搜档网
当前位置:搜档网 › 薄膜包衣技术

薄膜包衣技术

薄膜包衣技术
薄膜包衣技术

目录一.药用薄膜包衣简介

二.药用薄膜包衣的对象

三.药品包衣的原因

四.药用薄膜包衣的原理

五.药用薄膜包衣的原则

六.药用薄膜包衣的影响因素

七.与薄膜包衣相关的一些术语

一、药用薄膜包衣简介

药用薄膜包衣的起源于英国,最初的目的是对品上色,也就是说最初的薄膜包衣材料只是一种染料。发展到现在,薄膜包衣已是集多种功能于一身,技术含量相当高的一种药品包装技术。

以专业角度讲,药用薄膜包衣是一种包覆在药品表面的一层高分子薄膜,对药品起上色、保护、美化以及控制药效等多种作用。也因为这些不同的作用,薄膜包衣也发展成为以口含、胃溶、肠溶、控释、缓释为主的多品种、多功能材料的总称。

以操作技术讲,薄膜包衣还包括将包衣材料采用一定的工艺,包覆于药品上,起到预想的作用,也达到薄膜包衣的功效。

所以药用薄膜包衣不仅是一种性能优越的材料,而且是一种先进的技术,更是一个尖端的产业。

二、药用薄膜包衣的对象

药品片剂、滴丸、微丸等都可以采用不同的工艺和设备进行薄膜包衣。总之,几乎所有的药品固体制剂都可以薄膜包衣。

1.片剂:片剂是药品细粉与适宜辅料压制而成的固体制剂。根据片剂的外

观形状主要分为:深弧片、浅弧片、平片、异形片、其中浅弧片最适于薄膜包衣。根据药品材料和辅料的不同,又可分为浸膏片、半浸膏片和全粉片,西药都是全粉片。

2.丸剂:指药品细粉加适宜的黏合剂或其他辅料制成的球形或类球形制

剂,分为蜜丸、水蜜丸、水丸、糊丸、浓缩丸、蜡丸和微丸等类型。

三、药品包衣的原因

药用薄膜包衣的技术很大程度是包糖衣发展而来,药品薄膜包衣的功能其实质是克服了药品本身的诸多缺点。如味苦、外观差、不易吞服等。综合起来,主要有以下原因:

◆片芯中某一种或几种物质气味不佳或口味不爽;

◆片芯中某些成分受热、光和湿度易发生变质、变性;

◆片芯表面粗糙,颜色不均匀,包衣可改善外观;

◆片芯有色成份不稳定,易发生迁移,对患者和患者的物品易发生污染;

◆片芯比较松散,易掉粉、掉粒,甚至掉块,影响片型完整和药效;

◆功能的需要,如药效需缓释或控释的;

◆隔离片芯两种不同作用的成份;

◆比包糖衣操作更方便、性能更优越;

◆提高药品档次。

四、药用薄膜包衣的原理

简单地说,薄膜包衣是利用高分子材料在一定温度、压力等条件下迅速成膜的原理,在药品表面形成一种具有多种作用和特殊功能的高分子薄膜。

药用薄膜包衣原理相对简单,但成膜过程却是相当复杂的。在现存药用薄膜包衣中,包衣材料通常以分散体系(包括水溶剂和有机溶剂)通过喷雾工艺成膜。当高分子材料的分散体系经喷枪雾化以微小液滴喷到药品表面后,这些小液滴在表面张力和摩擦力的作用下,迅速铺展于药品表面,经过热空气的热作用,带走溶剂迅速成膜。

包衣过程是一个物料平衡和热量平衡的维持过程,是传热、传质的动态平衡。

包衣的主要目的是将包衣材料喷到片芯上,给它一个合适的环境,让它形成最好的膜。这个环境有温度、湿度、撞击、磨擦等因素。进风量、进风温度、排风量、喷量、喷程,以及雾化等的调节,即可确定片床湿度、温度和压力。转速快慢即可确定片芯在包衣时所处的运动状态,受到的撞击和磨擦等。这个温度、湿度、压力、撞击、磨擦构成的环境,就是包衣材料赖以成膜的环境,这个环境的选择和确定直接关系包衣质量的好坏。在包衣前,首先根据片芯的性能、包衣材料的性能以及包衣液的溶剂类型确定一个合适的环境,如怕高温产品片床随时处于低温环境,易吸潮的产品片床随时保持干燥等。当这个环境确定后,片床将处于这个环境中,接受包衣材料,并使包衣材料在这个环境中成膜。

(热风)

其中:

片床以连续稳定流动为最佳。

排风量>进风量

负压=排风-热风-溶剂蒸气

1.一次性成膜(包括受液→铺展→溶剂挥发→成膜四个阶段)。

摩擦、压力、碰撞

A.受液:指片芯接受包衣液。

喷量

相关因素雾化

喷程

液体浓度

B.铺展:指包衣液接触片芯后浸润片芯的过程。

润湿性(可能问题:填字、不光滑、颜色不均匀等)

喷量:喷量的大小会影响润湿性。

相关因素受液的干湿情况:受液太干不利于铺展,如果所受包衣液变成干

粉,就不能铺展。

喷程

温度

C.溶剂的挥发:指包衣液中的溶剂受热后变成蒸汽,再被排风带走的过程。

温度

排风

相关因素溶剂类型

喷量

喷程(与干燥时间相关)

D.成膜:溶剂挥发后、高分子成膜剂借助粘性,分子缠绕、粘结在一起成膜。

铺展性是关键

相关因素材料粘性

温度(不同材料不同的成膜温度)

干燥速度

2.膜的增厚

A.一次性成膜较好,即每次受液都能很好铺展、成膜。

原理:每一层衣膜靠分子间力、粘性等一层一层增厚(通常衣膜完整,表面光洁,颜色均一、光亮)。

B.一次成膜性较差,即每次均不能形成完整衣膜。

原理:每次受液后,包衣材料均以点状,或片状粘附于片芯表面,多次受液后,材料之间靠粘性、分子间力、结合在一起成膜。

特点:通常材料铺展性差,对材料用量,转速依赖较强。

材料用量:需达到一定量才能成膜。

转速:转速太低,均匀性不够,表面光洁度、颜色均一性均会受到较大的影响。

五、药用薄膜包衣的原则

包衣过程中,为维持一个合适的包衣环境,或者由于包衣进程的需要,需改变这个环境时,都需要调节工艺参数,如何调节这些工艺参数,主要应遵循以下原则:

◆不要对某一个或几个工艺参数机械的应用某一数值,片芯所处的包衣

环境是所有工艺参数共同作用的结果,各工艺参数之间有一个合理的

对应关系。

◆目的是将片芯包上薄膜衣,所以着眼点侧重于片床的情况,而不是工

艺参数的某一数值。

◆当片芯有特殊性(如不耐高温、不耐磨等),首先根据其特殊性确定

一个或几个主要工艺参数,然后调节其它参数来实现需要的包衣环境。

◆包衣过程中随时掌握片床、片芯及衣膜的情况,随时注意工艺参数的

调节,以保证片床随时处于最佳的成膜环境。

◆合适的包衣环境确定后即可稳定操作,并可编写SOP文件。

六、药用薄膜包衣的影响因素

1.片芯

A.硬度:

要求:不小于3kg,最好大于5kg。

硬度偏小,通常出现药品易碎、掉粉、磕边、磨损严重等现象,因薄膜衣是一层很薄的薄膜,按原则应体现片芯原形,包衣片通常会出现麻面,表面粗糙,片型不完整等。

B.片芯表面效果

要求:片芯表面光洁、细腻、平整。

片面不平(即有凸起或缺陷),包衣过程中磨擦较大,流动性差,包衣均匀性差,包衣片表面依然体现片芯表面不平的现象,甚至视觉效果更明显,且光亮度差。片芯表面光洁、细腻、平整可包出轮廓清晰、光滑亮丽的薄膜衣片。

C.片芯形状及大小

要求:片芯有一定厚度,较大面有一定的外凸弧度(即凸片)。

在包衣过程中,片床的流动性是相当重要的因素。片芯太薄和外凸弧度太小都会导致片床流动性差,从而影响包衣。平片和凹片因其流动性极差而很难包衣。片芯太小因其比表面积太大而要求包衣的理论增重较大,片芯太大不但流动性差,

而且由于其势能较大而碰撞力度较大,对片芯硬度和强度都有相当高的要求,否则会导致严重的碎片、断片、磕边等现象。

D.脆碎度和耐磨性

要求:脆碎度不得大于0.2%,耐磨性要求片芯至少应经得起包衣机以最低转速转动五分钟以上。

脆碎度太大,易造成片芯掉粉、掉碴,损坏包衣的表面效果。耐磨性太差,不仅会使片芯磨损,严重时可能无法上膜。

E.片芯标识

要求:片芯标识应是有一定深度的倒梯型凹痕。(即凹痕底部夹角应大于90度)

标识过细会因为包衣材料很难进入而成为衣膜最薄弱的部位,使衣膜性能受到损害。标识过浅容易导致标识模糊。凹痕太直,即凹痕底部夹角接近或等于90度(不会小于90度)时,凹痕底部夹角处成膜不好而成为衣膜薄弱部位,影响衣膜性能。此外,凹痕太细、太直都易导致填粉,影响标识清晰度。

F.片芯特性

a.对包衣液溶剂敏感

对溶剂敏感主要是指片芯易与溶剂发生溶解、反应等现象。此类情况应视程度轻重而定。一般情况下,只需控制包衣过程中片床的干湿程度即可,即控制溶剂不浸入或不被片芯吸收。敏感程度很高时,在设计和配制包衣材料时就需充分考虑并严格控制。

b.对光敏感

对光敏感的药物,除在颜色选择时考虑其避光能力外,主要是操作环境的避光处理。

c. 对热敏感

要求:软化点应大于35℃,绝不能低于25℃。

软化点较低,包衣过程受热会变软、变形,无法保持片芯原有形状,软化点低的药用需采用超常规的低温包衣,如肝复乐。此外,含易挥发或升化成份的药用包衣时要求片床温度较低,防止其成份挥发,并要求衣膜成膜较快,致密性好,最好具备可吸附药用挥发成份或抑制其挥发的功能。

2.包衣材料的特点

包衣材料的特点与包衣操作紧密相关,包衣操作的工艺参数都需严格参照包衣材料特点,如片床温度必须结合材料成膜温度,转速与衣膜的耐磨性关系很大等。对于药品公司(即包衣材料的使用者)无需过多考虑,因材料的设计和配制已针对性的充分考虑,可操作性也经过了相关试验。

A.成膜性:成膜性的好与差直接关系薄膜衣的性能和外观效果。成膜性好,薄膜衣以多次成膜,再层层膜重叠、结合而形成。此类薄膜衣不但光洁度好,颜色均一,而且衣膜完整性好,致密性、防潮性、强度、韧性等多种性能可最大限度体现,是功能性材料必备的条件。

成膜较差的包衣材料,虽然可以在堆积状态下,靠压力、摩擦等外在因素成膜。但所成薄膜衣往往对衣膜厚度(或包衣材料量)依赖性较强,只有到一定厚度时方可形成完整的衣膜。此类衣膜不但表面光洁度差,而且材料性能也很难完全体现。

两者的差别在包衣操作上主要体现为以下两点:

a.对成膜较差的包衣材料,均匀性是包衣操作的重点,即转速和喷量的协调控制是此类产品包衣操作的关键。

b.成膜性好的材料无论厚度多少均能体现衣膜性能,只需喷上少许材料即可改变片芯强度、耐磨性等。故在包衣操作时可根据衣膜情况较早提高喷量和转速,以提高包衣效率。成膜性差的材料则相反,它需相当厚度方可体现衣膜性能,所以需到相当量(一般以颜色均一为判断标准)才能提高转速、喷量等工艺参数,相对效率较低。

B.强度:包衣材料所成薄膜衣的强度对包衣操作影响较大。主要体现在转速、温度和水分,衣膜强度的大小直接关系衣膜的耐磨性,故转速应根据衣膜强度作相应控制。此外,在包衣过程中的暴皮现象可依靠衣膜强度得以控制,当衣膜强度并不太好时,控制药品的吸水量和片床温度是控制衣膜暴皮的关键。

C.韧性:材料韧性除与衣膜耐磨性关系较强外,只与成膜温度有直接关系。每种材料成膜温度均有差异,只有成膜温度合适、材料方能体现最好性能于衣膜,故包衣操作中选择适合包衣材料的片床温度是至关重要的。

D.粘性:材料的粘性对包衣操作影响较大,粘性重不易干燥、易粘片,粘性小相对包衣操作简单。对粘性重的包衣材料,如何控制粘片是关键,有的材料高温粘,有的材料低温粘,对此应根据材料特点设制片床温度,此外控制片床干湿程度也应充分考虑材料的粘性。通常在包衣材料的设计和配制过程中已有充分的考虑,并在很大程度上控制了其粘性,故一般不存在很难控制的情况。

E.成膜温度:成膜温度对衣膜性能影响很大,故在包衣操作中应严格、科学地

控制。如高温脆性的材料,当片床温度较高时,衣膜变脆,强度变小,不仅在稳定性试验中易出现裂片,甚至在包衣过程中就会出现磕边、裂片等不可补救的局面,造成很高的废品率。

3.包衣液特点

包衣液特点、药用特点和设备情况是包衣前重点观察的三要素,故包衣液的特点是影响包衣操作的重要因素,必须重点对待。

A.粘度:即包衣液稠度。与喷量的调节、雾化的优劣等关系密切。粘度较大对喷雾压力要求较高,太小可能无法喷出包衣液,且较难雾化,在专业薄膜包衣公司,一般都以在喷雾压力大于3kg 的条件下能否自由调节喷量,并能调出合适的雾化效果和雾化面为准。粘度小对操作无特别影响,唯一影响就是喷量调节更敏感,故在调节喷量时应更稳定地较小幅度的调整。

B.固含量:固含量不仅是影响包衣液粘度的主要因素,更是影响包衣液溶散程度,溶剂挥发,成膜的关键因素。如以酒精为溶剂的包衣材料,因溶剂挥发很快而固含量相对较小,而以水为溶剂的包衣液因其难挥发而固含量较高,此项指标在设计材料时已通过试验作出明确规定,使用者不要随意改动即可。

C.溶剂:溶剂是根据材料的溶解性能而定的,在包衣操作中不可改动,不同溶剂因其挥发等特点不一,操作工艺上有较大差别。有机溶剂的包衣材料因其溶剂(通常是乙醇)易挥发,片芯易干燥而包衣操作相对简单,包衣时间也相对较短,但需注意空中干燥会导致干粉多,损耗大。水作溶剂的包衣材料因其难挥发,不易干燥,片床干湿程度需重点控制,如太湿会使片芯吸潮而水分含量超标,影响片芯性能,且易发生粘片。在这两类包衣液中,有机包衣液包衣材料因其易干燥,雾化好,

通常喷量较大,喷程较小,片床温度也较低,水作溶剂的包衣材料正好相反。

D.雾化:雾化是衣膜外观的主要影响因素。雾化好,雾滴小,衣膜均匀、平整光滑。相反则衣膜粗糙,均一性差。此外,雾化扇面的大小是材料损耗的重要因素。扇面过大,相当一部分喷到锅壁,不仅损耗大,而且容易粘附药片。扇面过小,包衣液和材料太集中,片床上膜的均匀性、干湿程度等均难控制。基本的原则是扇面尽可能覆盖片床,但不能喷到锅壁上。此外,各把枪的雾化扇面尽可能独立,交叉区域应尽可能小。

4.工艺参数

A.进风(热风):是溶剂挥发,片芯干燥的热源,是包衣材料成膜所依赖的温度环境。热风的大小和温度的高低直接关系到包衣的效率。热风的大小和温度的高低以能使片芯受液后迅速干燥为最合适。风量不宜过大,当接近或大于排风量时,锅内负压很小或成正压,无法有效带走溶剂蒸汽,增加锅内湿度而无法干燥。温度也不宜过高,温度过高,喷雾时空中干燥增多,损耗增大,而且片芯受液较干,润湿性差,影响成膜和衣膜外观。

B.排风:是形成负压,带走溶剂蒸汽的关键因素。排风的大小以锅内形成0.1-0.2kPa的负压即可,排风的温度需通过热风、喷量等的调节来控制,不能自身设定和调节。排风的温度接近但略高于片床湿度,是片床温度的近似显示。

C.转速:转速的高低通常需结合片芯硬度、耐磨性和衣膜强度、衣膜耐磨性来确定。片芯性能好,衣膜强度、耐磨性好,转速高一些对包衣有利。也就是说只要片芯和衣膜经得住碰撞和磨擦,转速可尽可能高一些。转速的高低同样影响衣

膜的外观和包衣的效率。转速高、磨擦大,衣膜光亮;喷量可适当加大,缩

短包衣时间,并提高片芯流动性和效率,从而提高衣膜的均一性。

D.喷量:喷量是包衣效率的直接影响因素。喷量的大小,需结合包衣材料特点,包衣液特点,设备情况,并配合其它工艺参数而定。喷量的调节(特别是调大时)应注意以下几点:

a.喷量调大之前,应充分考虑是否可再加大喷量,否则,不宜变动。

b.调大喷量,应先调整调大喷量所需的其它工艺参数,如温度调高、转速加快以后方可调调大喷量。否则粘片、吸潮等现象就容易发生。

c.喷量以稳定与合适为好。即喷量合适了,最好以一稳定喷量包衣。如此衣膜效果、均一性等均会有较好的结果。

E.负压:负压是排风量-进风量-溶剂蒸汽量的差值,其作用不仅是带走溶剂蒸汽和热交换后的热风,也是促使溶剂挥发的动力,利于片床干燥。故在包衣过程中必须保持一定的负压,没有负压将难以包衣。

F.喷程(喷距):是喷枪的喷嘴到片床的距离,也是包衣液雾滴喷到片芯表面的空中历程。喷程的大小与包衣材料的特点和溶剂种类密切相关。如果包衣材料易干燥,粘性小,喷程应较小,反之应适度加大。酒精为溶剂的包衣液因其易挥发,其喷程通常小于水作溶剂的包衣液。喷程的大小直接影响包衣的效果和材料损耗,直接的判别因素为片床的干湿情况。

G.泵速:即蠕动泵的运行速度。蠕动泵的作用是向喷枪输送包衣液。通常情况下,只有泵速偏小,包衣液不足才会影响喷量,但也有一些设备直接用泵速(即包衣液输送量)控制和调节喷量。

H.气压(即压缩空气的压力):气压的大小可直接影响雾化效果和喷量,通常应大于3kg(单枪情况),并要求稳定。

5.人员

人员:指包衣操作者。是包衣过程中唯一的人的因素,无法量化,但有判断和识别能力。在薄膜包衣中人的经验和操作手法不象包糖衣那么重要,但在发生意外和不正常现象时,人的判断和识别能力,以及即时采取的措施就非常重要。在药品生产厂家的成熟品种包衣几乎都有严格的SOP,故操作相对简单,对人的依赖性很小。

6.设备

设备:是实现包衣的工具。设备的优劣、运行的正常与否可决定包衣能否正常进行和包衣结果的好坏。

在包衣过程中,除考察包衣设备能否正常运行外,不同包衣设备各工艺参数的调节方式也需要重点注意。随着高效、自动化程度更高的包衣设备的出现和改造糖衣锅的减少,包衣设备已进入一个相对先进的时期,薄膜衣片的批量生产也将全面展开。

7.与包衣相关的一些术语

◆包衣:是指将包衣材料喷涂于药品表面,形成功能性保护膜的过程。

◆包衣粉:药用薄膜包衣的粉状包衣材料,其性状为彩色粉末。

◆包衣剂:药用薄膜包衣中包括粉状和液状包衣材料的统称。

◆包衣液:包衣材料按配液说明配制而成的浆状混悬液。

◆暴皮:指包衣材料在片芯上成膜后,突然暴开的现象。

◆成膜性:指包衣材料在片芯上成膜的特性。

◆风量:指进风或排风单位时间内流动的体积数。

◆负压:指锅体内与外界环境的压力差。

负压=排风量-进风量-溶剂蒸汽时量

◆附着力:指衣膜与片芯的结合强度,即分开衣膜与片芯所需的力。

◆固含量:指包衣液的浓度,即包衣液中固体份(包衣粉)的质量百分

比。

◆桔皮:指衣膜的皱折现象。

◆开裂:指包衣过程中衣膜或片芯的破裂现象。

◆磕边:指片芯因脆性和强度不够,在包衣过程中因流动和碰撞发生的

边角破损现象。

◆理论增重:指片芯包衣所需包衣粉的量与片芯重量的比例。

◆流动性:指片床的流动特性,包括流动速度、稳定性和流动状态。

◆喷量:指单位时间内以喷枪喷出的包衣液的多少。

◆片床:指包衣过程中,所有片芯形成的整体。

◆片芯:有待包衣的药品固体制剂,也称素片。

◆溶剂类型:包衣液中溶剂的种类。

◆药用薄膜包衣:对象为药品的薄膜包衣。

◆粘片:因粘性和湿度促使有衣膜的片芯之间互相粘连,拉掉某些衣膜

的现象。

◆转速:指包衣过程中锅体转动的速度,单位为转/分。

薄膜的材料及制备工艺

薄膜混合集成电路的制作工艺 中心议题:多晶硅薄膜的制备 摘要:本文主要介绍了多晶硅薄膜制备工艺,阐述了具体的工艺流程,从低压化学气相沉积(LPCVD),准分子激光晶化(ELA),固相晶化(SPC)快速热退火(RTA),等离子体增强化学反应气相沉积(PECVD等,进行详细说明。 关键词:低压化学气相沉积(LPCVD);准分子激光晶化(ELA); 快速热退火(RTA)等离子体增强化学反应气相沉积(PECVD) 引言 多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成本制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶硅薄膜的制备工艺可分为两大类:一类是高温工艺,制备过程中温度高于600℃,衬底使用昂贵的石英,但制备工艺较简单。另一类是低温工艺,整个加工工艺温度低于600℃,可用廉价玻璃作衬底,因此可以大面积制作,但是制备工艺较复杂。 1薄膜集成电路的概述

在同一个基片上用蒸发、溅射、电镀等薄膜工艺制成无源网路,并组装上分立微型元件、器件,外加封装而成的混合集成电路。所装的分立微型元件、器件,可以是微元件、半导体芯片或单片集成电路。 2物理气相沉积-蒸发 物质的热蒸发利用物质高温下的蒸发现象,可制备各种薄膜材料。与溅射法相比,蒸发法显著特点之一是在较高的真空度条件下,不仅蒸发出来的物质原子或分子具有较长的平均自由程,可以直接沉积到衬底表面上,且可确保所制备的薄膜具有较高纯度。 3 等离子体辅助化学气相沉积--PECVD

传统的CVD技术依赖于较高的衬底温度实现气相物质间的化学反应与薄膜沉积。PECVD在低压化学气相沉积进行的同时,利用辉光放电等离子体对沉积过程施加影响。促进反应、降低温度。 降低温度避免薄膜与衬底间不必要的扩散与化学反应;避免薄膜或衬底材料结构变化与性能恶化;避免薄膜与衬底中出现较大的热应力等。 4低压化学气相沉积(LPCVD)

薄膜制备方法

薄膜制备方法 1.物理气相沉积法(PVD):真空蒸镀、离子镀、溅射镀膜 2.化学气相沉积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD。 一、真空蒸镀即真空蒸发镀膜,就是制备薄膜最一般的方法。这种方法就是把装有基片的真空室抽成真空,使气体压强达到10ˉ2Pa以下,然后加热镀料,使其原子或者分子从表面气化逸出,形成蒸汽流,入射到温度较低的基片表面,凝结形成固态薄膜。其设备主要由真空镀膜室与真空抽气系统两大部分组成。 保证真空环境的原因有①防止在高温下因空气分子与蒸发源发生反应,生成化合物而使蒸发源劣化。②防止因蒸发物质的分子在镀膜室内与空气分子碰撞而阻碍蒸发分子直接到达基片表面,以及在途中生成化合物或由于蒸发分子间的相互碰撞而在到达基片前就凝聚等③在基片上形成薄膜的过程中,防止空气分子作为杂质混入膜内或者在薄膜中形成化合物。 蒸发镀根据蒸发源的类别有几种: ⑴、电阻加热蒸发源。通常适用于熔点低于1500℃的镀料。对于蒸发源的要求为a、熔点高 b、饱与蒸气压低 c、化学性质稳定,在高温下不与蒸发材料发生化学反应 d、具有良好的耐热性,功率密度变化小。 ⑵、电子束蒸发源。热电子由灯丝发射后,被电场加速,获得动能轰击处于阳极的蒸发材料上,使蒸发材料加热气化,而实现蒸发镀膜。特别适合制作高熔点薄膜材料与高纯薄膜材料。优点有a、电子束轰击热源的束流密度高,能获得远比电阻加热源更大的能量密度,可以使高熔点(可高达3000℃以上)的材料蒸发,并且有较高的蒸发速率。b、镀料置于冷水铜坩埚内,避免容器材料的蒸发,以及容器材料与镀料之间的反应,这对于提高镀膜的纯度极为重要。c、热量可直接加到蒸发材料的表面,减少热量损失。 ⑶、高频感应蒸发源。将装有蒸发材料的坩埚放在高频螺旋线圈的中央,使蒸发材料在高频电磁场的感应下产生强大的涡流损失与磁滞损失(铁磁体),从而将镀料金属加热蒸发。常用于大量蒸发高纯度金属。 分子束外延技术(molecular beam epitaxy,MBE)。外延就是一种制备单晶薄膜的新技术,它就是在适当的衬底与合适条件下,沿衬底材料晶轴方向逐层生长新单晶薄膜的方法。外延薄膜与衬底属于同一物质的称“同质外延”,两者不同的称为“异质外延”。 10—Pa的超真空条件下,将薄膜诸组分元素的分子束流,在严格监控之下,直接喷MBE就是在8 射到衬底表面。其中未被基片捕获的分子,及时被真空系统抽走,保证到达衬底表面的总就是新分子束。这样,到达衬底的各元素分子不受环境气氛的影响,仅由蒸发系统的几何形状与蒸发源温度决定。 二、离子镀就是在真空条件下,利用气体放电使气体或被蒸发物质离化,在气体离子或被蒸发物质离子轰击作用的同时,把蒸发物或其反应物蒸镀在基片上。 常用的几种离子镀: (1)直流放电离子镀。蒸发源:采用电阻加热或电子束加热; 充入气体: 充入Ar或充入少量反应气体; 离化方式:被镀基体为阴极,利用高电压直流辉光放电离子加速方式:在数百伏至数千伏的电压下加速,离化与离子加速一起进行。 (2)空心阴极放电离子镀(HCD,hollow cathode discharge )。等离子束作为蒸发源,可充入Ar、其她惰性气体或反应气体;利用低压大电流的电子束碰撞离化, 0至数百伏的加速电压。离化与离子加速独立操作。 (3)射频放电离子镀。电阻加热或电子束加热,真空,Ar,其她惰性气体或反应气体; 利用射频等离子体放电离化, 0至数千伏的加速电压,离化与离子加速独立操作。 (4)低压等离子体离子镀。电子束加热,惰性气体,反应气体。等离子体离化, DC或AC

薄膜制备技术论文

薄膜制备技术论文 高阻隔薄膜的制备技术 【摘要】本文介绍了包装领域中阻隔薄膜的几种基本的制备技术,并对其技术原理和技术特点做了简要的概述,重点介绍普通包装薄 膜表面沉积纳米SiOx作为阻隔材料的优越性和制备方法。纳米氧化 硅薄膜制备包括:物理气相沉积,化学气相沉积两种。物理气相沉 积技术较成熟,已广泛用于当今的众多薄膜生产厂家;化学气相沉积 技术由于沉积速率慢,生产成本高,耗资大,限制了工业化应用。 本文还介绍了一种能够克服上述限制因素的新技术,从而使薄膜的 阻隔性能大大提高。 【关键词】纳米氧化硅薄膜阻隔性能物理气相沉积化学气相沉积引言 社会发展表现在不仅对普通包装材料数量上的增加,对优质保质保鲜包装材料品种和质量的需求也在日益增加。如在食品和医药包 装领域中,包装材料的阻水阻气要求越来越高。高阻隔包装材料通 常指对气液渗透物具有高阻尼作用的材料,即防止氧的侵入以免商 品氧化变质,防止水或水蒸气的渗透以免商品受潮霉变,防止香气、香味和二氧化碳外逸,以免商品变味和变质等。目前阻隔性包装材 料已经成为包装材料的发展趋势,并广泛用于各种应用领域,如电 子显示领域的OLED[1]。 1阻隔材料的发展历程及趋势 阻隔包装材料的发展历程可分为三个阶段:第一代包装材料如PE、PP、PET、PVDC、PVC等。因其阻隔性达不到要求(见表1),使 用越来越少。采用高聚物(比如PEN)可以解决阻隔性和用金属探测 器检查问题,但是成本太高,并且难于循环利用。采用复合膜结构,如三层复合膜PA/黏合剂/PE、五层复合膜LDPE/粘合剂/EVOH/黏合 剂/LDPE等,阻隔性能大大提高,但工艺复杂、回收困难、污染环

薄膜制备方法

薄膜制备方法 1.物理气相沉积法(PVD):真空蒸镀、离子镀、溅射镀膜 2.化学气相沉积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD。 一、真空蒸镀即真空蒸发镀膜,是制备薄膜最一般的方法。这种方法是把装有基片的真空室抽成真空,使气体压强达到10ˉ2Pa以下,然后加热镀料,使其原子或者分子从表面气化逸出,形成蒸汽流,入射到温度较低的基片表面,凝结形成固态薄膜。其设备主要由真空镀膜室和真空抽气系统两大部分组成。 保证真空环境的原因有?防止在高温下因空气分子和蒸发源发生反应,生成化合物而使蒸发源劣化。?防止因蒸发物质的分子在镀膜室内与空气分子碰撞而阻碍蒸发分子直接到达基片表面,以及在途中生成化合物或由于蒸发分子间的相互碰撞而在到达基片前就凝聚等?在基片上形成薄膜的过程中,防止空气分子作为杂质混入膜内或者在薄膜中形成化合物。 蒸发镀根据蒸发源的类别有几种: ⑴、电阻加热蒸发源。通常适用于熔点低于1500℃的镀料。对于蒸发源的要求为a、熔点高 b、饱和蒸气压低 c、化学性质稳定,在高温下不与蒸发材料发生化学反应 d、具有良好的耐热性,功率密度变化小。 ⑵、电子束蒸发源。热电子由灯丝发射后,被电场加速,获得动能轰击处于阳极的蒸发材料上,使蒸发材料加热气化,而实现蒸发镀膜。特别适合制作高熔点薄膜材料和高纯薄膜材料。优点有a、电子束轰击热源的束流密度高,能获得远比电阻加热源更大的能量密度,可以使高熔点(可高达3000℃以上)的材料蒸发,并且有较高的蒸发速率。b、镀料置于冷水铜坩埚内,避免容器材料的蒸发,以及容器材料与镀料之间的反应,这对于提高镀膜的纯度极为重要。c、热量可直接加到蒸发材料的表面,减少热量损失。 ⑶、高频感应蒸发源。将装有蒸发材料的坩埚放在高频螺旋线圈的中央,使蒸发材料在高频电磁场的感应下产生强大的涡流损失和磁滞损失(铁磁体),从而将镀料金属加热蒸发。常用于大量蒸发高纯度金属。 分子束外延技术(molecularbeamepitaxy,MBE)。外延是一种制备单晶薄膜的新技术,它是在适当的衬底与合适条件下,沿衬底材料晶轴方向逐层生长新单晶薄膜的方法。外延薄膜和衬底属于同一物质的称“同质外延”,两者不同的称为“异质外延”。 10—Pa的超真空条件下,将薄膜诸组分元素的分子束流,在严格监控之下,直接喷射到衬MBE是在8 底表面。其中未被基片捕获的分子,及时被真空系统抽走,保证到达衬底表面的总是新分子束。这样,到达衬底的各元素分子不受环境气氛的影响,仅由蒸发系统的几何形状和蒸发源温度决定。二、离子镀是在真空条件下,利用气体放电使气体或被蒸发物质离化,在气体离子或被蒸发物质离子轰击作用的同时,把蒸发物或其反应物蒸镀在基片上。 常用的几种离子镀: (1)直流放电离子镀。蒸发源:采用电阻加热或电子束加热;充入气体:充入Ar或充入少量反应气体;离化方式:被镀基体为阴极,利用高电压直流辉光放电离子加速方式:在数百伏至数千伏的电压下加速,离化和离子加速一起进行。 (2)空心阴极放电离子镀(HCD,hollowcathodedischarge)。等离子束作为蒸发源,可充入Ar、其他惰性气体或反应气体;利用低压大电流的电子束碰撞离化,0至数百伏的加速电压。离化和离子加速独立操作。 (3)射频放电离子镀。电阻加热或电子束加热,真空,Ar,其他惰性气体或反应气体;利用射频等离子体放电离化,0至数千伏的加速电压,离化和离子加速独立操作。 (4)低压等离子体离子镀。电子束加热,惰性气体,反应气体。等离子体离化,DC或AC50V

薄膜制备方法

薄膜制备方法 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

薄膜制备方法 1.物理气相沉积法(PVD):真空蒸镀、离子镀、溅射镀膜 2.化学气相沉积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD。 一、真空蒸镀即真空蒸发镀膜,是制备薄膜最一般的方法。这种方法是把装有基片的真空室抽成真空,使气体压强达到10ˉ2Pa以下,然后加热镀料,使其原子或者分子从表面气化逸出,形成蒸汽流,入射到温度较低的基片表面,凝结形成固态薄膜。其设备主要由真空镀膜室和真空抽气系统两大部分组成。 保证真空环境的原因有防止在高温下因空气分子和蒸发源发生反应,生成化合物而使蒸发源劣化。防止因蒸发物质的分子在镀膜室内与空气分子碰撞而阻碍蒸发分子直接到达基片表面,以及在途中生成化合物或由于蒸发分子间的相互碰撞而在到达基片前就凝聚等在基片上形成薄膜的过程中,防止空气分子作为杂质混入膜内或者在薄膜中形成化合物。 蒸发镀根据蒸发源的类别有几种: ⑴、电阻加热蒸发源。通常适用于熔点低于1500℃的镀料。对于蒸发源的要求为a、熔点高 b、饱和蒸气压低 c、化学性质稳定,在高温下不与蒸发材料发生化学反应 d、具有良好的耐热性,功率密度变化小。 ⑵、电子束蒸发源。热电子由灯丝发射后,被电场加速,获得动能轰击处于阳极的蒸发材料上,使蒸发材料加热气化,而实现蒸发镀膜。特别适合制作高熔点薄膜材料和高纯薄膜材料。优点有a、电子束轰击热源的束流密度高,能获得远比电阻加热源更大的能量密度,可以使高熔点(可高达3000℃以上)的材料蒸发,并且有较高的蒸发速率。 b、镀料置于冷水铜坩埚内,避免容器材料的蒸发,以及容器材料与镀料之间的反应,

多晶硅薄膜的制备方法

多晶硅薄膜的制备方法 多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成本制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶硅薄膜的制备工艺可分为两大类:一类是高温工艺,制备过程中温度高于600C ,衬底使用昂贵的石英,但制备工艺较简单。另一 类是低温工艺,整个加工工艺温度低于600C,可用廉价玻璃作衬底,因此可以大面积制作,但 是制备工艺较复杂。目前制备多晶硅薄膜的方法主要有如下几种: 低压化学气相沉积( LPCVD) 这是一种直接生成多晶硅的方法。LPCVD是集成电路中所用多晶硅薄膜的制备中普遍采 用的标准方法,具有生长速度快,成膜致密、均匀、装片容量大等特点。多晶硅薄膜可采用硅烷气体通过LPCVD法直接沉积在衬底上,典型的沉积参数是:硅烷压力为13.3?26.6Pa,沉积温 度Td=580?630C,生长速率5?10nm/min。由于沉积温度较高,如普通玻璃的软化温度处于 500? 600C,则不能采用廉价的普通玻璃而必须使用昂贵的石英作衬底。 LPCVD法生长的多晶硅薄膜,晶粒具有择优取向,形貌呈“ V'字形,内含高密度的微挛晶缺陷,且晶粒尺寸小,载流子迁移率不够大而使其在器件应用方面受到一定限制。虽然减少硅 烷压力有助于增大晶粒尺寸,但往往伴随着表面粗糙度的增加,对载流子的迁移率与器件的电学稳定性产生不利影响。 固相晶化 (SPC) 所谓固相晶化,是指非晶固体发生晶化的温度低于其熔融后结晶的温度。这是一种间接 生成多晶硅的方法,先以硅烷气体作为原材料,用LPCVD方法在550C左右沉积a-Si:H 薄膜, 然后将薄膜在600C以上的高温下使其熔化,再在温度稍低的时候岀现晶核,随着温度的降低熔融的硅在晶核上继续晶化而使晶粒增大转化为多晶硅薄膜。使用这种方法,多晶硅薄膜的晶粒大 小依赖于薄膜的厚度和结晶温度。退火温度是影响晶化效果的重要因素,在700C以下的退火温 度范围内,温度越低,成核速率越低,退火时间相等时所能得到的晶粒尺寸越大;而在700C以上,由于此时晶界移动引起了晶粒的相互吞并,使得在此温度范围内,晶粒尺寸随温度的升高而增大。经大量研究表明,利用该方法制得的多晶硅晶粒尺寸还与初始薄膜样品的无序程度密切相关, T.Aoyama 等人对初始材料的沉积条件对固相晶化的影响进行了研究,发现初始材料越无序,固相晶化过程中成核速率越低,晶粒尺寸越大。由于在结晶过程中晶核的形成是自发的,因此, SPC多晶硅薄膜晶粒的晶面取向是随机的。相邻晶粒晶面取向不同将形成较高的势垒,需要进行氢化处理来提高 SPC多晶硅的性能。这种技术的优点是能制备大面积的薄膜,晶粒尺寸大于直接 沉积的多晶硅。可进行原位掺杂,成本低,工艺简单,易于形成生产线。由于SPC是在非 晶硅熔融温度下结晶,属于高温晶化过程,温度高于600C,通常需要1100C左右,退火时 间长达10 个小时以上,不适用于玻璃基底,基底材料采用石英或单晶硅,用于制作小尺寸器件,如液晶光阀、摄像机取景器等。 准分子激光晶化 (ELA) 激光晶化相对于固相晶化制备多晶硅来说更为理想,其利用瞬间激光脉冲产生的高能量入射到非晶硅薄膜表面,仅在薄膜表层100nm厚的深度产生热能效应,使 a-Si薄膜在瞬间达到

薄膜制备方法

薄膜制备方法 1.物理气相沉积法(PVD):真空蒸镀、离子镀、溅射镀膜 2.化学气相沉积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD。 一、真空蒸镀即真空蒸发镀膜,就是制备薄膜最一般得方法。这种方法就是把装有基片得真空室抽成真空,使气体压强达到10ˉ2Pa以下,然后加热镀料,使其原子或者分子从表面气化逸出,形成蒸汽流,入射到温度较低得基片表面,凝结形成固态薄膜。其设备主要由真空镀膜室与真空抽气系统两大部分组成。 保证真空环境得原因有①防止在高温下因空气分子与蒸发源发生反应,生成化合物而使蒸发源劣化。②防止因蒸发物质得分子在镀膜室内与空气分子碰撞而阻碍蒸发分子直接到达基片表面,以及在途中生成化合物或由于蒸发分子间得相互碰撞而在到达基片前就凝聚等③在基片上形成薄膜得过程中,防止空气分子作为杂质混入膜内或者在薄膜中形成化合物。 蒸发镀根据蒸发源得类别有几种: ⑴、电阻加热蒸发源。通常适用于熔点低于1500℃得镀料。对于蒸发源得要求为a、熔点高 b、饱与蒸气压低 c、化学性质稳定,在高温下不与蒸发材料发生化学反应d、具有良好得耐热性,功率密度变化小。 ⑵、电子束蒸发源。热电子由灯丝发射后,被电场加速,获得动能轰击处于阳极得蒸发材料上,使蒸发材料加热气化,而实现蒸发镀膜。特别适合制作高熔点薄膜材料与高纯薄膜材料。优点有a、电子束轰击热源得束流密度高,能获得远比电阻加热源更大得能量密度,可以使高熔点(可高达3000℃以上)得材料蒸发,并且有较高得蒸发速率。b、镀料置于冷水铜坩埚内,避免容器材料得蒸发,以及容器材料与镀料之间得反应,这对于提高镀膜得纯度极为重要。c、热量可直接加到蒸发材料得表面,减少热量损失。 ⑶、高频感应蒸发源。将装有蒸发材料得坩埚放在高频螺旋线圈得中央,使蒸发材料在高频电磁场得感应下产生强大得涡流损失与磁滞损失(铁磁体),从而将镀料金属加热蒸发。常用于大量蒸发高纯度金属。 分子束外延技术(molecular beam epitaxy,MBE)。外延就是一种制备单晶薄膜得新技术,它就是在适当得衬底与合适条件下,沿衬底材料晶轴方向逐层生长新单晶薄膜得方法。外延薄膜与衬底属于同一物质得称“同质外延”,两者不同得称为“异质外延”。 MBE就是在Pa得超真空条件下,将薄膜诸组分元素得分子束流,在严格监控之下,直接喷射到衬底表面。其中未被基片捕获得分子,及时被真空系统抽走,保证到达衬底表面得总就是新分子束。这样,到达衬底得各元素分子不受环境气氛得影响,仅由蒸发系统得几何形状与蒸发源温度决定。 二、离子镀就是在真空条件下,利用气体放电使气体或被蒸发物质离化,在气体离子或被蒸发物质离子轰击作用得同时,把蒸发物或其反应物蒸镀在基片上。 常用得几种离子镀: (1)直流放电离子镀。蒸发源:采用电阻加热或电子束加热; 充入气体: 充入Ar或充入少量反应气体; 离化方式:被镀基体为阴极,利用高电压直流辉光放电离子加速方式:在数百伏至数千伏得电压下加速,离化与离子加速一起进行。 (2)空心阴极放电离子镀(HCD,hollow cathode discharge )。等离子束作为蒸发源,可充入Ar、其她惰性气体或反应气体;利用低压大电流得电子束碰撞离化,0至数百伏得加速电压。离化与离子加速独立操作。 (3)射频放电离子镀。电阻加热或电子束加热,真空,Ar,其她惰性气体或反应气体;利用射频等离子体放电离化, 0至数千伏得加速电压,离化与离子加速独立操作。 (4)低压等离子体离子镀。电子束加热,惰性气体,反应气体。等离子体离化,DC

相关主题