也采用箱形。由于采用预应力筋施加预压力,可以提供方便的接头形式,为了使装配式梁的预制块件进一步减小尺寸和重量还可做成横向也分段预制的串联梁。但由于串联梁施工麻烦,构件预制精度要求高,在国内使用较少。 2.主梁布置 经济分析表明,对于跨径较大的预应力混凝土简支梁桥,当吊装重量 不受限制时,采用 较大的主梁间距比较合理,一般可采用1.8?2.5m。

3.截面尺寸 (1)截面效率指标为了合理设计预应力混凝土梁的截面尺寸,首先分析其截面的受力特点。在预加力阶段和运营阶段,预应力混凝土梁截面承受双向弯矩。在预加力阶段,施加了偏心预加力,在预加力和自重弯矩的共同作用下,合力相当作用于截面的下核点(截面上缘应力为零)(2)主梁高度预应力混凝土简支梁桥的主梁高度取决于采用的汽车荷载等级、主梁间距及建筑高度等因素,可在较大范围内变化。对于常用的等截面简支梁,其高跨比的取值范围在1/15 ?1/25 ,一般随跨径增大而取较小值,随梁数减少而取较大值,对预应力混凝土T 形梁一般可取1/16 ?1/18 左右。当桥梁建筑高度不受限制时,采用较大的梁高显然是较经济的,因为加高腹板使混凝土用量增加不多,而节省预应力筋数量较多。 ⑶其他细部尺寸在预应力混凝土梁中,由于混凝土所受预应力和预应力束筋弯起,能抵消荷载剪力的作 用,肋中的主拉应力较小,肋宽一般都由构造和施工要求决定,但不小于160mm 。标准设计中肋宽为140 ?160mm 。T 梁上翼缘的厚度按钢筋混凝土梁桥同样的原则来确定。为了减小翼板和梁肋连接处的局部应力集中和便于脱模,在该处一般还设置折线形承托或圆角,此时承托的加厚部分应计算在内。 T 梁下缘的马蹄尺寸应满足预加力阶段的强度要求,同时,从截面效率指标P分析,马蹄应当是越宽而矮越经济。马蹄的具体形状要根据预应力束筋的数量和排列方式确定,同时还应考虑施工方便和力筋弯起的要求。具体尺寸建议如下:

各种类型桥梁结构特点描述整理

各类桥型结构特点描述 一、简支梁 简支梁桥由一根两端分别支撑在一个活动支座和一个铰支座上的梁作为主要承重结构的梁桥。属于静定结构。是梁式桥中应用最早、使用最广泛的一种桥形。其构造简单,架设方便,结构内力不受地基变形,温度改变的影响。 受力特点——受力简单,梁中只要正弯矩,以主梁受弯承担使用荷载;体系温变、混凝土收缩徐变、张拉预应力等均不会在梁中产生附加内力。 构造特点——构造简单,适用范围广,不受地质条件限制。 其它特点——施工简单,便于装配,易于标准化。 整跨梁分为:整孔式及分片式(装配式)。 整孔式:结构合理,横向刚度大,稳定性能好,但受运梁整孔式及架梁设备的起吊能力限制,适合于就地灌注。 分片式(装配式):构造简单、制作方便、单片自重小,易于标准化设计,有利于工厂预制、现场装配。

二、连续梁 连续梁桥是两跨或两跨以上连续的梁桥,属于超静定体系。连续梁在恒活载作用下,产生的支点负弯矩对跨中正弯矩有卸载的作用,使内力状态比较均匀合理,因而梁高可以减小,由此可以增大桥下净空,节省材料,且刚度大,整体性好,承载能力大,安全度大,桥面伸缩缝少,并且因为跨中截面的弯矩减小,使得桥跨可以增大。 连续梁桥是中等跨径桥梁中常用的一种桥梁结构,预应力混凝土连续梁桥是其主要结构形式,它具有接缝少、刚度好、行车平顺舒适等优点,在30-120m跨度内常是桥型方案比选的优胜者。 主梁是连续支承在几个桥墩上。在荷载作用时,主梁的不同截面上有的有正弯矩,有的有负弯矩,而弯矩的绝对值均较同跨径桥的简支梁小。这样,可节省主梁材料用量。连续梁桥通常是将3~5孔做成一联,在一联内没有桥面接缝,行车较为顺适。连续梁桥施工时,可以先将主梁逐孔架设成简支梁然后互相连接成为连续梁,或者从墩台上逐段悬伸加长最后连接成为连续梁。连续梁桥主梁内有正弯矩和负弯矩,构造比较复杂。此外,连续梁桥的主梁是超静定结构,墩台的不均匀沉降会引起梁体各孔内力发生变化。因此,连续梁一般用于地基条件较好、跨径较大的桥梁上。 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。

连续梁桥ansys命令流

!!连续梁桥 /prep7 et,1,4 !!!!定义梁单元 et,2,21 !!!!定义mass21单元 !!定义粱材料!!泊松比!!密度 mp,ex,2,3.45e10 !!直线段梁材料和1M段梁材料mp,nuxy,2,0.2 mp,dens,2,3302.153125 mp,ex,3,3.45e10 mp,nuxy,3,0.2 mp,dens,3,3301.658695 mp,ex,4,3.45e10 mp,nuxy,4,0.2 mp,dens,4,3299.906778 mp,ex,5,3.45e10 mp,nuxy,5,0.2 mp,dens,5,3298.327219 mp,ex,6,3.45e10 mp,nuxy,6,0.2 mp,dens,6,3292.351605 mp,ex,7,3.45e10 mp,nuxy,7,0.2 mp,dens,7,3284.137255 mp,ex,8,3.45e10 mp,nuxy,8,0.2 mp,dens,8,3271.802136 mp,ex,9,3.45e10 mp,nuxy,9,0.2 mp,dens,9,3260.41903 mp,ex,10,3.45e10 mp,nuxy,10,0.2 mp,dens,10,3248.193657

mp,nuxy,11,0.2 mp,dens,11,3235.117644 mp,ex,12,3.45e10 mp,nuxy,12,0.2 mp,dens,12,3221.585664 mp,ex,13,3.45e10 mp,nuxy,13,0.2 mp,dens,13,3208.826871 mp,ex,14,3.45e10 mp,nuxy,14,0.2 mp,dens,14,3194.279207 mp,ex,15,3.45e10 mp,nuxy,15,0.2 mp,dens,15,3179.924673 mp,ex,16,3.45e10 mp,nuxy,16,0.2 mp,dens,16,3166.445716 mp,ex,17,3.45e10 mp,nuxy,17,0.2 mp,dens,17,3152.555731 mp,ex,18,3.45e10 mp,nuxy,18,0.2 mp,dens,18,3138.312105 mp,ex,19,3.45e10 mp,nuxy,19,0.2 mp,dens,19,3124.795334 mp,ex,20,3.45e10 mp,nuxy,20,0.2 mp,dens,20,3110.7135 mp,ex,21,3.45e10 mp,nuxy,21,0.2 mp,dens,21,3097.080875

[整理]MIDAS连续梁桥建模详细介绍(1).

该过程是将三垮桥的运营状态进行有限元分析,下面介绍了本人在对模型模拟的主要步骤,若中间出现的错误,请读者朋友们指出修改。 注:“,”表示下一个过程 “()”该过程中需做的内容 一.结构 1.单元及节点建立的主桁:因为桥面具有一定纵坡,故将《桥跨布置》图的桥面线复制到《节段划分》图对应桥跨位置,然后进行单元划分,将该线段存入新的图层,以便下步导入,将文件保存为.dxf格式文件。 2.打开midas运行程序,将程序里的单位设置成《节段划分》图的单位,这里为cm。导入上步的.dxf文件。将节点表格中的z坐标与y坐标交换位置(midas中的z与cad中的y对应)。结构建立完成。模型如图: 二.特性值 1.材料的定义:在特性里面定义C50的混凝土及Strand1860(添加预应力钢筋使用) 2.截面的赋予: 1).在《截面尺寸》和《预应力束锚固》图里,做出截面轮廓文件,保存为.dxf 文件 2).运行midas,工具,截面特性计算器,统一单位cm。导入上步的.dxf文件 先后运行generate,calculate property,保存文件为.sec文件,截面文件完成 3)运行midas,特性,截面,添加,psc,导入.sec文件。根据图例,将各项特性值填入;验算扭转厚度为截面腹板之和;剪切验算,勾选自动;偏心,中上部4)变截面的添加:进入添加截面界面,变截面,对应单元导入i端和j端(i为左,j为右);偏心,中上部;命名(注:各个截面的截面号不能相同)

5)变截面赋予单元:进入模型窗口,将做好的变截面拖给对应的单元。 注:1.建模资料所给的《预应力束锚固图》的0-0和14-14截面与《节段划分》图有出入,这里采用《截面尺寸》做这两个截面,其余截面按照《预应力束锚固图》做 2.定义材料先定义混凝土,程序自动将C50赋予所建单元(C50是定义的第一个材料,程序将自动赋予给所建单元) 三.边界条件 1.打开《断面》图,根据I、II断面可知,支座设置位置。根据途中所给数据,在模型窗口中建立支座节点(12点) 2.点击节点,输入对应坐标,建立12个支座节点 3.建立弹性连接:模型,边界条件,弹性连接,连接类型(刚性),两点(分别点击支座点与桥面节点)共12个弹性连接 4.边界约束:中间桥墩,约束Dx,Dz;Dx,Dy,Dz;Dx,Dz, 两边桥墩,约束Rx,Dz;Rx,Dy,Dz;Rx,Dz 如表 四.添加预应力钢筋 1.定义钢束特性:打开《预应力筋布置及材料表》、《预应力束几何要素》。荷载,预应力荷载,钢束特性值,根据材料表中钢筋的规格及根数填入相关数据(松弛系数:0.3;导管直径:10cm) 2.钢束布置形状:荷载,预应力荷载,钢束布置形状,以T1为例:

独塔混合梁斜拉桥跨径布置优化分析

独塔混合梁斜拉桥跨径布置优化分析 摘要:以在建的安徽省蚌埠五河淮河上新的高速公路(徐州至明光高速公路)大桥为背景,对拟优化的跨径布置提出了五种不同的方案。对每种方案采用空间有限元软件进行了计算分析。研究了不同方案对结构总体受力的性能的影响,及每种方案的优缺点;比较研究了各方案中结构变形、构件应力、拉索索力的状态等。综合现阶段现场施工状况、工程总体建设计划等因素,提出了最合理的桥跨布置方案。 关键词:独塔斜拉桥;跨径布置;优化分析;受力性能; Abstract: taking the huaihe river in anhui province under the five new bengbu highway (xuzhou to bright light the highway) bridge as the background, the span to be optimized arrangement proposes five different project. For each scheme adopts the space finite element software are calculated. The different scheme in the overall structure of the influence on the performance of the force, and the advantages and disadvantages of each method; A comparative study of each scheme structural deformation, stress, and the component cable force state, etc. Comprehensive site construction condition, at this stage of the overall construction engineering plan and other factors, put forward the most reasonable arrangement for bridge spans. Keywords: a single pylon cable-stayed bridge; Span decorate; Optimization analysis; Force performance; 0引言 随着交通事业的大发展,我国的桥梁建设已达到一个高峰。各种桥梁结构形式均已有了较大的发展,尤其是斜拉桥在近年的桥梁建设中更是备受工程师青睐。斜拉桥是一种由索、梁、塔组成的缆索承重桥梁体系。斜拉桥由桥面系承担自重和外荷载,通过斜拉索将荷载传递至桥塔,再由桥塔传递至基础。主梁一般处于压弯状态,拉索处于受拉状态,主塔处于受压状态。斜拉桥为高次超静定结构,桥跨的布置对结构体系的总体受力影响极大,因此跨径的合理布置对斜拉桥的设计十分重要。

桥梁工程中矮塔斜拉桥的施工技术

桥梁工程中矮塔斜拉桥的施工技术 发表时间:2018-09-12T14:49:52.690Z 来源:《基层建设》2018年第20期作者:魏勇国[导读] 摘要:联系某大桥主桥矮塔斜拉桥项目的具体情况,并且结合我国矮塔斜拉桥的具体案例,分析矮塔斜拉桥的受力特性与建设过程中的重要工艺,希望能够为类似工程的建设提供参考。湖南盛鹏建设工程有限公司湖南长沙 410000摘要:联系某大桥主桥矮塔斜拉桥项目的具体情况,并且结合我国矮塔斜拉桥的具体案例,分析矮塔斜拉桥的受力特性与建设过程中的重要工艺,希望能够为类似工程的建设提供参考。关键词:矮塔斜拉桥;斜拉索;防腐;施工控制;关键技术 1矮塔斜拉桥特点 因为矮塔斜拉桥架构自身的特性,主梁作业方式相较于连续梁并没有很大差异。相较于传统斜拉桥而言,矮塔斜拉桥的优势包括:拉索塔塔高相对较小,作业简便;中途斗拉索应力并不会产生很大的变化,能够使得拉索高强钢筋建材的性能充分体现出来;梁体具备相对较大的刚度,作业过程与合拢之后,并不用调节索力[1]。 2工程概况 某大桥主桥架构是三塔四跨矮塔斜拉桥,跨径是72m+120m+120m+72m,左右桥塔位置、中间桥塔位置分别是梁塔固结、梁塔墩固结,将支座安设在桥墩位置。关键性的特性就是运用了满堂支架现浇的方式,斜拉索选择OVM 200环氧涂层的高强无粘结平行钢绞线。因为矮塔斜拉桥的优势显著,可以预见,今后会愈来愈普及,并且跨度同样会不断增大。 3矮塔斜拉桥施工关键技术 3.1斜拉索病害原因 矮塔斜拉桥拉索通常会选择平行钢绞线,并且架构和以往的斜拉桥拉索、悬索桥、拱桥吊杆并没有很大的差异。就全世界的桥梁架构来说,中索结构在防治矮塔斜拉桥拉索病害这个问题上有很大的优势。因为设计、作业技术、施工方式等方面的问题,全世界外斜拉桥拉索在实际在投入运用的寿命缩短,比如M araCaibo桥在运用16年时间之后,进行换索施工,成本投入5000万美元,施工总时长达到2年;而Kohlbrand Estuary桥投入运用3年时间之后就进行换索施工,成本投入6000万美元;我国某桥拉索投入运用9年时间之后,因为拉索PE出现严重的护套老化、钢丝锈蚀、断裂的问题,因此所有的拉索都要换新。导致斜拉桥拉索病害出现的原因包括:(1)在拉索挂设施工时,并未妥善保障拉索PE护套的稳定性与安全性,这就使得拉索护套在实际挂设拉索过程中出现刮伤、刻痕等问题,进而使得拉索PE护套使用寿命缩短。(2)在作业时,梁上索导管内含有冷凝水,这就会导致索导管与索体内存在相对较高的潮湿度,并且严重腐蚀锚头与索体。就潮白河大桥而言,因为当地温度相对较低,假若梁上索导管内存在严重的进水问题,就会产生积水冻胀的现象,进而严重影响拉索、索导管的稳定性与耐久性。(3)因为实际作业中,索管的方向与位置存在很大的偏差,就会导致下索管和拉紧之后的拉索并不处于平行的状态,甚至还会出现抵紧一侧索管的现象,使得减振器的安设被严重影响,还会导致拉索在这个位置要承担较大的剪力,进而使得拉索的承载性能极大地弱化[2]。 3.2索力离散性控制 矮塔斜拉桥中运用平行钢绞线拉索系统的特性就是要在施工现场进行逐股挂设、逐股张拉,之后还要进行整体张拉所有拉索,在安设拉索的过程中,应该科学地控制相应的离散值,并且要做到下面几点:所有斜拉索各股钢绞线的离散误差均应该≤理论值的±3%;每队斜拉索差值≤理论值的±1%;斜拉索整索索力≤理论值的±2%。鉴于此,在单股钢绞线张拉时,我国通常会选择等值张拉的方式。其实等值张拉施工技术,就是基于张拉各股拉索对已张拉的各股拉索所产生的影响,来设定之后拉索拉力大小,进而导致前面张拉拉索拉力与后续张拉拉索拉力都能够符合相应的设计标准,进而很好地掌控所有拉索股间值。 在第二根拉索左右两端锚下设置两个压力传感器,之后就能够很好地实现张拉各股钢绞线时第二根钢绞线的拉力,后张的钢绞线拉力的控制应力就等于此值,如此就能够控制所有拉索各股钢绞线拉力动态不存在差异,第一根钢绞线拉力时原本拉力的95%,并且结束最后一根钢绞线的张拉施工之后,把第二根拉索上传感器拆掉,还要基于当时传感器数值,进行第二根拉索的补充张拉操作。因为平行钢绞线锚进行锚固还是要依靠螺母顶紧梁体,并且整根拉索选择索力仪进行索力测定的时候,一定要预先完成锚具螺母紧固、千斤顶松开,如此借助索力仪测定的结果才能够与锚固后索力的具体数值相差不大,鉴于此,在实际张拉时,应该紧固螺母,避免出现因为拉索回缩减小导致要进行二次张拉施工。斜拉桥和该大桥两根拉索间并不具备较大的距离,并且两根拉索整体张拉要分别独立开展,考虑到结构变形等现象的产生,后张拉拉索一定会干扰先张拉索索力,鉴于此,一定要超张拉先张拉的拉索。本项目中先张拉的拉索是设计值的1.015倍,并且最终证实效果非常好。 3.3主梁施工线形控制 通常来说,矮塔斜拉桥拉索时一次吊索成功,主梁具备相对较大的刚度,并不可以借助调节索力的方式完成主梁线形的调节,并且在箱梁混凝土灌筑施工时,一定要严格规范立模标高,也就是要严格控制主梁作业线形,如下表1所示。在斜拉桥建设的过程中,控制线形的目标不但是要使得桥梁线达到规定标准,并且能够完成合龙操作,还要做到梁上索导管和拉索之间能够处于正确的位置上,拉索在索导管中的活动不能受限。目前为止已经出现了很多因为忽略索导管定位,使得拉索出现抵死索导管的问题,导致拉索要承担额外剪力的问题,使得桥梁耐久性严重被弱化。 表1 斜拉索引起塔、梁变形实测表

矮塔斜拉桥单侧抗滑体系介绍(OVM)全解

2)OVMAT矮塔斜拉桥拉索 1)OVMAT矮塔拉索体系介绍 矮塔斜拉桥是欧洲工程师于1988年提出的一种新型桥梁结构型式。 1994年日本建成世界第一座矮塔斜拉桥,柳州欧维姆机械股份有限公司于2000年开始立项开展新型矮塔斜拉桥拉索体系的课题研究,我国2001年建成了国内第一座矮塔斜拉桥——漳州战备桥,欧维姆公司为该桥提供了拉索产品,并承担专项施工。由于矮塔斜拉桥项目创新程度高,市场前景广阔,于2004年被广西区科技厅列为广西区科技攻关项目,文号为桂科技字<2004>28号。OVM公司研制开发全新的OVMAT矮塔斜拉桥拉索体系。先后形成了独到的拉索技术:如塔上分丝索鞍技术,塔端抗滑技术、拉索防水技术、索体防腐技术、拉索单根可换技术、索力监测系统等。 2006年7月OVMAT矮塔斜拉桥拉索体系项目通过社会鉴定,其结构体系综合评定为“国内首创,国际领先”。2007年由国家科学技术部、商务部、质量监督检验检疫总局、环保总局四部委联合签发授予“国家重点新产品”称号。经过十多年的自主研发,历经六代产品的变革,目前国内外有百余座矮塔斜拉桥采用OVMAT矮塔斜拉桥拉索体系,大大领先国内同行,已处于世界领先水平,世界范围内拥有70%以上的市场占有率。 2)桥型结构图

(图配文:OVMAT矮塔斜拉索第六代抗滑锚固装置)

优点: ●自主研发,拥有多项国内外专利技术,技术达到国际领先水平; ●锚具抗疲劳性能优异,可达到250Mpa的高应力幅。 ●四层防护结构确保索体卓越的防腐能力,具有完善的防水、防渗漏结构; ●施工便捷,产品用于国内外多项工程,有成熟的施工技术和长期安全实践认证; ●第六代抗滑设计,保证拉索在施工阶段形成足够的抗滑力。 分丝索鞍结构设计,实现钢绞线的单根换索功能。 3)适用标准: 1、斜拉索符合国际预应力混凝土协会(fib)《预应力钢质拉索的验收推荐性规范》 2、美国后张协会《Recommendations for stay cable design testing and installation》 (PTI2007第五版) 3、环氧钢绞线满足GB/T25823-2010《单丝涂覆环氧涂层预应力钢绞线》要求。 4、镀锌钢绞线满足YB/T152-1999《高强度低松弛预应力热镀锌钢绞线》要求 5、JT/T771-2009《无粘结钢绞线斜拉索技术条件》

相关主题