搜档网
当前位置:搜档网 › 2019届人教版 动量守恒定律 单元测试

2019届人教版 动量守恒定律 单元测试

2019届人教版  动量守恒定律  单元测试
2019届人教版  动量守恒定律  单元测试

一、单选题(本大题共10小题,共40.0分)

1.跳水运动员在跳台上由静止直立落下,落入水中后在水中减速运动到速度为零时并未到达池底,不计

空气阻力,则关于运动员从静止落下到水中向下运动到速度为零的过程中,下列说法不正确的是()

A. 运动员在空中动量的改变量等于重力的冲量

B. 运动员整个向下运动过程中合外力的冲量为零

C. 运动员在水中动量的改变量等于水的作用力的冲量

D. 运动员整个运动过程中重力冲量与水的作用力的冲量等大反向

2.一质量为1g的物块在合外力F的作用下从静止开始沿直线运动,F随

时间t变化的图线如图所示,则()

A. t=1s时物块的速率为1m/s

B. t=2时物块的动量大小为2 g?m/s

C. t=3s时物块的动量大小为3 g?m/s

D. t=4s时F的功率为3W

3.汽车正在走进千家万户,在给人们的出行带来方便的同时也带来了安全隐患.行车过程中,如果车距

较近,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带,假定乘客质量为70 g,汽车车速为90 m/h,从踩下刹车到完全停止需要的时间为5s,安全带对乘客的作用力大小约为(不计人与座椅间的摩擦)()

A. 450 N

B. 400 N

C. 350 N

D. 300 N

4.静止在湖面上的小船中有两人分别向相反方向以相对于河岸相等的速率水平抛出质量相同的小球,先

将甲球向左抛,后将乙球向右抛.水对船的阻力忽略不计,则下列说法正确的是()

A. 抛出的过程中,人给甲球的冲量等于人给乙球的冲量

B. 抛出的过程中,人对甲球做的功大于人对乙球做的功

C. 两球抛出后,船向左以一定速度运动

D. 两球抛出后,船向右以一定速度运动

5.如图所示,弹簧的一端固定在竖直墙上,质量为M的光滑弧形槽静止在光滑

水平面上,底部与水平面平滑连接,一个质量为m(m<M)的小球从槽高h

处开始自由下滑,下列说法正确的是()

A. 在以后的运动过程中,小球和槽的水平方向动量始终守恒

B. 在下滑过程中小球和槽之间的相互作用力始终不做功

C. 全过程小球和槽、弹簧所组成的系统机械能守恒,且水平方向动量守恒

D. 被弹簧反弹后,小球和槽的机械能守恒,但小球不能回到槽高h处

6.“弹弹子”是我国传统的儿童游戏,如图所示,静置于水平地面的两个完全相同的弹子沿一直线排列,

质量均为m,人在极短时间内给第一个弹子水平冲量I使其水平向右运动,当第一个弹子运动了距离L时与第二个弹子相碰,碰后第二个弹子运动了距离L时停止.已知摩擦阻力大小恒为弹子所受重力的倍,重力加速度为g,若弹子之间碰撞时间极短,为弹性碰撞,忽略空气阻力,则人给第一个弹子水平冲量I为()

A. m

B. m

C. m

D. m

7.滑雪运动是人们酷爱的户外体育活动,现有质量为m的人站立于雪橇上,如图所示.人与雪橇的总质

量为M,人与雪橇以速度v1在水平面上由北向南运动(雪橇所受阻力不计).当人相对于雪橇以速度v2竖直跳起时,雪橇向南的速度大小为()

A. B. C. D. v1

8.如图所示,两光滑且平行的固定水平杆位于同一竖直平面内,两静止小球m1、m2分别穿在两杆上,两

球间连接一个保持原长的竖直轻弹簧,现给小球m2一个水平向右的初速度v0.如果两杆足够长,则在此后的运动过程中()

A. m1、m2组成的系统动量守恒

B. m1、m2组成的系统机械能守恒

C. 弹簧最长时,其弹性势能为m2v02

D. 当m1速度达到最大时,m2速度最小

9.光滑斜槽轨道的末端水平,固定在水平桌面上,斜槽末端静止放置一个质量为m2的小球B,在斜槽上

某处释放另一质量为m1的小球A,两球在斜槽末端发生弹性正碰后,冲出轨道落于水平地面上的同一位置,求两小球的质量之比m1:m2=()

A. m1:m2=1:3

B. m1:m2=2:1

C. m1:m2=1:1

D. m1:m2=3:1

10.在一次救灾行动中,需要把飞机上的50麻袋粮食投放到行驶的列车上,已知列车的质量为M,列车在

铁轨上以速度v0做匀速直线运动,列车上方的飞机也沿铁轨以速度v1同向匀速飞行.在某段时间内,飞机连续释放下50袋粮食,每袋粮食质量为m,且这50袋粮食全部落在列车车厢内.不计列车与铁轨之间的摩擦,则列车载有粮食后的速度为()

A. B. C. D.

二、多选题(本大题共5小题,共20.0分)

11.如图所示,两个质量和速度均相同的子弹分别水平射入静止在光滑水平地面上

质量相同、材料不同的两矩形滑块A、B中,射入A中的深度是射入B中深度的

两倍.上述两种射入过程相比较()

A. 射入滑块A的子弹速度变化大

B. 整个射入过程中两滑块受的冲量一样大

C. 射入滑块A中时阻力对子弹做功是射入滑块B中时的两倍

D. 两个过程中系统产生的热量相同

12.在水平公路上,一辆装满货物的卡车以某一速度匀速行驶,由于司机疲劳驾驶,与一辆停在公路上的

轿车相撞,撞击时卡车上有部分货物飞出,撞击后两车共同滑行了距离s后停下。则()

A. 撞击过程可应用动量守恒

B. 撞击过程可应用机械能守恒

C. 飞出的货物质量越大,滑行距离s越大

D. 飞出的货物质量越大,滑行距离s越小

13.如图所示,光滑水平面上放有质量分别为2m和m的物块A和B,用细线将它们连接起来,两物块中间

夹有一压缩的轻质弹簧(弹簧与物块不相连),弹簧的压缩量为x.现将细线剪断,此刻物块A的加速度大小为a,两物块刚要离开弹簧时物块A的速度大小为v,则()

A. 物块开始运动前,弹簧的弹性势能为mv2

B. 物块开始运动前,弹簧的弹性势能为3 mv2

C. 物快B的加速度大小为a时弹簧的压缩量为

D. 物块A从开始运动到刚要离开弹簧时位移大小为x

14.光滑水平面上,两个质量相等的小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别

为p A=12g?m/s、p B=8g?m/s,碰后它们动量的变化分别为△p A、△p B.下列数值可能正确的是()

A. △p A=-2 g?m/s、△p B=2 g?m/s

B. △p A=-3 g?m/s、△p B=3 g?m/s

C. △p A=-4 g?m/s、△p B=4 g?m/s

D. △p A=-5 g?m/s、△p B=5 g?m/s

15.如图所示,质量为M的小车AB,在A端粘有橡皮泥,在B端固定有一根轻质弹

簧,弹簧的另一端靠一块质量为m的物体C,且M>m,小车原来静止于光滑水

平面上,小车底板光滑,开始时弹簧处于压缩状态.当弹簧释放后,则()

A. 物体C离开弹簧时,小车一定是向右运动

B. 物体C与A粘合后,小车速度为零

C. 物体C从B向A运动过程中,小车速度与物体速度大小(对地)之比为m:M

D. 物体C从B向A运动过程中,小车速度与物体速度大小(对地)之比为M:m

三、实验题探究题(本大题共1小题,共10.0分)

16.在“验证动量守恒定律”的实验中,气垫导轨上放置着带有遮光板的滑块A、B,遮光板的宽度相同,

测得的质量分别为m1和m2.实验中,用细线将两个滑块拉近使轻弹簧压缩,然后烧断细线,轻弹簧将两个滑块弹开,测得它们通过光电门的时间分别为t1、t2.

(1)图2为甲、乙两同用螺旋测微器测遮光板宽度d时所得的不同情景.由该图可知甲同测得的示数为______ mm,乙同测得的示数为______ mm.

(2)用测量的物理量表示动量守恒应满足的关系式:______ ,被压缩弹簧开始贮存的弹性势能E P= ______ .

四、计算题(本大题共3小题,共30.0分)

17.如图所示,光滑水平面上三个大小相同的小球a、b、c,质量分别为m1=0.2 g,m2=m3=0.6 g,小球a

左端靠着一固定竖直挡板,右端与一轻弹簧1拴接,处于静止状态,小球b和c用一根轻质细线拴接,两物块中间夹着一个压缩的轻弹簧2,弹簧与两小球未拴接,它们以v0=1m/s的速度在水平面上一起向左匀速运动,某时刻细线突然被烧断,轻弹簧将两小球弹开,弹开后小球c恰好静止,小球b向左运动一段时间后,与弹簧1拴接,弹回时带动木块a运动,求:

(1)弹簧2最初所具有的弹性势能E p;

(2)当弹簧1拉伸到最长时,小球a的速度大小v.

18.用发射装置竖直向上发射一弹丸,弹丸质量为m,当弹丸运动到距离地面60m的最高点时,爆炸成为

甲、乙两块沿竖直方向飞出,甲、乙的质量比为1:4,爆炸后经t1=2s甲运动到地面.不计质量损失,取重力加速度g=10m.s2,求:

(1)爆炸后甲运动的初速度v1;

(2)爆炸后乙运动到地面所用的时间t2.

19.如图所示,一质量m=2g的铁块放在质量M=2g的小车左端,二者一起以v0=4m/s

的速度沿光滑水平面向竖直墙面运动,车与墙碰撞的时间t=0.01s,碰撞时间

极短,铁块与小车之间的动摩擦因数μ=0.4,g=10m/s2.求:

(1)车与墙碰撞时受到的平均作用力F的大小(由于碰撞时间极短,可认为在车与墙碰撞时铁块速度没变);

(2)小车车长的最小值.

答案和解析

【答案】

1. C

2. C

3. C

4. B

5. D

6. B

7. D

8. A9. A10. A11. BD12. AD13. BC14. ABC

15. ABC

16. 3.505;3.485;=;+

17. 解:(1)细线被烧断,轻弹簧将两小球弹开的过程,取向左为正方向,根据动量守恒定律得

(m2+m3)v0=m2v b

解得v b=2m/s

由机械能守恒定律得

E p=m2v b2+(m2+m3)v02=0.6J

(2)b球带动a球运动的过程,当弹簧1拉伸到最长时,两球的速度相同.取向右为正方向,由动量守恒定律得

m2v b=(m1+m2)v

解得v =1.5m/s

答:

(1)弹簧2最初所具有的弹性势能E p是0.6J.

(2)当弹簧1拉伸到最长时,小球a的速度大小v是1.5m/s.

18. 解:(1)爆炸后甲向下做匀加速运动,加速度为g,则有:

h=v1t1+

可得v1=-=-=20m/s,方向向下.

(2)对于爆炸过程,取向下为正方向,根据动量守恒定律得:

0=m1v1+m2v2;

得v2=-=-=5m/s,方向向上.

则h=-v2t2+

解得t2=4s

答:

(1)爆炸后甲运动的初速度v1是20m/s,方向向下.

(2)爆炸后乙运动到地面所用的时间t2是4s.

19. 解:(1)车与墙碰撞过程中,不计碰撞时机械能的损失,则车与墙碰撞后的瞬间,小车的速度向左,大小为v0,设向左为正,根据动量定理得:

Ft=Mv0-M(-v0)

解得:F=1600N

(2)对车和铁块组成的系统为研究对象,系统所受的合力为零.

以向左为正方向,由动量守恒定律得:Mv0-mv0=(M+m)v,

解得:v=0

对系统,由能量守恒定律得:(M+m)v02=μmgL

解得:L=4m

答:

(1)车与墙碰撞的平均作用力的大小F为1600N.

(2)小车车长的最小值为4m

【解析】

1. 解:A、运动员在空中运动过程中只受重力作用,根据动量定理可知运动员在空中动量的改变量等于重力的冲量,故A正确;

B、整个过程根据动量定理可得I=m△v=0,故运动员整个向下运动过程中合外力的冲量为零,故B正确;

C、运动员在水中运动过程中受到重力和水对他的作用力,根据动量定理可知运动员在水中动量的改变量等于水的作用力与重力的合力的冲量,故C不正确;

D、整个过程根据动量定理可得I=I G+I F=m△v=0,所以I G=-I F,即运动员整个运动过程中重力冲量与水的作用力的冲量等大反向,故D正确;

本题选不正确的,故选:C。

分析下落过程中不同阶段运动员的受力情况和动量变化情况,根据动量定理进行解答。

本题主要是考查动量定理,利用动量定理解答问题时,要注意分析运动过程中物体的受力情况,知道合外力的冲量才等于动量的变化。

2. 解:A、前两秒,根据牛顿第二定律,a1==2m/s2,则0-2s的速度规律为:v1=a1t1=2m/s,t=1s时,速

率为2m/s,故A错误;

B、t=2s时,物块的速率v2=a1t2=4m/s,则动量大小为:p2=mv2=4 g?m/s,故B错误;

C、2-4s,力开始反向,物体减速,根据牛顿第二定律,a2=-1m/s2,所以3s时的速度为v3=v2-a2t3=3m/s,动量大小为p3=mv3=3 g?m/s,故C正确;

D、结合C的分析可得,t=4s时物块速度v4=v2-a2t4=2m/s,所以4s末的功率:P=Fv4=1×2=2W,故D错误;故选:C。

首先根据牛顿第二定律得出加速度,进而计算速度和动量。

本题考查了牛顿第二定律的简单运用,熟悉公式即可,并能运用牛顿第二定律求解加速度。另外要会看图,从图象中得出一些物理量之间的关系。

3. 解:90 m/h=25m/s,

根据动量定理

F?t=mv

所以N

故选:C

对人研究,运用动量定理F合?t=mv2-mv1,末速度为零,初速度为25m/s,作用时间为5s,代入求解即可.此题难度不大,知道动量定理的表达式,直接代入数据求解即可,属于基础题.

该题也可以使用牛顿第二定律解答.

4. 解:A、设小船的质量为M,小球的质量为m,甲球抛出后,取甲球的速度方向(向左)为正方向,根据两球和船组成的系统动量守恒,有:mv-(M+m)v′=0,

则此时船的速度v′的方向向右;

根据动量定理:物体所受合力的冲量等于物体动量的变化.对于甲球,动量的变化量为mv,对于乙球动量的变化量为mv-mv′,则知甲的动量变化量大于乙球的动量变化量,根据动量定理可知,抛球时,人对甲球的冲量比人给乙球的冲量大.故A错误.

B、根据动能定理得:人对甲球做的功W甲=,对乙球做的功W乙=-,因此人对甲球做的功大

于人对乙球做的功.故B正确.

CD、由于抛出后两小球相对于岸的速率相等,速度方向相反,且两小球的质量相同,所以两球相对于地的动量大小相等,方向相反,总动量为0.由于两球和船组成的系统动量守恒,原来系统的总动量为0.所以根据动量守恒定律可知,两球都抛出后,船的动量为0,则速度为0;故CD错误.

故选:B

抛球过程,两球和船组成的系统动量守恒.根据动量守恒定律求出两球抛出后小船的速度.通过动量的变化量,由动量定理判断冲量的大小关系.根据动能定理分析人对球做功关系.

解决本题的关键掌握动量守恒定律、动量定理和动能定理,并能灵活运用.运用动量守恒定律时注意速度的方向.

5. 解:A、当小球与弹簧接触后,小球与槽组成的系统在水平方向所受合外力不为零,系统在水平方向动量不守恒,故A错误;

B、下滑过程中两物体都有水平方向的位移,而力是垂直于球面的,故力和位移夹角不垂直,故两力均做功,故B错误;

C、全过程小球和槽、弹簧所组成的系统只有重力与弹力做功,系统机械能守恒,小球与弹簧接触过程系统在水平方向所受合外力不为零,系统水平方向动量不守恒,故C错误;

D、球在槽上下滑过程系统水平方向不受力,系统水平方向动量守恒,球与槽分离时两者动量大小相等,由于m<M,则小球的速度大小大于槽的速度大小,小球被弹簧反弹后的速度大小等于球与槽分离时的速度大小,小球被反弹后向左运动,由于球的速度大于槽的速度,球将追上槽并要槽上滑,在整个过程中只有重力与弹力做功系统机械能守恒,由于球与槽组成的系统总动量水平向左,球滑上槽的最高点时系统速度相等水平向左系统总动能不为零,由机械能守恒定律可知,小球上升的最大高度小于h,小球不能回到槽高h处,故D正确;

故选:D.

由动量守恒的条件可以判断动量是否守恒;由功的定义可确定小球和槽的作用力是否做功;由小球及槽的受力情况可知运动情况;由机械守恒及动量守恒可知小球能否回到最高点.

解答本题要明确动量守恒的条件,以及在两球相互作用中同时满足机械能守恒,应结合两点进行分析判断.6. 解:小球1获得速度后由于受阻力做功,动能减小;

与2球相碰时,由动量守恒定律可知,两球交换速度,即球1静止,球2以1的速度继续行驶;

则可知,1的初动能克服两球运动中摩擦力所做的功;则由动能定理可知; mg?2L=mv2;

解得:v=2

则冲量I=mv=m

故选:B.

分析小球的运动过程,根据动量守恒分析碰撞后速度变化,再由动能定理可求得第一个小球的初速度,则可求得动量.

本题考查动量守恒定律中,相同小球相碰时将交换速度这一规律;同时注意能将两小球的过程化为一个过程进行分析,由动能定理求解即可.

7. 解:雪橇所受阻力不计,人起跳后,人和雪橇组成的系统水平方向不受外力,系统水平动量守恒,起跳后人和雪橇的水平速度相同,设为v.

取向南为正方向,由水平动量守恒得:

Mv1=Mv,得v=v1,方向向南,故ABC错误,D正确.

故选:D

人和雪橇组成的系统水平方向不受外力,系统水平动量守恒,根据系统水平动量守恒列式求解.

运用动量守恒定律时要注意方向性,本题中人跳起,影响的是在竖直方向的动量,但系统水平总动量保持不变.

8. 解:A、由于两球竖直方向上受力平衡,水平方向所受的弹力的弹力大小相等,方向相反,所以两球组成的系统所受的合外力为零,系统的动量守恒,故A正确.

B、对于弹簧、m1、m2组成的系统,只有弹力做功,系统的机械能守恒,由于弹性势能是变化的,所以m1、m2组成的系统机械能不守恒.故B错误.

C、当两球的速度相等时,弹簧最长,弹簧的弹性势能最大,以向右为正方向,由动量守恒定律得:m2v0=(m1+m2)v,解得:v=;

由系统的机械能守恒得: m2v02=(m1+m2)v2+E P,解得:E P=,故C错误.

D、若m1>m2,当弹簧伸长时,m1一直在加速,当弹簧再次恢复原长时m1速度达到最大.弹簧伸长时m2先减速后,速度减至零向左加速,最小速度为零.所以m1速度达到最大时,m2速度不是最小,故D错误.

故选:A

分析两球的受力情况,根据合外力是否为零判断系统动量是否守恒.对于弹簧、m1、m2组成的系统机械能守恒.弹簧最长时,m1、m2的速度相同,根据系统的动量守恒和机械能守恒列式求弹簧的弹性势能.

本题考查了动量守恒定律的应用,解决本题的关键知道两球组成的系统动量守恒,两球和弹簧组成的系统机械能守恒,分析清楚运动过程,应用动量守恒定律与机械能守恒定律即可解题.

9. 解:设向右为正,根据动量守恒定律可知:

m1v1=m2v-m1v

根据机械能守恒可得:

mv12=(m1+m2)v2

联立以上两式解得:m1:m2=1:3;

故选:A.

两球碰后落到同一点,如果A球质量大于B球质量,则二者发生弹性碰撞时一定不会落到同一点,所以只能是A球碰后被以与B相同的速度反向运动,然后再滑到到末端时下落才能落到同一点,根据动量守恒和机械能守恒可求得质量之比.

本题要注意明确题意,知道两球碰后落在同一点所隐藏的信息,同时要注意准确掌握弹性碰撞的性质,明确在弹性碰撞中动量守恒,机械能守恒.

10. 解:列车与粮食组成的系统水平方动量守恒,以列车的初速度方向为正方向,水平方向,由动量守恒定律得:

Mv0+50mv1=(M+50m)v,

解得:v=;

故选:A.

列车与粮食组成的系统动量守恒,应用动量守恒定律可以求出列车的速度.

本题考查了求列车的速度,应用动量守恒定律即可正确解题.

11. 解:A、设子弹的初速度为v,共同速度为v′,则根据动量守恒定律,有:mv=(M+m)v′,

解得:v′=;

由于两矩形滑块A、B的质量相同,故最后子弹与滑块的速度都是相同的,故A错误;

B、滑块A、B的质量相同,初速度均为零,末速度均为,故动量该变量相等,根据动量定理,冲量相

等,故B正确;

C、根据动能定理,射入滑块中时阻力对子弹做功等于动能的增加量,故射入滑块A中时阻力对子弹做功是射入滑块B中时的1倍,故C错误;

D、根据能量守恒定律,两个过程中系统产生的热量等于系统减小的机械能,故两个过程中系统产生的热量相同,故D正确;

故选:BD。

子弹射入滑块过程中,子弹和滑块系统动量守恒,根据动量守恒定律列式求解共同速度,然后根据能量守恒定律列式求解系统产生的内能,根据动量定理列式求解滑块所受的冲量.

本题考查子弹射木块模型,关键是根据动量守恒定律、动量定理和能量守恒定律列式分析,不难.

12. 解:A、撞击过程时间很短,内力远大于外力,则可认为动量守恒,可应用动量守恒定律,故A正确;

B、撞击过程有机械能损失,则不可应用机械能守恒,故B错误;

CD、设卡车碰前总质量M,碰后飞出货物质量△m,轿车质量m,取撞击前货物的运动方向为正。根据动量守恒定律:Mv0=(M-△m+m)v+△mv0,则有:,可知,△m越大v越小;根据

可知s越小,故D正确,C错误;

故选:AD。

撞击过程时间很短,内力远大于外力,可认为动量守恒。根据动量守恒定律和动能定理列式,分析滑行距离s和货物质量m的关系。

对于碰撞,即使有外力,在撞击时间极短时,内力远大于外力,也可认为动量守恒,所以碰撞的基本规律是动量守恒定律。

13. 解:A、根据动量守恒定律得0=2mv-mv B,得物块B刚要离开弹簧时的速度v B=2v,由系统的机械能守恒得:物块开始运动前弹簧的弹性势能为:E p=?2mv2+mv B2=3mv2.故A错误,B正确;

C、当物块A的加速度大小为a,根据胡克定律和牛顿第二定律得 x=2ma.当物块B的加速度大小为a时,有: x′=ma,对比可得:x′=,即此时弹簧的压缩量为.故C正确.

D、取水平向左为正方向,根据系统的动量守恒得:2m-m=0,又x A+x B=x,解得A的位移为:x A=x,故D

错误.

故选:BC

根据系统的动量守恒,求得物块B刚要离开弹簧时的速度,由系统的机械能守恒求物块开始运动前弹簧的弹性势能.当A的加速度大小为a,根据胡克定律和牛顿第二定律求得此时的弹力.物块B的加速度大小为a时,对物块,由胡克定律和牛顿第二定律求弹簧的压缩量.

解决本题的关键要明确系统遵守两大守恒定律:动量守恒定律和机械能守恒定律,求A的位移时,根据平均动量守恒列式.

14. 解:A追上B并与B相碰,说明A的速度大于B的速度,p A=12 g?m/s,p B=8 g?m/s,两个质量相等的小球,所以v A=v B;

以它们运动的方向为正方向,若发生完全非弹性碰撞,则碰撞后的速度是相等的,所以碰撞后它们的动量

也相等,为: g?m/s

所以:△p A=P A′-P A=10-12=-2 g?m/s、△p B=P B′-P B=10-8=2 g?m/s

若是弹性碰撞,则:P A+P B=P A′+P B′

弹性碰撞的过程中机械能以上守恒的,设它们的质量为m,则:

由于:P=mv

联立可得:P A′=8 g?m/s,P B′=12 g?m/s

所以此时:△p A=P A′-P A=8-12=-4 g?m/s、△p B=P B′-P B=12-8=4 g?m/s

由以上的分析可知,△p A在-2到-4 g?m/s之间,△p B在2-4 g?m/s之间都是可能的.

A、如果△p A=-2 g?m/s、△p B=2 g?m/s,碰后动量守恒,符合以上的条件,故A正确;

B、△p A=-3 g?m/s、△p B=3 g?m/s,碰撞过程动量守恒,符合以上的条件,故B正确;

C、如果△p A=-4 g?m/s、△p B=4 g?m/ss,碰撞过程动量守恒,符合以上的条件,故C正确;

D、如果△p A=-5 g?m/s、△p B=5 g?m/s,碰撞过程动量守恒,不符合以上的条件,故D错误;

故选:ABC

光滑的水平面上运动的两物体,不受摩擦力作用,重力和支持力是一对平衡力,故物体碰撞时满足动量守恒定律;由于两个小球的质量相等,分别列出完全弹性碰撞与完全非弹性碰撞的两种极限的条件,然后再进行判断即可.

对于碰撞过程要遵守三大规律:1、是动量守恒定律;2、总动能不增加;3、符合物体的实际运动情况.15. 解:A、整个系统在水平方向不受外力,竖直方向上合外力为零,则系统动量一直守恒,系统初动量为零,物体C离开弹簧时向左运动,根据系统的动量守恒定律得小车向右运动,故A正确;

B、当物体C与A粘合在一起时,ABC的速度相同,设为v,根据系统的动量守恒定律得:0=(M+m)v,得v=0,则小车的速度为0.故B正确;

CD、物体C从B向A运动过程中,取物体C的速度方向为正方向,根据系统的动量守恒定律得:0=mv C-Mv

,可得=,故C正确,D错误.

故选:ABC.

对于小车和物体C系统,水平方向不受外力,系统动量一直守恒.物体C与A作用的过程,系统机械能有损失;根据动量守恒定律求解物体C与A粘合后小车的速度.物体C从B向A运动过程中,根据系统的动量守恒定律求解小车速度与物体速度大小(对地)之比.

本题根据动量守恒的条件进行判断:动量守恒的条件是系统不受外力或受到的外力的合力为零.运用动量守恒定律时应该注意其矢量性.

16. 解:(1)甲图,螺旋测微器的固定刻度读数为3.5mm,可动刻度读数为0.01×0.5mm=0.005mm,

所以最终读数为3.5mm+0.005=3.505 mm.

乙图,螺旋测微器的固定刻度读数为3mm,可动刻度读数为0.01×48.5mm=0.485mm,

所以最终读数为3mm+0.485=3.485 mm.

(2)根据动量守恒定律可知,设向右为正方向,则应满足的表达式为:0=-m1v1+m2v2;即:m1v1=m2v2

根据光电门的性质可知,v1=;v2=,代入可得:

=

根据功能关系可知,贮存的弹性势能等于后来的动能,则有:

E P=m1v12+m2v22

代入可得:

E P=+;

故答案为:(1)3.505,3.485;(2)=,+

(1)螺旋测微器的读数方法是固定刻度读数加上可动刻度读数,在读可动刻度读数时需估读.

(2)根据光电门的性质可明确两物体的速度,再根据动量守恒和功能关系进行分析,从而得出应验证的表达式.

本题考查了验证动量守恒定律实验中表达式的验证以及螺旋测微器的使用,要注意判断使用气垫导轨的应用,要知道动量守恒的条件与动量守恒定律,明确功能关系,知道弹簧的弹性势能转化为了两滑块的动能.17. (1)细线被烧断,轻弹簧将两小球弹开的过程,遵守动量守恒定律,由此求出弹开后b球的速度,再由机械能守恒定律求弹簧2最初所具有的弹性势能E p;

(2)b球带动a球运动的过程,当弹簧1拉伸到最长时,两球的速度相同,根据动量守恒定律求解v.

本题的关键要把握住每个过程遵循的物理规律,知道弹簧伸长最长时两球的速度相同,结合动量守恒定律和机械能守恒定律结合研究.

18. (1)爆炸后甲向下做匀加速运动,加速度为g,已知位移和时间,根据位移公式求解爆炸后甲运动的初速度v1;

(2)爆炸过程,由于外力远小于内力,系统的动量守恒,根据动量守恒定律可求得爆炸后乙的速度,由位移公式求解乙运动到地面的时间.

对于爆炸过程,属于外力远小于内力,系统的动量近似守恒,这一规律经把握住,同时要掌握运动的基本规律,并能熟练运用.

19. (1)车与墙碰撞过程,根据动量定理列式求解平均作用力;

(2)对车和铁块组成的系统为研究对象,系统所受的合力为零,动量守恒,即可求出小车与铁块共同运动的速度,再根据能量守恒定律求出小车的最小长度.

本题涉及到两个物体的相互作用,应优先考虑动量守恒定律.运用动量守恒定律研究物体的速度,比牛顿第二定律和运动公式结合简单,因为动量守恒定律不涉及运动的细节和过程.涉及时间问题,可优先考虑动量定理.

最新物理动量守恒定律练习题20篇

最新物理动量守恒定律练习题20篇 一、高考物理精讲专题动量守恒定律 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1);(2);(3)零. 【解析】 试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有: 碰后A、B的共同速度 损失的机械能 (2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时A、B的速度,C的速度

可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的 ,故B 的最小速度为零 . 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

河北省衡水市武邑中学 《动量守恒定律》单元测试题含答案

河北省衡水市武邑中学 《动量守恒定律》单元测试题含答案 一、动量守恒定律 选择题 1.如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6kg·m/s ,运动中两球发生碰撞,碰撞后A 球的动量增量为-4kg· m/s ,则( ) A .左方是A 球,碰撞后A 、 B 两球速度大小之比为2:5 B .左方是A 球,碰撞后A 、B 两球速度大小之比为1:10 C .右方是A 球,碰撞后A 、B 两球速度大小之比为2:5 D .右方是A 球,碰撞后A 、B 两球速度大小之比为1:10 2.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则 A .子弹刚穿出木块时,木块的速度为 0() m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒 C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒 D .木块上升的最大高度为22 02mv mv Mg - 3.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块 a 以某一初速度0v 从左侧滑上木板。已知物块a 、 b 与木板间的摩擦因数分别为a μ、 b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩 擦力。下列说法正确的是( ) A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2 013 mv B .若 22 a b a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落 C .若03 2 a v gL μ≤ ab 一定不相碰 D .若2b a μμ>,则a 可能从木板左端滑落 4.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度

验证动量守恒定律实验

物理一轮复习学案 第六周(10.8—10.14)第四课时 验证动量守恒定律实验 【考纲解读】 1.会用实验装置测速度或用其他物理量表示物体的速度大小. 2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒. 【重点难点】 验证动量守恒定律 【知识结构】 一、验证动量守恒定律实验方案 1.方案一 实验器材:滑块(带遮光片,2个)、游标卡尺、气垫导轨、光电门、天平、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。 实验情境:弹性碰撞(弹簧片、弹性碰撞架);完全非弹性碰撞(撞针、橡皮泥)。 2.方案二 实验器材:带细线的摆球(摆球相同,两套)、铁架台、天平、量角器、坐标纸、胶布等。实验情境:弹性碰撞,等质量两球对心正碰发生速度交换。 3.方案三 实验器材:小车(2个)、长木板(含垫木)、打点计时器、纸带、天平、撞针、橡皮泥、刻度尺等。 实验情境:完全非弹性碰撞(撞针、橡皮泥)。 4.方案四 实验器材:小球(2个)、斜槽、天平、重垂线、复写纸、白纸、刻度尺等。 实验情境:一般碰撞或近似的弹性碰撞。 5.不同方案的主要区别在于测速度的方法不同:①光电门(或速度传感器);②测摆角(机械能守恒);③打点计时器和纸带;④平抛法。还可用频闪法得到等时间间隔的物体位置,从而分析速度。 二、验证动量守恒定律实验(方案四)注意事项 1.入射球质量m1应大于被碰球质量m2。否则入射球撞击被碰球后会被弹回。 2.入射球和被碰球应半径相等,或可通过调节放被碰球的立柱高度使碰撞时球心等高。否则两球的碰撞位置不在球心所在的水平线上,碰后瞬间的速度不水平。 3.斜槽末端的切线应水平。否则小球不能水平射出斜槽做平抛运动。 4.入射球每次必须从斜槽上同一位置由静止释放。否则入射球撞击被碰球的速度不相等。5.落点位置确定:围绕10次落点画一个最小的圆将有效落点围在里面,圆心即所求落点。6.水平射程:被碰球放在斜槽末端,则从斜槽末端由重垂线确定水平射程的起点,到落地点的距离为水平射程。

动量与动量守恒定律练习题(含参考答案)

高二物理3-5:动量与动量守恒定律 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知 运动员的质量m =70kg ,初速度v 0=5m/s 。若经过1s 时,速度为v = 5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2 ,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s B. C. 350(-1) kg·m/s D. 350(+1) kg·m/s 2.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量p A =9kg?m/s ,B 球的动量p B =3kg?m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( ) A .p A ′=6 kg?m/s ,p B ′=6 kg?m/s B .p A ′=8 kg?m/s ,p B ′=4 kg?m/s C .p A ′=﹣2 kg?m/s ,p B ′=14 kg?m/s D .p A ′=﹣4 kg?m/s ,p B ′=17 kg?m/s 3.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶1 4.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B. 0Mv M m - C. 0mv M m - D. ()0M m v M - 5.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止 小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( ) A.v 02 B.v 06 C.v 02或v 06 D .无法确定

《动量守恒定律》单元测试题(含答案)

《动量守恒定律》单元测试题(含答案) 一、动量守恒定律 选择题 1.如图所示,一块质量为M 的木板停在光滑的水平面上,木板的左端有挡板,挡板上固定一个小弹簧.一个质量为m 的小物块(可视为质点)以水平速度v 0从木板的右端开始向左运动,与弹簧碰撞后(弹簧处于弹性限度内),最终又恰好停在木板的右端.根据上述情景和已知量,可以求出 ( ) A .弹簧的劲度系数 B .弹簧的最大弹性势能 C .木板和小物块组成的系统最终损失的机械能 D .若再已知木板长度l 可以求出木板和小物块间的动摩擦因数 2.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则 A .子弹刚穿出木块时,木块的速度为 0() m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒 C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒 D .木块上升的最大高度为22 02mv mv Mg - 3.如图所示,质量10.3kg m =的小车静止在光滑的水平面上,车长 1.5m l =,现有质量 20.2kg m =可视为质点的物块,以水平向右的速度0v 从左端滑上小车,最后在车面上某处与 小车保持相对静止.物块与车面间的动摩擦因数0.5μ=,取2 g=10m/s ,则( ) A .物块滑上小车后,系统动量守恒和机械能守恒 B .增大物块与车面间的动摩擦因数,摩擦生热不变 C .若0 2.5m/s v =,则物块在车面上滑行的时间为0.24s D .若要保证物块不从小车右端滑出,则0v 不得大于5m/s 4.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

2018_2019学年高中物理第一章碰撞与动量守恒实验验证动量守恒定律分层训练粤教版选修3_5201

实验验证动量守恒定律 1.图1是“验证碰撞中的动量守恒”实验的实验装置.让质量为m1的小球从斜面上某处自由滚下,与静止在支柱上质量为m 2的小球发生对心碰撞,则 图1 图2 (1)两小球的质量关系必须满足________. A.m1=m2B.m1>m2 C.m1<m2D.没有限制 (2)实验必须满足的条件是________. A.轨道末端的切线必须是水平的 B.斜槽轨道必须是光滑的 C.入射小球m1每次都必须从同一高度由静止释放 D.入射小球m1和被碰小球m2的球心在碰撞的瞬间可以不在同一高度上 (3)若采用图1装置进行实验,以下所提供的测量工具中必需的是________. A.直尺B.游标卡尺C.天平D.弹簧秤E.秒表 (4)在实验装置中,若用游标卡尺测得小球的直径如图2,则读数为_______cm. 解析:(1)在“验证碰撞中的动量守恒”实验中,为防止被碰球碰后反弹,入射球的质量必须(远)大于被碰球的质量,因此B正确,A、C、D错误.故选B. (2)要保证每次小球都做平抛运动,则轨道的末端必须水平,故A正确;“验证动量守恒定律”的实验中,是通过平抛运动的基本规律求解碰撞前后的速度的,只要离开轨道后做平抛运动,对斜槽是否光滑没有要求,故B错误;要保证碰撞前的速度相同,所以入射球每次都要从同一高度由静止滚下,故C正确;要保证碰撞后都做平抛运动,两球要发生正碰,碰撞的瞬间,入射球与被碰球的球心应在同一水平高度,两球心的连线应与轨道末端的切线平行,因此两球半径应该相同,故D错误.故选AC. (3)小球离开轨道后做平抛运动,它们抛出点的高度相同,在空中的运动时间t相等,m1v1=m1v1′+m2v2′,两边同时乘以时间t,则有:m1v1t=m1v1′t+m2v2′t,m1OP=m1OM+m2(ON-2r),则实验需要测出:小球的质量、小球的水平位置、小球的半径,故需要用到的仪器有:天平,直尺和游标卡尺;故选,ABC.

【物理】 物理动量守恒定律专题练习(及答案)

【物理】 物理动量守恒定律专题练习(及答案) 一、高考物理精讲专题动量守恒定律 1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2 m ? 的压缩气体,每级总质量均为 2 M ,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。 【答案】116.54m 【解析】对模型甲: ()00M m v mv =-?-?甲 21085=200.5629 v h m m g =≈甲甲 对模型乙第一级喷气: 10022 m m M v v ??? ?=-- ???乙 解得: 130m v s =乙 2s 末: ‘ 11=10m v v gt s -=乙乙 22 11 1'=402v v h m g -=乙乙乙 对模型乙第一级喷气: ‘120=)2222 M M m m v v v ??--乙乙( 解得: 2670= 9 m v s 乙 2 2222445=277.10281 v h m m g =≈乙乙 可得: 129440 += 116.5481 h h h h m m ?=-≈乙乙甲。 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求:

莆田市《动量守恒定律》单元测试题含答案

莆田市《动量守恒定律》单元测试题含答案 一、动量守恒定律 选择题 1.如图甲,质量M =0.8 kg 的足够长的木板静止在光滑的水平面上,质量m =0.2 kg 的滑块静止在木板的左端,在滑块上施加一水平向右、大小按图乙所示随时间变化的拉力F ,4 s 后撤去力F 。若滑块与木板间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,重力加速度g =10 m/s 2,则下列说法正确的是 A .0~4s 时间内拉力的冲量为3.2 N·s B .t = 4s 时滑块的速度大小为9.5 m/s C .木板受到滑动摩擦力的冲量为2.8 N·s D .2~4s 内因摩擦产生的热量为4J 2.如图所示,固定的光滑金属水平导轨间距为L ,导轨电阻不计,左端接有阻值为R 的电阻,导轨处在磁感应强度大小为B 、方向竖直向下的匀强磁场中.质量为m 、电阻不计的导体棒ab ,在垂直导体棒的水平恒力F 作用下,由静止开始运动,经过时间t ,导体棒ab 刚好匀速运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触.在这个过程中,下列说法正确的是 A .导体棒ab 刚好匀速运动时的速度22 FR v B L = B .通过电阻的电荷量2Ft q BL = C .导体棒的位移222 44 FtRB L mFR x B L -= D .电阻放出的焦耳热22222 44 232tRF B L mF R Q B L -= 3.一质量为m 的物体静止在光滑水平面上,现对其施加两个水平作用力,两个力随时间变化的图象如图所示,由图象可知在t 2时刻物体的( )

A .加速度大小为 t F F m - B .速度大小为 ()()021t F F t t m -- C .动量大小为()()0212t F F t t m -- D .动能大小为()()2 2 0218t F F t t m -- 4.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( ) A .在A 离开竖直墙前,A 、 B 与弹簧组成的系统机械能守恒,之后不守恒 B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒 C .在A 离开竖直墙后,A 、B 速度相等时的速度是223E m D .在A 离开竖直墙后,弹簧的弹性势能最大值为 3 E 5.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( ) A .小球在半圆槽内第一次由A 到最低点 B 的运动过程中,槽的支持力对小球做负功 B .小球第一次运动到半圆槽的最低点B 时,小球与槽的速度大小之比为41︰ C .小球第一次在半圆槽的最低点B 时对槽的压力为133 mg D .物块最终的动能为 15 mgR 6.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )

最新物理动量守恒定律练习

最新物理动量守恒定律练习 一、高考物理精讲专题动量守恒定律 1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ; (2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地? 【答案】(1)1m (2)4282 25 t s = 【解析】 【分析】 根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】 解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122 mgL mv mv μ= - 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:22 01211()(cos53)22 mv m M v mg R R =++- 联立解得:1R m = (2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有: 22 00311(cos53)22 mv mv mg R R =+- 解得:322/v m s = 物块从C 抛出后,在竖直方向的分速度为:38 sin 532/5 y v v m s =?= 这时离体面的高度为:cos530.4h R R m =-?=

高中物理-《动量守恒定律》章末测试题

高中物理-《动量守恒定律》章末测试题 本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分110分,时间90分钟。 第Ⅰ卷(选择题 共40分) 一、选择题(共10小题,每小题4分,共40分,在每小题给出的四个选项中,至少有一个选项符合题目要求,全部选对的得4分,选不全的得2分,有选错或不答的得0分) 1.如图,质量为3 kg 的木板放在光滑的水平地面上,质量为1 kg 的木块放在木板上,它们之间有摩擦,木板足够长,两者都以4 m/s 的初速度向相反方向运动.当木板的速度为2.4 m/s 时,木块( ) A.处于匀速运动阶段 B.处于减速运动阶段 C.处于加速运动阶段 D.静止不动 2.如图所示,位于光滑水平桌面,质量相等的小滑块P 和Q 都可以视作质点,Q 与轻质弹簧相连,设Q 静止,P 以某一初动能E0水平向Q 运动并与弹簧发生相互作用,若整个作用过程中无机械能损失,用E1表示弹簧具有的最大弹性势能,用E2表示Q 具有的最大动能,则( ) A .2 1E E = B .01E E = C .2 2E E = D .02 E E = 3.光滑水平桌面上有两个相同的静止木块(不是紧捱着),枪沿两个木块连线方向以一定的初速度发射一颗子弹,子弹分别穿过两个木块。假设子弹穿过两个木块时受到的阻力大小相同,且子弹进入木块前两木块的速度都为零。忽略重力和空气阻力的影响,那么子弹先后穿过两个木块的过程中( ) A.子弹两次损失的动能相同 B.每个木块增加的动能相同 C.因摩擦而产生的热量相同 D.每个木块移动的距离不相同 4.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。木箱和小木块都具有一定的质量。现使木箱获得一个向右的初速度v 0,则( ) A .小木块和木箱最终都将静止 B .小木块最终将相对木箱静止,二者一起向右运动 C .小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动 D .如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动 P v Q

验证动量守恒定律练习题(附答案)

(1)若已得到打点纸带如图所示,并将测得的各计数点间距离标在图上, A 点是运动起 始的第一点,则应选 __________ 段来计算A 的碰前速度,应选 __________ 段来计算A 和 B 碰后 的共同速度(以上两格填“ AB '或“ BC"或“CD"或"DE ”). A B C D E = U ------ r J-f * ... 小 1 8,40c m 1 2 10.50cm 1 9.08cm 1 6.95cm r } (2)已测得小车 A 的质量 m 仁0. 40kg ,小车B 的质量 m2=0 . 20kg ,由以上测量结 果可得:碰前 mAv++mBv= ____________________ k g ?m /s ;碰后 mAvA ,+mBvB= ___________ k g ?m /s .并 比较碰撞前后两个小车质量与速度的乘积之和是否相等 2.某同学用所示装置通过半径相同的 a. b 两球的碰撞来验证动量守恒定律。实验 时先使a 球从斜槽上某一固定位置由静止开始滚下, 落到位于水平地面的记录纸 上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把b 球放在水平槽上 靠近槽末端的地方,让a 球仍从同一位置由静止开始滚下, 记录纸上的垂直投影 点。b 球落点痕迹如图所示,其中米尺水平放置。 I | I r 11 | H 111 30 (cm) 1 碰撞后b 球的水平射程应取为 ________ cm. 2 在以下选项中,哪些是本次实验必须进行的测量?答: ____________ (填选项 号) A. 水平槽上未放b 球时,测量a 球落点位置到O 点的距离 B. a 球与b 球碰撞后,测量a 球落点位置到O 点的距离 C. 测量a 球或b 球的直径 D. 测量a 球和b 球的质量(或两球质量之比) E. 测量地面相对于水平槽面的高度 3)设入射球a 、被碰球b 的质量分别为m 1、m 2,半径分别为门、r 2,为了减 小实验误差,下列说法正确的是( ) 验证动量守恒定律 1.某同学设计了一个用打点计时器验证动量守恒定律的实验: 在小车A 的前端 粘有橡皮泥,推动小车 A 使之做匀速运动?然后与原来静止在前方的小车 B 相碰并粘合成 一体,继续做匀速运动,他设计的具体装置如图所示?在小车 A 后连着纸带,电磁打点计 时器电源频率为50Hz ,长木板下垫着小木片用以平衡摩擦力.

动量守恒定律 练习题及答案

动量守恒定律 一、单选题(每题3分,共36分) 1.下列关于物体的动量和动能的说法,正确的是 ( ) A .物体的动量发生变化,其动能一定发生变化 B .物体的动能发生变化,其动量一定发生变化 C .若两个物体的动量相同,它们的动能也一定相同 D .两物体中动能大的物体,其动量也一定大 2.为了模拟宇宙大爆炸初期的情境,科学家们使用两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞.若要使碰撞前重离子的动能经碰撞后尽可能多地转化为其他形式的能,应该设法使这两个重离子在碰撞前的瞬间具有 ( ) A .相同的速度 B .相同大小的动量 C .相同的动能 D .相同的质量 3.质量为M 的小车在光滑水平面上以速度v 向东行驶,一个质量为m 的小球从距地面H 高处自由落下,正好落入车中,此后小车的速度将 ( ) A .增大 B .减小 C .不变 D .先减小后增大 4.甲、乙两物体质量相同,以相同的初速度在粗糙的水平面上滑行,甲物体比乙物体先停下来,下面说法正确的是 ( ) A .滑行过程中,甲物体所受冲量大 B .滑行过程中,乙物体所受冲量大 C .滑行过程中,甲、乙两物体所受的冲量相同 D .无法比较 5.A 、B 两刚性球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是5kg·m /s ,B 球的动量是7kg·m /s ,当A 球追上B 球时发生碰撞,则碰撞后A 、B 两球的动量的可能值是 ( ) A .-4kg·m/s 、14kg·m/s B .3kg·m/s 、9kg·m/s C .-5kg·m/s 、17kg·m/s D .6kg·m /s 、6kg·m/s 6.质量为m 的钢球自高处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短,离地的速率为2v .在碰撞过程中, 地面对钢球冲量的方向和大小为 ( ) A .向下,12()m v v - B .向下,12()m v v + C .向上,12()m v v - D .向上,12()m v v + 7.质量为m 的α粒子,其速度为0v ,与质量为3m 的静止碳核碰撞后沿着原来的路径被弹回,其速度为0/2v ,而碳 核获得的速度为 ( ) A .06v B .20v C .02v D .03 v 8.在光滑水平面上,动能为0E ,动量大小为0P 的小钢球1与静止的小钢球2发生碰撞,碰撞前后球1的运动方向 相反,将碰撞后球1的动能和动量的大小分别记作1E 、1P ,球2的动能和动量的大小分别记为2E 、2P ,则必有 ( ) ①1E <0E ②1P <0P ③2E >0E ④2P >0P A .①② B.①③④ C.①②④ D.②③ 9.质量为1.0kg 的小球从高20 m 处自由下落到软垫上,反弹后上升的最大高度为5.O m .小球与软垫接触的时间是1.0s ,在接触的时间内小球受到的合力的冲量大小为(空气阻力不计,g 取10m/s 2) ( ) A .10N·s B .20N·s C .30N·s D .40N·s 10.质量为2kg 的物体,速度由4m /s 变成 -6m/s ,则在此过程中,它所受到的合外力冲量是 ( ) A .-20N·s B.20N·s C .-4N·s D .-12N·s 11.竖直向上抛出一个物体.若不计阻力,取竖直向上为正,则该物体动量随时间变化的图线是 ( ) 12.一颗水平飞行的子弹射入一个原来悬挂在天花板下静止的沙袋并留在其中和沙袋一起上摆.关于子弹和沙袋组成的系统,下列说法中正确的是 ( ) A .子弹射入沙袋过程中系统动量和机械能都守恒 B .子弹射入沙袋过程中系统动量和机械能都不守恒 C .共同上摆阶段系统动量守恒,机械能不守恒 D .共同上摆阶段系统动量不守恒,机械能守恒 二、多选题(每题4分,共16分) 13.下列情况下系统动量守恒的是 ( )A .两球在光滑的水平面上相互碰撞 B .飞行的手榴弹在空中爆炸 C .大炮发射炮弹时,炮身和炮弹组成的系统 D .用肩部紧紧抵住步枪枪托射击,枪身和子弹组成的系统 14.两物体相互作用前后的总动量不变,则两物体组成的系统一定 ( ) A .不受外力作用 B .不受外力或所受合外力为零 C .每个物体动量改变量的值相同 D .每个物体动量改变量的值不同

《动量守恒定律》单元测试题

《动量守恒定律》单元测试题 1.如图,质量为3 kg 的木板放在光滑的水平地面上,质量为1 kg 的木块放在木板上,它们之间有摩擦,木板足够长,两者都以4 m/s 的初速度向相反方向运动.当木板的速度为2.4 m/s 时,木块( ) A.处于匀速运动阶段 B.处于减速运动阶段 C.处于加速运动阶段 D.静止不动 2.(多项)如图所示,位于光滑水平桌面,质量相等的小滑块P 和Q 都可以视作质点,Q 与轻质弹簧相连,设Q 静止,P 以某一初动能E0水平向Q 运动并与弹簧发生相互作用,若整个作用过程中无机械能损失,用E1表示弹簧具有的最大弹性势能,用E2表示Q 具有的最大动能,则( ) A .20 1E E = B .01E E = C .2 2E E = D .02 E E = 3.(多项)光滑水平桌面上有两个相同的静止木块(不是紧捱着),枪沿两个木块连线方向以一定的初速度发射一颗子弹,子弹分别穿过两个木块。假设子弹穿过两个木块时受到的阻力大小相同,且子弹进入木块前两木块的速度都为零。忽略重力和空气阻力的影响,那么子弹先后穿过两个木块的过程中( ) A.子弹两次损失的动能相同 B.每个木块增加的动能相同 C.因摩擦而产生的热量相同 D.每个木块移动的距离不相同 4.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。木箱和小木块都具有一定的质量。现使木箱获得一个向右的初速度v 0,则( ) A .小木块和木箱最终都将静止 B .小木块最终将相对木箱静止,二者一起向右运动 C .小木块在木箱内壁将始终来回往复碰撞,而木箱一直向右运动 D .如果小木块与木箱的左壁碰撞后相对木箱静止,则二者将一起向左运动 5.质量为m a =1kg ,m b =2kg 的小球在光滑的水平面上发生碰撞,碰撞前后两球的位移—时间图象如图所示,则可知碰撞属于( ) A .弹性碰撞 B .非弹性碰撞 C .完全非弹性碰撞 D .条件不足,不能确定 6.人的质量m =60kg ,船的质量M =240kg ,若船用缆绳固定,船离岸1.5m 时,人可以跃上岸。若撤去缆绳,如图所示,人要安全跃上岸,船离岸至多为(不计水的阻力,两次人消耗的能量相等) ( )

验证动量守恒定律

验证动量守恒定律 一、目的:验证两小球碰撞中的动量守恒 二、器材 斜槽,两个大小相同而质量不等的小球,天平,刻度尺、重锤线、白纸、复写纸、圆规、游标卡尺 三、原理 大小相同,质量为m1和m2的两个小球相碰,若碰前m1运动,m2静止,根据系统动量守恒定律有:m1v1=m1v1′+m2v2′。 因小球从斜槽上滚下后做平抛运动,由平抛运动知识可知,只要小球下落的高度相同,在落地前运动的时间就相同,则小球的水平飞行距离跟做平抛运动的初速度成正比。所以只要测出小球的质量及两球碰撞前后飞出的水平距离,代入公式就可以验证动量守恒定律。 由于v1、v1′、v2′均为水平方向,且它们的竖直下落高度都相等,所以它们飞行时间也相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在图中分别用OP、OM和O′N表示。因此只需验证:m1OP=m1OM+m2(ON-2r)即可。 四、步骤

1.在桌边固定斜槽(如图实8-1),使它的末端切线水平,并在它的末端挂上重锤线。在桌边的地板上铺上记录纸来记录小球的落地点,在纸上记下重锤线所指位置O点。 2.用天平测出入射球质量m1和被碰球质量m2。 3.用游标卡尺测出两球直径d(两球直径应相等),在纸上标出O′点,OO′=d。 4.不放被碰球m2,让m1从斜槽顶点A自由滚下,重复若干次记下落地点平均位置P。 5.把被碰球m2放在斜槽末端支柱上(如图实8-2),使两球处于同一高度,让m1从A点自由滚下与m2相碰,重复若干次,分别记下m1、m2落地点的平均位置M、N。 6.用刻度尺分别测出OP,OM,O′N,验证:是否成立。 五、数据记录及处理(略) 六、注意事项 1.入射球质量m1应大于被碰球质量m2。 2.两球发生正碰,碰后均做平抛运动,这要求通过调整支柱使两球等高。 3.入射球每一次都从同一高度无初速度释放。 4.在实验中,至少重复10次,用尽可能小的圆把各小球的落点分别圈在里面,以确定小球落点的平均位置,其目的是为了减小实验误差。思考与注意: (1)小球a、b的质量ma、mb应该满足什么关系?为什么? ma> mb,保证碰后两球都向前方运动; (2)放上被碰小球后,两小球碰后是否同时落地?如果不是同时落地,对

1.4 实验:验证动量守恒定律

1.4 实验:验证动量守恒定律 一、实验目的 1.掌握动量守恒定律适用范围。2.会用实验验证动量守恒定律。 二、实验原理 1.碰撞中的特殊情况——一维碰撞 两个物体碰撞前沿同一直线运动,碰撞后仍沿这条直线运动. 2.两个物体在发生碰撞时,作用时间很短。根据动量定理,它们的相互作用力很大。如果把这两个物体看作一个系统,那么,虽然物体还受到重力、支持力、摩擦力、空气阻力等外力的作用,但是这些力与系统内两物体的相互作用力相比很小,在可以忽略这些外力的情况下,使系统所受外力的矢量和近似为0,因此,碰撞满足动量守恒定律的条件。 3.物理量的测量 需要测量物体的质量,以及两个物体发生碰撞前后各自的速度。物体的质量可用天平直接测量。速度的测量可以有不同的方式,根据所选择的具体实验方案来确定。 三、实验方案设计 方案一:用气垫导轨完成两个滑块的一维碰撞,实验装置如图所示: (1)质量的测量:用天平测量质量. (2)速度的测量:利用公式v =Δx Δt ,式中Δx 为滑块(挡光片)的宽度,Δt 为计时器显示的滑块(挡光片)经过光电门时对应的时间. (3)利用在滑块上增加重物的方法改变碰撞物体的质量. (4)碰撞的实现:两小车的碰撞端分别装上撞针和橡皮泥. 实验器材:气垫导轨、光电计时器、天平、滑块(两个)、弹簧、细线、弹性 碰撞架、胶布、撞针、橡皮泥等. 实验过程: (1)测质量:用天平测出小车的质量m 1、m 2。 (2)安装:正确安装好光电计时器和滑轨。 (3)实验:接通电源,让质量小的小车在两个光电门之间,给质量大的小车一个初速度去碰撞质量小的小车,利用配套的光电计时器测出两个小车各种情况下碰撞前后的速度v 1、v 1′、v 2′。 本实验可以研究以下几种情况。 a.选取两个质量不同的滑块,在两个滑块相互碰撞的端面装上弹性碰撞架,滑块碰撞后随即分开。 b.在两个滑块的碰撞端分别装上撞针和橡皮泥,碰撞时撞针插入橡皮泥中,使两个滑块连成一体运动。 如果在两个滑块的碰撞端分别贴上尼龙拉扣,碰撞时它们也会连成一体。 c.原来连在一起的两个物体,由于相互之间具有排斥的力而分开,这也可视为一种碰撞。这种情况可以通 过下面的方式实现:在两个滑块间放置轻质弹簧,挤压两个滑块使弹簧压缩,并用一根细线将两个滑块固定。烧断细线,弹簧弹开后落下,两个滑块由静止向相反方向运动。

人教版高二物理选修3-5 :16.3动量守恒定律同步训练(含答案)

人教版物理选修3-5 16.3动量守恒定律同步训练 一、单项选择题(下列选项中只有一个选项满足题意) 1.关于系统动量守恒的条件,下列说法正确的是() A.只要系统内存在摩擦力,系统动量就不可能守恒 B.只要系统所受的合外力为零,系统动量就守恒 C.只要系统中有一个物体具有加速度,系统动量就不守恒 D.系统中所有物体的加速度为零时,系統的总动量不一定守恒 2.如图所示,一小车停在光滑水平面上,车上一人持枪向车的竖直挡板连续平射,所有子弹全部嵌在挡板内没有穿出,当射击持续了一会儿后停止,则小车 A.速度为零 B.将向射击方向作匀速运动 C.将向射击相反方向作匀速运动 D.无法确定 3.在“验证动量守恒定律”的实验中,入射球每次滚下都应从斜槽上的同一位置无初速释放,这是为了使( ) A.小球每次都能水平飞出槽口 B.小球每次都以相同的速度飞出槽口 C.小球在空中飞行的时间不变 D.小球每次都能对心碰撞 4.如图所示,木块B与水平弹簧相连放在光滑水平面上,子弹A沿水平方向射入木块后留在木块B内,入射时间

极短,而后木块将弹簧压缩到最短,关于子弹和木块组成的系统,下列说法中正确的是() ①子弹射入木块的过程中系统动量守恒 ②子弹射入木块的过程中系统机械能守恒 ③木块压缩弹簧过程中,系统总动量守恒 ④木块压缩弹簧过程中,子弹、木块和弹簧组成的系统机械能守恒 A.①②B.②③C.①④D.②④ 5.质量为m的人立于质量为M的平板车上,初始时人与车以速度v1在光滑水平面上向右运动。当此人相对于车以竖直向上的速度v2跳起后,车的速度大小为)() A.v1 B.v1?mv2 M+m C.m(v1?v2) M+m D.(M+m)v1?mv2 M 6.两辆质量相同的小车,置于光滑的水平面上,有一人静止在小车A上,两车静止,如图所示.当这个人从A 车跳到B车上,接着又从B车跳回A车并与A车保持相对静止,则A车的速率() A.等于零B.大于B车的速率 C.小于B车的速率D.等于B车的速率 7.(原创)如图所示,某同学对着墙壁练习打乒乓球,某次球与墙壁上A点碰撞后水平弹离,恰好垂直落在球拍上的B点,已知球拍与水平方向夹角,AB两点高度差h=1m,忽略空气阻力,重力加速度

相关主题