搜档网
当前位置:搜档网 › 实验1-LTI系统时域分析

实验1-LTI系统时域分析

实验1-LTI系统时域分析
实验1-LTI系统时域分析

实验一——LTI 系统的时域分析

实验性质:提高性 实验级别:必做

开课单位:机械电子工程学院 学 时:2

一、实验目的

1、深刻理解卷积运算,利用离散卷积实现连续卷积运算;

2、深刻理解信号与系统的关系,学习MA TLAB 语言实现信号通过系统的仿真方法。

二、实验设备

计算机,MATLAB 软件

三、实验原理

1、 离散卷积和:

调用函数:conv ()

∑∞

-∞=-=

=i i k f i f f f conv S )()(1)2,1(为离散卷积和, 其中,f1(k), f2 (k) 为离散序列,K=…-2, -1, 0 , 1, 2, …。但是,conv 函数只给出纵轴的序列值的大小,而不能给出卷积的X 轴序号。为得到该值,进行以下分析:

对任意输入:设)(1k f 非零区间n1~n2,长度L1=n2-n1+1;)(2k f 非零区间m1~m2,长度L2=m2-m1+1。则:)(*)()(21k f k f k s =非零区间从n1+m1开始,长度为L=L1+L2-1,所以S (K )的非零区间为:n1+m1~ n1+m1+L-1。

2、 连续卷积和离散卷积的关系:

计算机本身不能直接处理连续信号,只能由离散信号进行近似:

设一系统(LTI )输入为)(t P ?,输出为)(t h ?,如图所示。

)t

)()(t h t P ??→

)()(lim )(lim )(0

0t h t h t P t =→=?→??→?δ 若输入为f(t):

??-?=

≈∑∞

-∞=??)()()()(k t P k f t f t f k 得输出: ??-?=

∑∞-∞=??)()()(k t h k f t y k

当0→?时:?∑∞

-∞-∞=?→??→?-=??-?==ττδτd t f k t P k f t f t f k )()()()(lim )(lim )(00

?∑∞∞-∞-∞=?→??→?-=??-?==τττd t h f k t h k f t y t y k )()()()(lim )(lim )(00

所以:

?

?-?=-==∑?→?)()(lim )()()(*)()(2102121k t f k f d t f f t f t f t s τ

ττ 如果只求离散点上的f 值)(n f ?

]

)[()()()()(2121∑∑∞-∞

=∞-∞

=?-??=??-??=

?k k k n f k f k n f k f n f

所以,可以用离散卷积和CONV ()求连续卷积,只需?足够小以及在卷积和的基础上乘以?。

3、 连续卷积坐标的确定:

设)(1t f 非零值坐标范围:t1~t2,间隔P

)(2t f 非零值坐标范围:tt1~tt2,间隔P

)(*)()(21t f t f t s =非零值坐标:t1+tt1~t2+tt2+1

根据给定的两个连续时间信号x(t) = t[ε(t)-ε(t-1)]和h(t) = ε(t)-ε(t-1),编写程序,完成这两个信号的卷积运算,并绘制它们的波形图。范例程序如下:

% Program1

% This program computes the convolution of two continuou-time signals

clear;close all;

t0 = -2; t1 = 4; dt = 0.01;

t = t0:dt:t1;

h =(t>=0)-((t-1)>=0);

x = t.*h;

y = dt*conv(x,h); % Compute the convolution of x(t) and h(t)

subplot(221)

plot(t,x), grid on, title('Signal x(t)'), axis([t0,t1,-0.2,1.2])

subplot(222)

plot(t,h), grid on, title('Signal h(t)'), axis([t0,t1,-0.2,1.2])

subplot(212)

t = 2*t0:dt:2*t1; % Again specify the time range to be suitable to the

% convolution of x and h.

plot(t,y), grid on, title('The convolution of x(t) and h(t)'), axis([2*t0,2*t1,-0.1,0.6]),

xlabel('Time t sec')

在有些时候,做卷积和运算的两个序列中,可能有一个序列或者两个序列都非常长,甚至是无限长,MATLAB处理这样的序列时,总是把它看作是一个有限长序列,具体长度由编程者确定。实际上,在信号与系统分析中所遇到的无限长序列,通常都是满足绝对可和或绝对可积条件的信号。因此,对信号采取这种截短处理尽管存在误差,但是通过选择合理的信号长度,这种误差是能够减小到可以接受的程度的。若这样的一个无限长序列可以用一个数学表达式表示的话,那么,它的长度可以由编程者通过指定时间变量n的范围来确定。

例如,对于一个单边实指数序列x[n] = 0.5nε[n],通过指定n的范围为0 ≤n ≤100,则对应的x[n]的长度为101点,虽然指定更宽的n的范围,x[n]将与实际情况更相符合,但是,注意到,当n大于某一数时,x[n]之值已经非常接近于0了。对于序列x[n] = 0.5n ε[n],当n = 7时,x[7] = 0.0078,这已经是非常小了。所以,对于这个单边实指数序列,指定更长的n的范围是没有必要的。当然,不同的无限长序列具有不同的特殊性,在指定n

的范围时,只要能够反映序列的主要特征就可以了。

4、 系统的响应:

设微分方程: )()()(0)(0t f b t y a j M

j j i N i i

∑∑=== ][][012101

21b b b b b b a a a a a a M M M N N N

----== 均为降幂顺序。

则:1)、冲激响应为:impulse(b,a)

impulse(b,a,t)

impulse(b,a,t1:p:t2)

y=impulse( )

2)、阶跃响应为:step( )

3)、零状态响应:lism(b,a,f,t)

sys=tf(b, a)

y=lsim(sys, f, t)

注意, 微分方程中为零的系数也一定要写入向量a 和b 中。

例如,编写程序,计算并绘制由下面的微分方程表示的系统的单位冲激响应h(t),单位阶跃响应s(t)。

)(8)(2)(3)(2

2t x t y dt t dy dt t y d =++ MATLAB 范例程序如下:

% Program2

% This program is used to compute the impulse response h(t) and the step response s(t) of a

% continuous-time LTI system

clear, close all;

num = input('Type in the right coefficient vector of differential equation :');

den = input('Type in the left coefficient vector of differential equation :');

t = 0:0.01:8;

x = input('Type in the expression of the input signal x(t):');

subplot(221), impulse(num,den,t);

subplot(222), step(num,den,t)

四、预习要求

掌握MATLAB 的使用及连续LTI 时域响应的求解。

五、实验内容

实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。

1、根据示例程序的编程方法,编写一个MATLAB 程序,由给定信号 x(t) = e -0.5t ε(t) 求信号y(t) = x(1.5t+3),并绘制出x(t) 和y(t)的图形。

2、计算并用MATLAB 实现下列信号的卷积

3、给定两个离散时间序列

x[n] = 0.5n {ε[n]-ε[n-8]}

h[n] = ε[n]-ε[n-8]

编写程序,计算它们的卷积,并分别绘制x[n]、h[n]和它们的卷积y[n]的图形。

4 、仿照范例程序Program2,编写程序,计算并绘制由如下微分方程表示的系统在输入信号为x(t) = (e -2t - e -3t )ε(t)时的零状态响应和你手工计算得到的系统零状态响应曲线。

)(8)(2)(3)(22t x t y dt t dy dt

t y d =++ 手工计算得到的系统零状态响应的数学表达式是:

思考题:MATLAB 是如何表示一个由微分方程描述的连续时间LTI 系统的?求解连续时间

LTI系统的单位冲激响应、单位阶跃响应以及系统在某一个输入信号作用下的零状态响应的MATLAB函数有哪些?

线性系统的时域分析法(第七讲)

第三章 线性系统的时域分析法 3.1 引言 分析控制系统的第一步是建立模型,数学模型一旦建立,第二步 分析控制性能,分析有多种方法,主要有时域分析法,频域分析法,根轨迹法等。每种方法,各有千秋。均有他们的适用范围和对象。本章先讨论时域法。 实际上,控制系统的输入信号常常是不知的,而是随机的。很难用解析的方法表示。只有在一些特殊的情况下是预先知道的,可以用解析的方法或者曲线表示。例如,切削机床的自动控制的例子。 在分析和设计控制系统时,对各种控制系统性能得有评判、比较的依据。这个依据也许可以通过对这些系统加上各种输入信号比较它们对特定的输入信号的响应来建立。 许多设计准则就建立在这些信号的基础上,或者建立在系统对初始条件变化(无任何试验信号)的基础上,因为系统对典型试验信号的响应特性,与系统对实际输入信号的响应特性之间,存在着一定的关系;所以采用试验信号来评价系统性能是合理的。 3.1.1 典型试验信号 经常采用的试验输入信号: ① 实际系统的输入信号不可知性; ② 典型试验信号的响应与系统的实际响应,存在某种关系; ③ 电压试验信号是时间的简单函数,便于分析。 突然受到恒定输入作用或突然的扰动。如果控制系统的输入量是随时间逐步变化的函数,则斜坡时间函数是比较合适的。 (单位)阶跃函数(Step function ) 0,)(1≥t t 室温调节系统和水位调节系统 (单位)斜坡函数(Ramp function ) 速度 0,≥t t ∝ (单位)加速度函数(Acceleration function )抛物线 0,2 12 ≥t t (单位)脉冲函数(Impulse function ) 0,)(=t t δ 正弦函数(Simusoidal function )Asinut ,当输入作用具有周期性变化时。 通常运用阶跃函数作为典型输入作用信号,这样可在一个统一的基础上对各种控制系统的特性进行比较和研究。本章讨论系统非周期信号(Step 、Ramp 、对正弦试验信号相应,将在第五章频域分析法,第六章校正方法中讨论)作用下系统的响应。 3.1.2 动态过程和稳态过程

matlab实验二线性系统时域响应分析

武汉工程大学实验报告 专业班号 组别01 教师 姓名同组者(个人)

2222)(n n n s s s G ωζωω++= (1)分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标ss s p r p e t t t ,,,,σ。 (2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 (3)系统的特征方程式为010532234=++++s s s s ,试用二种判稳方式判别该系统的稳定性。 (4)单位负反馈系统的开环模型为 )256)(4)(2()(2++++= s s s s K s G 试分别用劳斯稳定判据和赫尔维茨稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。 三、 实验结果及分析 1.可以用两种方法绘制系统的阶跃响应曲线。 (1)用函数step( )绘制 MATLAB 语言程序: >> num=[ 0 0 1 3 7]; >> den=[1 4 6 4 1 ]; >>step(num,den); >> grid; >>xlabel('t/s');ylabel('c(t)');title('step response');

MATLAB运算结果: (2)用函数impulse( )绘制 MATLAB语言程序: >> num=[0 0 0 1 3 7]; >> den=[1 4 6 4 1 0]; >> impulse(num,den); >> grid; >> xlabel('t/s');ylabel('c(t)');title('step response');MATLAB运算结果:

第二章 连续系统的时域分析

第二章连续系统的时域分析 求响应:经典法:已知f(t)、x{0} 全响应y(t)= y f(t)+y x(t) 卷积积分法:先求n(t),已知f(t) y f(t)=h(t) f(t) 主要内容: 一经典法求LTI系统的响应: 齐次解自由响应瞬态零输入 特解强迫响应稳态(阶跃、周期)零状态二冲击响应与阶跃响应:(定义、求解方法仍为经典法)三卷积积分:(定义、图示法求卷积) 四卷积积分的性质:

§2.1 LTI 系统的响应(经典法) 一 常系数线性微分方程的经典解 n 阶:y )(n (t)+ a n-1y )1(-n (t)+…+ a 1y )1((t)+ a 0y(t) = b m f )(m (t)+ b m-1 f )1(-m (t)+……+ b 1 f )1((t)+ b 0f(t) 全解:y(t)=齐次解y h (t)+ 特解y p (t) 1 齐次解:y h (t)=∑=n i t e i C i 1 λ(形式取决于特征根) 特征方程: λ)(n (t)+ a n-1λ)1(-n (t)+… + a 1 λ(t)+ a 0=0 特征根:决定齐次解的函数形式,表2-1 如为2个单实根λ1、λ2, y h (t )=e C t 11 λ +e C t 22 λ 如为2重根(λ+1)2=0,λ= - 1,y h (t)=C 1te -t +C 0e -t 系数C i :求得全解后,由初始条件确定 2 特解: 函数形式:由激励的函数形式决定,与特征根有关系,表2-2 如:f(t)为常数 )(t ε, y p (t)=P 0 f(t)=t 2, y p (t)= P 2t 2+ P 1t+ P 0 f(t)=e -t ,λ= - 2,不等 y p (t)=P e -t f(t)= e -t ,λ= - 1,相等 y p (t)=P 1te -t +P 0e -t 系数P i :由原微分方程求出 3 全解:y(t)= y h (t)+ y p (t)=∑=n i t e i C i 1 λ+ y p (t) 此时利用y(0),y ‘(0),求出系数C i

线性系统的时域分析方法

第三章线性系统的时域分析方法 教学目的:通过本章学习,熟悉控制系统动态性能指标定义,掌握线性系统稳定的充要条件和劳斯判椐的应用,以及稳态误差计算方法,掌握一阶、 二阶系统的时域分析方法。 教学重点:掌握系统的动态性能指标,能熟练地应用劳斯判椐判断系统稳定性,二阶系统的动态响应特性分析。 教学难点:高阶系统的的动态响应特性分析。 本章知识结构图: 系统结构图闭环传递函数 一阶标准式 二阶标准式 特征方程稳定性、稳定域 代数判据 误差传递函数误差象函数终值定理稳态误差开环传递函数系统型别、开环增益 公式 静态误差系数 第九讲

3.1 系统时间响应的性能指标 一、基本概念 1、时域分析方法:根据系统的数学模型求出系统的时间响应来直接分析和评价系统的方法。 (1)响应函数分析方法:建立数学模型→确定输入信号→求出输出响应→ 根据输出响应→系统分析。 (2)系统测试分析方法:系统加入扰动信号→测试输出变化曲线→系统分析。 系统举例分析:举例:原料气加热炉闭环控制系统 2、分析系统的三大要点 (1)动态性能(快、稳) (2)稳态性能(准) (3)稳定性(稳) 二、动态性能及稳态性能 1、动态过程(过渡过程):在 典型信号作用下,系统输出从初始状态到最终状态的响应过程。(衰减、发散、等幅振荡) 2、稳态过程:在典型信号作 用下,当t → ∞ 系统输出量表现的方式。表征输出量最终复现输入量的程度。(稳态误差描述) 3、动态稳态性能指标 图3-1温度控制系统原理图 (1)上升时间tr :从稳态值的10%上升到稳态值的90%所需要的时间。 (2)峰值时间tp :从零时刻到达第一个峰值h(tp)所用的时间。 (3)超调量δ%:最大峰值与稳态值的差与稳态值之比的百分数。(稳) (3-1) %100)(()(%?∞∞-= h h t h p ) δ

线性系统时域分析

线性系统时域分析 理论基础 求解零状态响应 1 2 ?→0 =-∞ 连续时间信号 f (t ) 和 f (t ) 的卷积运算可用信号的分段求和来实现,即: ∞ ∞ f (t ) = f 1 (t )* f 2 (t ) = ?-∞ f 1 (τ ) f 2 (t -τ )d τ = lim ∑ f 1 (k ?) f 2 (t - k ?) ? ? k 如果只求当t = n ?(n 为整数)时 f (t ) 的值 f (n ?) ,则上式可得: ∞ ∞ f (n ?) = ∑ f 1 (k ?) f 2 (n ? - k ?) ? ? = ?∑ f 1 (k ?) f 2[(n - k )?] (2-1) k =-∞ ∞ k =-∞ 式(2-1)中的 ∑ f 1 (k ?) f 2[(n - k )?] 实际上就是连续时间信号 f 1 (t ) 和 f 2 (t ) 经等时间间隔? k =-∞ 均匀抽样的离散序列 f 1 (k ?) 和 f 2 (k ?) 的卷积和。当? 足够小时, f (n ?) 就是卷积积分的结果——连续时间信号 f (t ) 的较好数值近似。 因此,用 MA TL A B 实现连续信号 f 1 (t ) 和 f 2 (t ) 卷积的过程如下: 1、将连续信号 f 1 (t ) 和 f 2 (t ) 以时间间隔? 进行取样,得到离散序列 f 1 (k ?) 和 f 2 (k ?) ; 2、构造与 f 1 (k ?) 和 f 2 (k ?) 相应的时间向量k 1 和k 2(注意,k 1 和k 2 的元素不是整数,而是取样间隔? 的整数倍的时间间隔点); 3、调用 MATLAB 命令 conv()函数计算积分 f (t ) 的近似向量 f (n ?) ; 4、构造 f (n ?) 对应的时间向量k 。

自动控制原理_线性系统时域响应分析

武汉工程大学 实验报告 专业 班号 组别 指导教师 姓名 学号 实验名称 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、实验内容 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2 342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标ss s p r p e t t t ,,,,σ。 2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。 4.单位负反馈系统的开环模型为 ) 256)(4)(2()(2++++= s s s s K s G

试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。 三、实验结果及分析 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 14647 3)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。 方法一:用step( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 1 3 7]; den=[1 4 6 4 1]; t=0::10; step(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-step Response of G(s)=s^2+3s+7/(s^4+4s^3+6s^2+4s+1)') Unit-step Response of G(s)=s 2+3s+7/(s 4+4s 3+6s 2+4s+1) t/s (sec) c (t ) 方法二:用impulse( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 0 1 3 7 ]; den=[1 4 6 4 1 0]; t=0::10; impulse(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-impulse Response of G(s)/s=s^2+3s+7/(s^5+4s^4+6s^3+4s^2+s)')

MATLAB线性系统时域响应分析实验

实验报告 实验名称 线性系统时域响应分析 一、 实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、 实验内容 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2 342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标 ss s p r p e t t t ,,,,σ。 2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。 4.单位负反馈系统的开环模型为 ) 256)(4)(2()(2 ++++= s s s s K s G 试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。

三、 实验结果及分析 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。 方法一: num=[1 3 7]; den=[1 4 6 4 1]; step(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-step Respinse of G(s)=(s^2+3s+7)/(s^4+4s^3+6s^2+4s+1)') 方法二: num=[1 3 7]; den=[1 4 6 4 1 0]; impulse(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-impulse Respinse of G(s)/s=(s^2+3s+7)/(s^5+4s^4+6s^3+4s^2+s)')

_第二章连续系统的时域分析习题解答

第二章 连续系统的时域分析习题解答 2-1 图题2-1所示各电路中,激励为f (t ),响应为i 0(t )和u 0(t )。试列写各响应关于 激励微分算子方程。 解: . 1)p ( ; )1(1)p ( , 111 , 1 111)( )b (; 105.7)625(3 102 ; )(375)()6253(4) ()()61002.041( )a (0202200 204006000f i p f p u p f p p p u i f p p p p p f t u pf i p pu i t f t u p t f t u p =+++=++?++=+=+++= ++= ?=+??==+?=++-- 2-2 求图题2-1各电路中响应i 0(t )和u 0(t )对激励f (t )的传输算子H (p )。 } 解:. 1 )()()( ; 11)()()( )b (; 625 3105.7)()()( ; 6253375)()()( )a (220 20 40 0 +++==+++==+?==+== -p p p p t f t i p H p p p t f t u p H p p t f t i p H p t f t u p H f i f u f i f u 2-3 给定如下传输算子H (p ),试写出它们对应的微分方程。 . ) 2)(1() 3()( )4( ; 323)( )3(; 3 3)( )2( ; 3)( )1( +++=++=++=+= p p p p p H p p p H p p p H p p p H 解:; 3d d 3d d )2( ; d d 3d d )1( f t f y t y t f y t y +=+=+ . d d 3d d 2d d 3d d )4( ; 3d d 3d d 2 )3( 2222t f t f y t y t y f t f y t y +=+++=+ 2-4 已知连续系统的输入输出算子方程及0– 初始条件为: . 4)(0y ,0)(0y )y(0 ),()2(1 3)( )3(; 0)(0y ,1)(0y ,0)y(0 ),()84() 12()( )2(; 1)(0y ,2)y(0 ),()3)(1(4 2)( )1(---2 ---2 --=''='=++==''='=+++-=='=+++= t f p p p t y t f p p p p t y t f p p p t y 1 f (u 0(t ) (b) @ f (t ) 4k 6k 2F } u 0(t ) (a) 图题2-1

自动控制原理实验报告《线性控制系统时域分析》

实验一线性控制系统时域分析 1、设控制系统如图1 所示,已知K=100,试绘制当H分别取H=0.1 ,0.2 0.5,1, 2,5,10 时,系统的阶跃响应曲线。讨论反馈强度对一阶 系统性能有何影响? 图1 答: A、绘制系统曲线程序如下: s=tf('s'); p1=(1/(0.1*s+1)); p2=(1/(0.05*s+1)); p3=(1/(0.02*s+1)); p4=(1/(0.01*s+1)); p5=(1/(0.005*s+1)); p6=(1/(0.002*s+1)); p7=(1/(0.001*s+1)); step(p1);hold on; step(p2);hold on; step(p3);hold on; step(p5);hold on; step(p6);hold on; step(p7);hold on;

B 、绘制改变H 系统阶跃响应图如下: 00.050.10.150.20.250.30.350.40.450.5 0.2 0.4 0.6 0.8 1 1.2 1.4 Step Response Time (seconds) A m p l i t u d e 结论: H 的值依次为0.1、0.2、0.5、1、2、5、10做响应曲线。matlab 曲线默认从第一条到第七条颜色依次为蓝、黄、紫、绿、红、青、黑,图中可知随着H 值得增大系统上升时间减小,调整时间减小,有更高的快速性。 2、 二阶系统闭环传函的标准形式为 22 2()2n n n s s s ωψξωω=++,设已知 n ω=4,试绘制当阻尼比ξ分别取0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 5 等值时,系统的单位阶跃响应曲线。求出ξ取值 0.2 ,0.5 ,0.8时的超调量,并求出ξ取值 0.2 ,0.5 ,0.8,1.5,5时的调节时间。讨论阻尼比变化对系统性能的影响。

线性系统的时域分析与校正习题及答案

第三章 线性系统的时域分析与校正习题及答案 3-1 已知系统脉冲响应t 25.1e 0125.0)t (k -=,试求系统闭环传递函数)s (Φ。 解 [])25.1s /(0125.0)t (k L )s (+==Φ 3-2 设某高阶系统可用下列一阶微分方程)t (r )t (r )t (c )t (c T +τ=+? ? 近似描述,其中,1)T (0<τ-<。试求系统的动态性能指标s r d t ,t ,t 。 解 设单位阶跃输入s s R 1)(= 当初始条件为0时有: 1 Ts 1 s )s (R )s (C ++τ= 1Ts T s 1s 11Ts 1s )s (C +τ--=?++τ= ∴ T /t e T T 1)t (h )t (c -τ--== T )0(h τ=,1)(h =∞,20T T )]0(h )(h [05.0τ -=-∞=? 1) 当 d t t = 时 2T T e T T 1)]0(h )(h [5.0)0(h )t (h t /t d τ += τ--=-∞+=- T /t d e 2 1 -= ; 693T .0t d = 2) 求r t (即)t (c 从1.0)(h ∞到9.0)(h ∞所需时间) 当T /t 2e T T 1)0(h )]0(h )(h [9.0)t (h -τ-- =+-∞=; 当T /t 1e T T 1)0(h )]0(h )(h [1.0)t (h -τ--=+-∞=; )T 1(.0T ln T t 2τ+τ-=, τ +τ -=)T 9(.0T ln T t 1 则 2T .29ln T t t t 12r ==-= 3) 求 s t T /t s s e T T 1)0(h )]0(h )(h [95.0)t (h -τ-- =+-∞= 3T 05.ln0T t s ==∴ 3-3 一阶系统结构如图所示。要求系统闭环增益2k =Φ,调节时间4.0t s ≤s ,试确定参数21k ,k 的值。 解 由结构图写出闭环系统传递函数 1k k s k 1k k s k s k k 1s k )s (212211211 +=+=+ =Φ

实验三 连续时间LTI系统的时域分析

实验三 连续时间LTI 系统的时域分析 一、实验目的 1、学会使用符号法求解连续系统的零输入响应和零状态响应 2、学会使用数值法求解连续系统的零状态响应 3、学会求解连续系统的冲激响应和阶跃响应 二、实验原理及实例分析 1、连续时间系统零输入响应和零状态响应的符号求解 连续时间系统可以使用常系数微分方程来描述,其完全响应由零输入响应和零状态响应组成。MATLAB 符号工具箱提供了dsolve 函数,可以实现对常系数微分方程的符号求解,其调用格式为: dsolve(‘eq1,eq2…’,’cond1,cond2,…’,’v’) 其中参数eq 表示各个微分方程,它与MATLAB 符号表达式的输入基本相同,微分和导数的输入是使用Dy ,D2y ,D3y 来表示y 的一价导数,二阶导数,三阶导数;参数cond 表示初始条件或者起始条件;参数v 表示自变量,默认是变量t 。通过使用dsolve 函数可以求出系统微分方程的零输入响应和零状态响应,进而求出完全响应。 [实例1]试用Matlab 命令求齐次微分方程0)()(2)(='+''+'''t y t y t y 的零输入响应,已知起始条件为2)0(,1)0(,1)0(=''='=---y y y 。

3、连续时间系统冲激响应和阶跃响应的求解 在连续时间LTI系统中,冲激响应和阶跃响应是系统特性的描述。在MATLAB中,对于冲激响应和阶跃响应的数值求解,可以使用控制工具箱中提供的函数impulse和step来求解。 ) , ( ) , ( t sys step y t sys impulse y = = 其中t表示系统响应的时间抽样点向量,sys表示LTI系统模型。

自动控制原理》实验2(线性系统时域响应分析

实验二 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 二、基础知识及MATLAB 函数 (一)基础知识 时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。 用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。 1.用MATLAB 求控制系统的瞬态响应 1)阶跃响应 求系统阶跃响应的指令有: step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线 随即绘出 step(num,den,t) 时间向量t 的范围可以由人工给定(例如 t=0:0.1:10) [y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量 在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。 考虑下列系统: 25 425 )()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s

第3章--线性系统的时域分析--练习与解答

第三章 线性系统的时域分析与校正 习题及答案 3-1 已知系统脉冲响应 t e t k 25.10125.0)(-= 试求系统闭环传递函数)(s Φ。 解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程 T c t c t r t r t ?? +=+()()()()τ 近似描述,其中,1)(0<-<τT 。试证系统的动态性能指标为 T T T t d ?? ? ?????? ??-+=τln 693.0 t T r =22. T T T t s ?? ??? ? -+=)ln( 3τ 解 设单位阶跃输入s s R 1)(= 当初始条件为0时有: 1 1 )()(++=Ts s s R s C τ 1 11 11)(+--= ? ++= ∴ Ts T s s Ts s s C ττ C t h t T T e t T ()()/==---1τ 1) 当 t t d = 时 h t T T e t t d ()./==---051τ 12=--T T e t T d τ/ ; T t T T d -??? ??-=-τln 2ln ????? ???? ??-+=∴ T T T t d τln 2ln

2) 求t r (即)(t c 从1.0到9.0所需时间) 当 T t e T T t h /219.0)(--- ==τ; t T T T 201=--[ln()ln .]τ 当 T t e T T t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21 09 01 22ln ... 3) 求 t s T t s s e T T t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln T T T T T T T T T t s τ ττ-+=+-=--=∴ 3-3 一阶系统结构图如图3-45所示。要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。 解 由结构图写出闭环系统传递函数 111)(212211211 +=+=+ =ΦK K s K K K s K s K K s K s 令闭环增益21 2 == ΦK K , 得:5.02=K 令调节时间4.03 32 1≤= =K K T t s ,得:151≥K 。 3-4 在许多化学过程中,反应槽内的温度要保持恒定, 图3-46(a )和(b )分别为开环和闭环温度控制系统结构图,两种系统正常的K 值为1。 (1) 若)(1)(t t r =,0)(=t n 两种系统从响应开始达到稳态温度值的63.2%各需多长时间? (2) 当有阶跃扰动1.0)(=t n 时,求扰动对两种系统的温度的影响。

线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈:。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s 解:(a )稳定; (b )稳定; (c )不稳定。 题 系统结构如题图所示。控制器)1 1()(s T K s G i p c + =,为使该系统稳定,控制器参数p K 、i T 应满足什么关系

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 【 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 @ 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 & (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s ! 解:(a )稳定; (b )稳定; (c )不稳定。

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 3.1 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 3.2 思考与习题祥解 题3.1 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响? (5)系统误差与哪些因素有关?试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关? 答:(1)二阶系统特征根在复平面上分布情况如图3.1所示。 图3.1 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξσe 。在工程设计中,对于恒值控制系 统,一般取 ξ=0.2~0.4;对于随动控制系统ξ=0.6~0.8。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈ 。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题3.2系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s 解:(a )稳定; (b )稳定; (c )不稳定。 题3.3 系统结构如题3.3图所示。控制器)1 1()(s T K s G i p c + =,为使该系统稳定,控制器参数p K 、i T 应满足什么关系?

连续时间系统的时域分析

第二章 连续时间系统的时域分析 §2-1 引 言 线性连续时间系统的时域分析,就是一个建立和求解线性微分方程的过程。 一、建立数学模型 主要应用《电路分析》课程中建立在KCL 和KVL 基础上的各种方法。 线性时不变系统的微分方程的一般形式可以为: )()(...)()()()(...)()(0111101111t e b t e dt d b t e dt d b t e dt d b t r a t r dt d a t r dt d a t r dt d m m m m m m n n n n n ++++=++++------ 二、求解(时域解) 1、时域法 将响应分为通解和特解两部分: 1) 通解:通过方程左边部分对应的特征方程所得 到的特征频率,解得的系统的自然响应(或自由响应); 2) 特解:由激励项得到系统的受迫响应;

3)代入初始条件,确定通解和特解中的待定系数。 经典解法在激励信号形式简单时求解比较简单,但是激励信号形式比较复杂时求解就不容易,这时候很难确定特解的形式。 2、卷积法(或近代时域法,算子法) 这种方法将响应分为两个部分,分别求解: 1)零输入响应:系统在没有输入激励的情况下,仅仅由系统的初始状态引起的响应 r )(t ; zi 2)零状态响应: 状态为零(没有初始储能)的条件下,仅仅由输入信号引起的响应 r )(t 。 zs ●系统的零输入响应可以用经典法求解,在其中 只有自然响应部分; ●系统的零状态响应也可以用经典法求解,但是 用卷积积分法更加方便。借助于计算机数值计算,可以求出任意信号激励下的响应(数值解)。 ●卷积法要求激励信号是一个有始信号,否则无

线性系统的时域分析

第3章 线性系统的时域分析 本章讨论线性系统的运动分析。主要介绍连续系统与离散系统的状态空间模型的求解、状态转移矩阵的性质和计算以及连续系统状态方程的离散化。本章最后介绍基于Matlab的状态空间模型求解与控制系统的运动仿真问题的程序设计与仿真计算。 建立了系统的数学描述之后,接下来要对系统作定量和定性分析。定量分析主要研究系统对给定输入信号的响应问题,也就是对描述系统的状态方程和输出方程的求解问题。定性分析主要研究系统的结构性质,如能控性、能观性、稳定性等。本章先讨论用状态空间模型描述的线性系统的定量分析问题,即状态空间模型的求解问题。根据常微分方程理论求解一个一阶定系数线性微分方程组是很容易的,可是求解一个一阶变系数线性微分方程组却非易事。状态转移矩阵的引入,使得定常系统和时变系统的求解公式具有一个统一的形式。为此,本章将重点讨论状态转移矩阵的定义、性质和计算方法,并在此基础上导出状态方程的求解公式。本章讨论的另一个中心问题是连续系统状态方程的离散化,即建立连续系统的离散系统状态方程。随着计算机在控制系统分析、设计和实时控制中的广泛应用,这个问题显得越来越重要。在离散系统状态方程建立的基础上,本章也将讨论相应的状态方程求解问题,并将导出在形式上与连续系统状态方程的解一致的离散系统状态方程的解。 3.1 线性定常连续系统状态方程的解 在讨论一般线性定常连续系统状态方程的解之前,我们先讨论线性定常齐次状态方程的解,以便引入矩阵指数函数和状态转移矩阵的概念。所谓齐次状态方程,就是指状态方程中不考虑输入项的作用,满足方程解的齐次性的一类状态方程。研究齐次状态方程的解,就是研究系统本身在无外力作用下的自由运动。 3.2 状态转移矩阵及其计算 在状态方程求解过程中,关键是状态转移矩阵Φ(t)的计算。对于线性定常连续系统,该问题又归结到矩阵指数函数e At的计算。上一节已经介绍了基于拉氏反变换技术的矩阵指数函数e At的计算方法,下面讲述计算矩阵指数函数的其他3种常用方法。 3.2.1级数求和法

相关主题