搜档网
当前位置:搜档网 › 水泵变频运行的特性曲线

水泵变频运行的特性曲线

水泵变频运行的特性曲线
水泵变频运行的特性曲线

水泵变频运行的特性曲线(一)

1 引言

水泵冷油泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。

2 水泵罗茨真空泵变频运行分析的误区

2。1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律Q1/Q2=n1/n2

扬程比例定律 H1/H2=(n1/n2)2

轴功率比例定律P1/P2=(n1/n2)3

并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。

以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:

(1) 为什么水泵变频运行时频率在30~35Hz以上时才出水?

(2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一

个突跳,然后才随着转速的升高而升高?

2。2 绘制水泵的性能特性曲线和管道阻力曲线

很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示.

图1水泵的特性曲线

图1中,水泵液下排污泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=K1Q与流量Q成正比.采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程HB。采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里QB=Q C。

按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到30~35Hz 以下时就不出水了,流量已经降到零。

2.3 变频泵与工频泵并联

变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?

3 以上分析的误区

(1)相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。而比例定律是相似定律作为特例演变而来的.即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系.

(2)在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量有关,阻力系数为常数.因此其运行工况与标准工况相同,可以应用比例定律。但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因此比例定律已经不再适用了。

(3) 相似定律在引风机中,如果挡板不变但介质温度和密度发生了变化时,作为特例,其形式也发生了变化,与上述比例定律不同,必须进行温度或密度的修正.

(4) 在水泵方面,比例定律仅适用于水泵的出水口和进水口之间没有高度差,即没有净扬程的情况。比如在没有落差的同一水平面上远距离输水,水泵的输出扬程(压力)仅用来克服管道的阻力,在这种情况下,当转速降到零时,扬程(压力)也降到零,流量也正好降到零,这是理想的水泵运行工况。图1中工作点A和C就完全适合这种工况,可以使用比例定律。

(5)但实际水泵运行工况不可能达到理想工况,水泵的出水口和进水口之间是有高度差的,有时还很大。在水泵并联运行时,水泵的出水口压力还要受到其它水泵运行压力的影响。并联运行的泵要想出水,水其扬程必须大于其他水泵当时的

压力.水泵出口流量并不是总管网流量,总管网流量为所有运行的水泵的流量和.由于管网总流量增大和阻力增大,因此并联运行的水泵扬程更高,工况发生变化,因此比例定律在此也不再适用。

4 单台水泵变频运行的图解分析

(1) 单台水泵变频运行分析的关键,在于水泵进出口水位的高度差,也就是水泵的净扬程H0.水泵的扬程只有大于净扬程时才能出水。因此管网阻力曲线的起始点就是该净扬程的高度,见图2.

图2 单台水泵变频运行特性曲线

图2中,额定工作点仍然为A,理想管网阻力曲线R1与流量成正比。变频后的特性曲线F2,工作点B。流量为零时的净扬程H0,变频运行实际工作点HB与净

扬程的差△H=HB-H0,为克服管网阻力达到所需流量Q B时的附加扬程.由于管网阻力曲线与图1不同,因此不满足相似定律.

(2)图2中的工作点A为水泵额定工作点,满足水泵的额定扬程和额定流量。因此R1成为理想的管网阻力曲线.但是由于实际管网阻力曲线不可能为理想曲线,因此实际的最大工作点一定要偏离A点。如果实际最大工作点向A点右下方偏移,则由于流量增加较大,容易造成水泵过载.因此实际额定工作点应该向A点左上方偏移,见图3。

图3 实际工作点向A点偏移

(3)图3中,在节流阀门全部打开,管网阻力曲线R2为实际管网阻力曲线。变频器在50Hz下运行时的实际最大工作点C,实际最大流量Q C(比水泵的额定流量QA小),最大流量时的扬程HC(比水泵实际额定扬程HA高)。实际工作点C的参数只能通过实际测试才能得出。当在变频器频率为F2时的特性曲线F2,实际工作点B。实际工作点与净扬程的差△H=HB—H0=K2Q B2,为克服实际管网阻力达到所需流量QB时的附加扬程。工作点B的实际扬程HB=K2Q B2+H0。

5 相同性能曲线水泵工频并联运行时的图解分析

(1)两台或两台以上的泵向同一压力管道输送流体时的运行方式称为并联运行.并联运行的目的是为了增加流体的流量,适用于流量变化较大,采用一台大型泵的运行经济性差的场合.同时水泵并联运行时可以有备用泵,来保证系统运行的安全可靠性。

(2)水泵并联运行工况的工作点,由并联运行的总性能曲线和总的管道特性曲线的交点来确定.并联运行的总性能曲线,是根据并联运行时工作扬程相等,流量相加的原则,在同一坐标扬程下,将每台泵性能曲线上相应的横坐标流量相加绘制而成的,见图4。相加的原则,在同一坐标扬程下,将每台泵性能曲线上相应的横坐标流量相加绘制而成的,见图4。

图4水泵并联运行特性

(3)图4为两台相同性能泵并联工作的总性能曲线与工作点。其中A为任意一台泵单泵运行时的工作点,净扬程H0.B为两台泵并联运行时单台泵的工作点.F2为两台泵并联运行时的总的性能曲线,在纵坐标相同的情况下,横坐标为单台泵性能曲线的两倍。并联运行的工作点C点的流量QC=2QB,扬程HC=H B。管网阻力曲线不变,只是两台泵并联运行时,流量为两台泵的流量和.

(4)两台相同性能的水泵并联运行有如下特点:

HC=H B>H A:即两台泵并联运行时扬程相同,且一定大于单台泵运行时的扬程.

QC=2Q B<2Q A:即两台并联运行的总输出流量为两台单泵输出流量之和,每台泵的流量一定小于单泵运行时的流量。因此并联运行时的总流量,不能达到两台单泵的流量和.

管网阻力曲线越陡,泵的性能曲线越平坦,并联后的每台泵的流量同单泵运行时的流量比较就越小,并联工作的效果越差。

并联运行适合于性能曲线较陡,以及管网阻力曲线较平坦的场合。

6 不同性能水泵并联运行的图解分析

6。1 关死点扬程(或最大扬程)相同,流量不同的水泵并联运行时的性能曲线图5中:

图5 扬程不同的水泵并联运行特性曲线

(1)F1为大泵的性能曲线,大泵单泵运行时的工作点A1。

(2) F2为小泵的性能曲线,小泵单独运行时的工作点B1.

(3) F3为并联水泵的总性能曲线,工作点C,扬程HC,流量Q C= QA2+ Q B2。

6.2 关死点扬程(或最大扬程)相同,流量不同的水泵并联运行的特点

(1) HC=H B2=H A2>HA1〉H B1:即两台泵并联运行时扬程相同,且一定大于每台泵单泵运行时的扬程.

(2) Q C=Q A2+Q B2

关死点扬程(或最大扬程)不同,流量也不同的水泵并联运行时的性能曲线如图6所示。

图6 扬程不同、流量不同水泵并联特性曲线

(1) F1为大泵的性能曲线,大泵单泵运行时的工作点A1。

(2) F2为小泵的性能曲线,小泵单独运行时的工作点B1。

(3)F3为并联水泵的总的性能曲线,工作点C,扬程HC,流量QC=QA2+QB2。

6.4 关死点扬程(或最大扬程)不同,流量也不同的水泵运行时特点(1) H C=HB2=H A2>H A1〉H B1:即两台泵并联运行时扬程相同,且一定大于大泵单泵运行时的扬程H A1,更大于小泵单泵运行时的扬程HB1。

(2) QC=QA2+QB2

(3) 两泵并联运行时,扬程低的水泵并联运行时流量减少更快。

(4) 当管网阻力曲线变化时,容易发生工作点在D的位置,该点的扬程高于小泵的最大扬程,造成小泵因扬程不足不出水,严重时会发生汽蚀现象.

7 变频泵与工频泵并联运行时的图解分析

7.1 变频泵与工频泵并联运行时总的性能曲线,与关死点扬程(最大扬程)不同,流量也不同的水泵并联运行时的情况非常类似,可以用相同的方法来分析。

图7 变频泵与工频泵并联运行特性曲线

图7中:

(1)F1为工频泵的性能曲线,也是变频泵在50Hz下满负荷运行时的性能曲线(假定变频泵与工频泵性能相同),工频泵单泵运行时的工作点A1.

水泵变频运行特性曲线

水泵变频运行特性曲线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

一、引言 水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 二、水泵变频运行分析的误区 1.有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律 流量比例定律 Q1/Q2=n1/n2 扬程比例定律 H1/H2=(n1/n2)2 轴功率比例定律 P1/P2=(n1/n2)3 并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题: 1)为什么水泵变频运行时频率在30~35Hz以上时才出水 2)为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个 突跳, 后才随着转速的升高而升高 2.绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。 图1 水泵的特性曲线

图1中,水泵在工频运行的特性曲线为F 1,额定工作点为A,额定流量Q A , 额定扬程H A ,管网理想阻力曲线R 1 =KQ与流量Q成正比。采用节流调节时的实际 管网阻力曲线R 2,工作点为B,流量Q B ,扬程H B 。采用变频调速且没有节流的特 性曲线F 2,理想工作点为C,流量Q C ,扬程H C ;这里Q B =Q C 。 按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。 3.变频泵与工频泵并联 变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌 4.以上分析的误区 1)相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相 似泵( 或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。而比例定律是相似定律作为特例演变而来的。即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。 2)在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风 机的流量 有关,阻力系数为常数。因此其运行工况与标准工况相同,可以应用比例定律。但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因此比例定律已经不再适用了。

离心泵的性能参数与特性曲线

离心泵的性能参数与特性曲线泵的性能及相互之间的关系是选泵和进行流量调节的依据。离心泵的主要性能参数有流量、压头、效率、轴功率等。它们之间的关系常用特性曲线来表示。特性曲线是在一定转速下,用20℃清水在常压下实验测得的。 (一)离心泵的性能参数 1、流量 离心泵的流量是指单位时间内排到管路系统的液体体积,一般用Q表示,常用单位为l/s、m3/s或m3/h等。离心泵的流量与泵的结构、尺寸和转速有关。 2、压头(扬程) 离心泵的压头是指离心泵对单位重量(1N)液体所提供的有效能量,一般用H表示,单位为J/N或m。压头的影响因素在前节已作过介绍。 3、效率 离心泵在实际运转中,由于存在各种能量损失,致使泵的实际(有效)压头和流量均低于理论值,而输入泵的功率比理论值为高。反映能量损失大小的参数称为效率。 离心泵的能量损失包括以下三项,即 (1)容积损失即泄漏造成的损失,无容积损失时泵的功率与有容积损失时泵的功率之比称为容积效率ηv。闭式叶轮的容积效率值在0.85~0.95。 (2)水力损失由于液体流经叶片、蜗壳的沿程阻力,流道面积和方向变化的局部阻力,以及叶轮通道中的环流和旋涡等因素造成的能量损失。这种损失可用水力效率ηh来反映。额定流量下,液体的流动方向恰与叶片的入口角相一致,这时损失最小,水力效率最高,其值在0.8~0.9的范围。 (3)机械效率由于高速旋转的叶轮表面与液体之间摩擦,泵轴在轴承、轴封等处的机械摩擦造成的能量损失。机械损失可用机械效率ηm来反映,其值在0.96~0.99之间。离心泵的总效率由上述三部分构成,即 η=ηvηhηm(2-14) 离心泵的效率与泵的类型、尺寸、加工精度、液体流量和性质等因素有关。通常,小泵效率为50~70%,而大型泵可达90%。 4、轴功率N 由电机输入泵轴的功率称为泵的轴功率,单位为W或kW。离心泵的有效功率是指液体在单位时间内从叶轮获得的能量,则有 Ne = HgQρ(2-15) 式中 Ne------离心泵的有效功率,W; Q--------离心泵的实际流量,m3/s; H--------离心泵的有效压头,m。 由于泵内存在上述的三项能量损失,轴功率必大于有效功率,即 (2-16) 式中 N ----轴功率,kW。 (二)离心泵的特性曲线 离心泵压头H、轴功率N及效率η均随流量Q而变,它们之间的关系可用泵的特性曲线或离心泵工作性能曲线表示。在离心泵出厂前由泵的制造厂测定出H-Q、N-Q、η-Q

水泵变频运行的特性曲线

水泵变频运行的特性曲线(一) 1引言 水泵冷油泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 2水泵罗茨真空泵变频运行分析的误区 2.1有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律 流量比例定律 n1/n2 Q1/Q2二 扬程比例定律H1/H2=(n1/n2) 2 轴功率比例定律P1/P2=(n1/n2) 3 并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比, 水泵的输出功率与转速的3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如 下问题: (1)为什么水泵变频运行时频率在30~35Hz 以上时才出水? (2)为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个 突跳,然后才随着转速的升高而升高? 2.2绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示

图1 水泵的特性曲线 图1中,水泵液下排污泵在工频运行的特性曲线为F i,额定工作点为A,额定流量Q A,额定扬程H A,管网理想阻力曲线R i=K i Q与流量Q成正比。采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程H B。采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里Q B=Q Q O 按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到30~35H z以下时就不出水了,流量已经降到零。 2.3变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频 泵出口压力小, 因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌? 3以上分析的误区

离心泵特性曲线分析

一.根据数据绘制离心泵特性曲线(如图(2)所示) 目的:掌握离心泵特性曲线的绘制方法,实现离心泵的合理调节。 1.准备工作: 数据资料;坐标纸;直尺;曲线板;铅笔;橡皮 2. 操作步骤: (1)按比例在坐标纸上绘制横、纵坐标,横坐标表示流量;纵坐标表示扬程H、轴功率N、泵功率η。 (2)绘制特性Q-H曲线: 1)将流量和扬程对应的数据点画在坐标纸上 2)将各点用平滑曲线连接起来 (3)绘制绘制特性Q-N曲线: 1)将流量和功率对应的数据点画在坐标纸上 2)将各点用平滑曲线连接起来 (4)绘制绘制特性Q-η曲线: 1)将流量和效率对应的数据点画在坐标纸上 2)将各点用平滑曲线连接起来 (5)绘制绘制特性Q- NPSHr曲线: 1)将流量和必需的气蚀余量对应的数据点画在坐标纸上 2)将各点用平滑曲线连接起来 (6)在曲线图上标注曲线名称: Q-H曲线 Q-N曲线 Q-η曲线 Q-NPSHr曲线 (7)在曲线图上标出最佳工况点(效率η最大的点) (8)完善图名,清洁图面(离心泵的特性曲线) (9)回收工具,清理现场。 3.注意事项: (1)坐标末端必须标出箭头

(2)连线必须是平滑曲线,不能是直线。 二.离心泵相关知识的介绍 1.主要部件: 1)包括叶轮和泵轴的旋转部件 2)由泵壳、填料函和轴承组成的静止部件 2.工作原理: 液体随叶轮旋转,在惯性离心力的作用下自叶轮中心被甩向外周并获得了能量,使流向叶轮外周的液体的静压强提高,流速增大。液体离开叶轮进入蜗壳,因蜗壳内流道逐渐扩大而使流体速度减慢,液体的部分动能转换成静压能。于是,具有较高压强的液体从泵的排出口进入排出管路,被输送到所需的管路系统。 图(1)离心泵结构示意图 3.主要性能参数 (1)流量(Q):离心泵在单位时间送到管路系统的液体体积,常用单位为L/s 或m3/h;

水泵变频运行分析修订稿

水泵变频运行分析公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

水泵变频运行的图解分析方法 作者:变频器世界 1 引言 采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 2 水泵变频运行分析的误区 有很多人在水泵变频运行的分析中都习惯引用水泵中的比例定律 流量比例定律 Q1/Q2=n1/n2 扬程比例定律 H1/H2=(n1/n2)2 轴功率比例定律 P1/P2=(n1/n2)3 并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题: (1) 为什么水泵变频运行时频率在30~35Hz以上时才出水 (2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高 绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。 图1 水泵的特性曲线 图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。采用变频调速且没有节流

的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。 按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到 30~35Hz以下时就不出水了,流量已经降到零。 变频泵与工频泵并联 变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌 3 以上分析的误区 (1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。而比例定律是相似定律作为特例演变而来的。即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。 (2) 在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量有关,阻力系数为常数。因此其运行工况与标准工况相同,可以应用比例定律。但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因此比例定律已经不再适用了。 (3) 相似定律在引风机中,如果挡板不变但介质温度和密度发生了变化时,作为特例,其形式也发生了变化,与上述比例定律不同,必须进行温度或密度的修正。 (4) 在水泵方面,比例定律仅适用于水泵的出水口和进水口之间没有高度差,即没有净扬程的情况。比如在没有落差的同一水平面上远距离输水,水泵的输出扬程(压力)仅用来克服管道的阻力,在这种情况下,当转速降到零时,扬程(压力)也降到零,流量也正好降到零,这是理想的水泵运行工况。图1中工作点A和C就完全适合这种工况,可以使用比例定律。 (5) 但实际水泵运行工况不可能达到理想工况,水泵的出水口和进水口之间是有高度差的,有时还很大。在水泵并联运行时,水泵的出水口压力还要受到其它水泵运行压力的影响。并联运行的泵要想出水,水其扬程必须大于其他水泵当时的压力。水泵出口流量并不是总管网流量,总管网流量为所有运行的水泵的流量和。由于管网总流量增大和阻力增大,因此并联运行的水泵扬程更高,工况发生变化,因此比例定律在此也不再适用。 4 单台水泵变频运行的图解分析 (1) 单台水泵变频运行分析的关键,在于水泵进出口水位的高度差,也就是水

离心泵特性曲线的测定

离心泵特性曲线的测定 一、 实验目的 1、了解离心泵的结构与特性,熟悉离心泵的使用。 2、测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3、熟悉孔板流量计的构造、性能及安转方法。 4、测量孔板流量计的孔流系数C 随雷若数Re 变化的规律。 5、测定管路特性曲线。 二、 基本原理 离心泵的主要性能参数有流量Q 、压头H 、效率和轴功率N ,在一定转速下,离心泵的送液能力(流量)可以通过调节出口阀门使之从零至最大值间变化。而且,当期流量变化时,泵的压头、功率、及效率也随之变化。因此要正确选择和使用离心泵,就必须掌握流量变化时,其压头、功率、和效率的变化规律、即查明离心泵的特性曲线。 1、扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2截面,列机械能衡算方程: ∑+++=+++f h g u g p H g u g p 2z 2z 2 2 222111ρρ 因两截面间的管长很短,通常将其阻力项∑f h 归并到泵的损失中,且泵的进出口为等径 管则有 式中 H 0 :泵出口和进口的位差,对于磁力驱动泵32CQ-15装置,H 0= ρ:流体密度,kg/m 3 ; p 1、p 2:分别为泵进、出口的压强,Pa ; u 1、u 2:分别为泵进、出口的流速,m/s ; z 1、z 2:分别为真空表、压力表的安装高度,m 。 2、轴功率N 的测量与计算 N=N 电k 式中—N 电为泵的轴功率,k 为电机传动效率,取k= 3、效率η的计算 泵的效率η是泵的有效功率N e 与轴功率N 的比值。反映泵的水力损失、容积损失和机械损失的大小。泵的有效功率N e 可用下式计算: 故泵的效率为 %100g ?=N HQ ρη 4、泵转速改变时的换算 在绘制特性曲线之前,须将实测数据换算为某一定转速n? 下(可取离心泵的额定转

水泵变频运行特性曲线

一、引言 水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 二、水泵变频运行分析的误区 1.有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律 流量比例定律 Q1/Q2=n1/n2 扬程比例定律 H1/H2=(n1/n2)2 轴功率比例定律 P1/P2=(n1/n2)3 并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题: 1)为什么水泵变频运行时频率在30~35Hz以上时才出水? 2)为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳, 后才随着转速的升高而升高? 2.绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。 图1 水泵的特性曲线 图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量Q A,额定扬程H A,管网理想阻力曲线R1=KQ与流量Q成正比。采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程H B。采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里Q B=Q C。 按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。 3.变频泵与工频泵并联 变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌? 4.以上分析的误区 1)相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(

离心泵特性曲线

一、离心泵的特性曲线定义 当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(HS)等随流量(Q)变化的函数关系,即:H=f(Q);N=F(Q);Hs= Ψ(Q);η = φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。 离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H-Q、N-Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。严格意义上讲,每一台水泵都有特定的特性曲线。 在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。 在生产实践中,水泵的运行工况点是通过管路的特性曲线与水泵的特性曲线确定的(M工况点,见下图)。在选择和使用泵时,使水泵在高效区运行,以保证运转的经济和安全。 二、影响离心泵特性曲线的因素 离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。 1、叶轮出口直径对性能曲线的影响 在叶轮其他几何形状相同的情况下,如果改变叶轮的出口直径,则离心泵的特性曲线平行移动,见下图。

根据这一特性,水泵制造厂和使用单位可采用车削离心泵叶轮外径的方法改变一台泵的性能范围,以使泵的性能更适合实际运行需要。例如,某厂的一台离心式循环泵,其运行压力偏高,为降低压力,将叶轮外径由270mm车削到250mm后,在流量相同的情况下,压力下降,给水泵的电机电流减小,满足了运行的要求。 2、转速与性能曲线的关系 同一台离心泵输送同一种液体,泵的各项性能参数与转速之间的关系式为: Q1/Q2=n1/n2 H1/H2=(n1/n2)2 N1/N2=(n1/n2)2

水泵变频运行的图解分析方法

水泵变频运行的图解分析方法 作者:变频器世界 1 引言 水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 2 水泵变频运行分析的误区 2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律 流量比例定律Q1/Q2=n1/n2 扬程比例定律H1/H2=(n1/n2)2 轴功率比例定律P1/P2=(n1/n2)3 并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题: (1) 为什么水泵变频运行时频率在30~35Hz以上时才出水? (2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高? 2.2 绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。 图1 水泵的特性曲线

图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。 按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。 2.3 变频泵与工频泵并联 变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌? 3 以上分析的误区 (1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。而比例定律是相似定律作为特例演变而来的。即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。 (2) 在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量有关,阻力系数为常数。因此其运行工况与标准工况相同,可以应用比例定律。但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因此比例定律已经不再适用了。 (3) 相似定律在引风机中,如果挡板不变但介质温度和密度发生了变化时,作为特例,其形式也发生了变化,与上述比例定律不同,必须进行温度或密度的修正。 (4) 在水泵方面,比例定律仅适用于水泵的出水口和进水口之间没有高度差,即没有净扬程的情况。比如在没有落差的同一水平面上远距离输水,水泵的输出扬程(压力)仅用来克服管道的阻力,在这种情况下,当转速降到零时,扬程(压力)也降到零,流量也正好降到零,这是理想的水泵运行工况。图1中工作点A和C就完全适合这种工况,可以使用比例定律。 (5) 但实际水泵运行工况不可能达到理想工况,水泵的出水口和进水口之间是有高度差的,有时还很大。在水泵并联运行时,水泵的出水口压力还要受到其它水泵运行压力的影响。并联运行的泵要想出水,水其扬程必须大于其他水泵当时的压力。水泵出口流量并不是总管网流量,总管网流量为所有运行的水泵的流量和。由于管网总流量增大和阻力增大,因此并联运行的水泵扬程更高,工况发生变化,因此比例定律在此也不再适用。

变频水泵节能原理及分析

变频水泵节能原理及分 析 Revised as of 23 November 2020

前言 离心式水泵在我国当前的工农业生产和人民日常生活中起到很大的作用,水泵使用三相异步电动机进行拖动,其流量和压力等控制对象大多采用管道阀门截流的调节方式。这种人为增加管阻的调节方式虽然满足了生产生活所需的对流量的控制,但是浪费了大量的电能,不是一种经济的运行方式。在电力能源越发短缺的今天,找寻并普及一种既经济又方便的水泵运行方式,对节能工作有着重大的意义。 1、离心式水泵工作特性 离心式水泵工作原理 离心式水泵是一种利用水的离心运动的抽水机械。由泵壳、叶轮、泵轴、泵架等组成。起动前应先往泵里灌满水,起动后旋转的叶轮带动泵里的水高速旋转,水作离心运动,向外甩出并被压入出水管。水被甩出后,叶轮附近的压强减小,在转轴附近就形成一个低压区。这里的压强比大气压低得多,外面的水就在大气压的作用下,冲开底阀从进水管进入泵内。冲进来的水在随叶轮高速旋转中又被甩出,并压入出水管。叶轮在动力机带动下不断高速旋转,水就源源不断地从低处被抽到高处。 泵类负载特性分析 为适应用户用水量的变化,调节出水流量,现通常采用两种方法来完成流量的连续调节。一种是利用控制阀或节流阀进行节流,以改变出水流量;另一种是泵的调速控制,调节泵的转速来改变出水流量。图1为水泵调速时的全扬程特性(H—Q)曲线。

图1 水泵调速时的H-Q曲线 在上图中,曲线n0表示,管路中阀门开度不变时,水泵在额定转速下的扬程—流量曲线。R1表示水泵转速不变时,全扬程与流量之间的关系曲线,又称管阻特性曲线。H0为供水量Q接近0时,所需的扬程等于实际扬程,其物理意义是:如果全扬程小于实际扬程,系统将不能供水。 由上图可知,水泵的扬程特性曲线和管网的管阻特性曲线有交叉点,这个点就是水泵工作时既满足扬程特性又满足管阻特性,供水系统工作于平衡状态,系统稳定运行。 在使用管道阀门控制时,当流量要求从QA减小到QB,就必须减小阀门开度。这时供水管道的阻力变大,管阻特性曲线从R1移到R2,扬程则从HA上升到HB,运行工况点从A点移到B点。 在使用水泵调速控制时,当流量要求从QA减小到QB,由于阀门开口度不变,管道的阻力曲线R不变,此时水泵的特性取决于其转速。如果把速度从n0降到n1,运行工况点则从A点移到C点,扬程从HA下降到HC。 根据离心泵特性曲线公式: 其中:P——为泵使用的工况点轴功率(KW); Q——为使用工况点的水压或流量(m2/s); H——为使用工况点的扬程(m); ρ——为输出介质的密度(kg/m3); η——为使用工况点的泵的效率(%)。 由公式1,可得出在使用阀门调节时,水泵运行在B点的轴功率,和用转速调节时,水泵运行在C点的轴功率分别为:

离心泵特性曲线

化工原理实验报告 实验名称:离心泵特性曲线测定 学院:化学工程学院 专业:化学工程与工艺 班级:化工09-5班 姓名:陈茜茜学号 001 同组者姓名:陈俊燕孙彬芳 指导教师:金谊 日期: 2011年9月22日 一、实验目的 1、了解离心泵结构于特性,学会离心泵的操作。 2、掌握离心泵特性曲线测定方法。

二、实验原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下扬程H、轴功率N及效率η与流量V之间的关系曲线,它是流体在泵内流动规律的外部表现形式。由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。 1、扬程H的测定与计算 在泵进、出口取截面列柏努利方程: p 1,p 2 :分别为泵进、出口的压强 N/m2ρ:液体密度 kg/m3 u 1,u 2 :分别为泵进、出口的流量m/s g:重力加速度 m/s2 当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为: 2、轴功率N的测量与计算 N= w-电机输出功率;W 可知:测定泵的轴功率,只需测定电机的输出功率,乘上功率转换中的倍率即可。 3、效率η的计算 泵的效率η为泵的有效功率Ne与轴功率N的比值。有效功率Ne是流体单位时间内自泵得到的功,轴功率N是单位时间内泵从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。 泵的有效功率Ne可用下式计算: Ne=HVρg 故 η=Ne/N=HVρg/N 三、实验装置流程 离心泵性能特性曲线测定系统装置工艺控制流程图和离心泵性能特性曲线测定实验仪控柜面板图如图所示: 四、实验步骤及注意事项 1、关闭进口阀及管道阀门。

水泵变频运行特性曲线修订稿

水泵变频运行特性曲线公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

1 引言 水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 2 水泵变频运行分析的误区 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律 流量比例定律 Q1/Q2=n1/n2 扬程比例定律 H1/H2=(n1/n2)2 轴功率比例定律 P1/P2=(n1/n2)3 并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题: (1) 为什么水泵变频运行时频率在30~35Hz以上时才出水 (2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高 绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。 图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。 按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到 30~35Hz以下时就不出水了,流量已经降到零。 变频泵与工频泵并联 变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌 3 以上分析的误区 (1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。而比

离心泵特性实验报告

离心泵特性测定实验报告 一、实验目的 1.了解离心泵结构与特性,熟悉离心泵的使用; 2.测定离心泵在恒定转速下的操作特性,做出特性曲线; 3.了解电动调节阀、流量计的工作原理和使用方法。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: f h g u g p z H g u g p z ∑+++=+++222 2222111ρρ (1) 由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g p p z z ρ1 212)-+ - 210(H H H ++=表值) (2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ; ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2; p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N 的测量与计算 k N N ?=电 (3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。

水泵变频运行的特性曲线

水泵变频运行的特性曲线(一) 1 引言 水泵冷油泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 2 水泵罗茨真空泵变频运行分析的误区 2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律 流量比例定律Q1/Q2=n1/n2 扬程比例定律H1/H2=(n1/n2)2 轴功率比例定律P1/P2=(n1/n2)3 并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题: (1) 为什么水泵变频运行时频率在30~35Hz以上时才出水? (2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高? 2.2 绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。

图1 水泵的特性曲线 图1中,水泵液下排污泵在工频运行的特性曲线为F1,额定工作点为A,额定流量Q A,额定扬程H A,管网理想阻力曲线R1=K1Q与流量Q成正比。采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程H B。采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里Q B=Q C。 按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到30~35H z以下时就不出水了,流量已经降到零。 2.3 变频泵与工频泵并联 变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?

水泵变频运行特性曲线

1 引言 水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 2 水泵变频运行分析的误区 2.1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律 流量比例定律 Q1/Q2=n1/n2 扬程比例定律 H1/H2=(n1/n2)2 轴功率比例定律 P1/P2=(n1/n2)3 并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题: (1) 为什么水泵变频运行时频率在30~35Hz以上时才出水? (2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高? 2.2 绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示。 图1 水泵的特性曲线 图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q成正比。采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB。采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC。 按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零。 2.3 变频泵与工频泵并联 变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌? 3 以上分析的误区 (1) 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵(或风机)在相似工况下运行时,对应各参数之相互关系的计算公式。而比例定律是相似定律作为特例演变而来的。即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系。 (2) 在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量有关,阻力系数为常数。因此其运行工况与标准工况相同,可以应用比例定律。但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因

水泵的特性曲线

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 2-4离心泵的特性曲线 一、离心泵的特性曲线 压头、流量、功率和效率是离心泵的主要性能参数。这些参数之间的关系,可通过实验测定。离心泵生产部门将其产品的基本性能参数用曲线表示出来,这些曲线称为离心泵的特性曲线(characteristic curves)。以供使用部门选泵和操作时参考。 特性曲线是在固定的转速下测出的,只适用于该转速,故特性曲线图上都注明转速n的数值,图2-6为国产 4B20型离心泵在n=2900r/min时特性曲线。图上绘有三种曲线,即 1.H-Q曲线 H-Q曲线表示泵的流量Q和压头H的关系。离心泵的压头在较大流量范围内是随流量增大而减小的。不同型号的离心泵,H-Q曲线的形状有所不同。如有的曲线较平坦,适用于压头变化不大而流量变化较大的场合;有的曲线比较陡峭,适用于压头变化范围大而不允许流量变化太大的场合。 2.N-Q曲线 N-Q曲线表示泵的流量Q和轴功率N的关系,N随Q的增大而增大。显然,当Q=0时,泵轴消耗的功率最小。因此,启动离心泵时,为了减小启动功率,应将出口阀关闭。 3.η-Q曲线 η-Q曲线表示泵的流量Q和效率η的关系。开始η随Q的增大而增大,达到最大值后,又随Q的增大而下降。该曲线最大值相当于效率最高点。泵在该点所对应的压头和流量下操作,其效率最高。所以该点为离心泵的设计点。

选泵时,总是希望泵在最高效率工作,因为在此条件下操作最为经济合理。但实际上泵往往不可能正好在该条件下运转,因此,一般只能规定一个工作范围,称为泵的高效率区,如图2-6波折线所示。高效率区的效率应不低于最高效率的92%左右。泵在铭牌上所标明的都是最高效率下的流量,压头和功率。离心泵产品目录和说明书上还常常注明最高效率区的流量、压头和功率的范围等。 二.离心泵的转数对特性曲线的影响 离心泵的特性曲线是在一定转速下测定的。当转速由n1改变为n2时,其流量、压头及功率的近似关系为 , , (2-6) 式(2-6)称为比例定律,当转速变化小于20%时,可认为效率不变,用上式进行计算误差不大。 三.叶轮直径对特性曲线的影响 当叶轮直径变化不大,转速不变时,叶轮直径、流量、压头及功率之间的近似关系为 , , (2-7) 式(2-7)称为切割定律。 四.液体物理性质的影响 泵生产部门所提供的特性曲线是用清水作实验求得的。当所输送的液体性质与水相差较大时,要考虑粘度及密度对特性曲线的影响。 1.粘度的影响所输送的液体粘度愈大,泵体内能量损失愈多。结果泵的压头、流量都要减小,效率下降,而轴功率则要增大,所以特性曲线改变。 2.密度的影响离心泵的压头与密度无关,这可以从概念上加以说明。液体在一定转速下,所受的离心力与液体的密度成正比。但液体由于离心力的作用而取得的压头,相当于由离心力除以叶轮出口截面积所形成的压力,再除以液体密度和重力加速度的乘积。这样密度对压头的影响就

水泵变频运行的特性曲线

水泵变频运行的特性曲线(一) 1 引言 水泵冷油泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 2 水泵罗茨真空泵变频运行分析的误区 2。1 有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律Q1/Q2=n1/n2 扬程比例定律 H1/H2=(n1/n2)2 轴功率比例定律P1/P2=(n1/n2)3 并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题: (1) 为什么水泵变频运行时频率在30~35Hz以上时才出水? (2) 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一 个突跳,然后才随着转速的升高而升高? 2。2 绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示.

图1水泵的特性曲线 图1中,水泵液下排污泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=K1Q与流量Q成正比.采用节流调节时的实际管网阻力曲线R2,工作点为B,流量Q B,扬程HB。采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量Q C,扬程H C;这里QB=Q C。 按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到30~35Hz 以下时就不出水了,流量已经降到零。 2.3 变频泵与工频泵并联 变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?

离心泵特性曲线

离心泵特性曲线 首先离心泵的特性曲线图如下 接下来是对于这个图的一些解读: 离心泵的性能曲线包括流量-扬程(Q-H)曲线、流量-功率曲线(Q-N)、流量-效率曲线(Q-?)以及流量-汽蚀余量(Q-NPSHr)曲线。水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。 它是离心泵的基本的性能曲线。比转速小于80的离心泵具有上升和下降的特点称驼峰性能曲线。比转速在80~150之间的离心泵具有平坦的性能曲线。比转数在150以上的离心泵具有陡降性能曲线。一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。上述曲线都是在一定的转速下,以试验的方法求得的。不同的转速,可以通过公式进行换算。在性能曲线上,对于一个任意的流量点,都可以找出一组与其相对应的扬程、功率、效率以及汽蚀余量值。通常,把这一组相对应的参数称为工作状况,简称工况或工况点。对于离心泵最高效率点的工况称为最佳工况点。 泵在最高效率点工况下运行是最理想的。但是用户要求的性能千差万别,不一定和最高效率

点下的性能相一致。要想使每一个用户要求的泵都在泵最高效率点下运行,那样做需要的泵规格就太多了。为此,规定一个范围(通常以效率下降5%~8%为界),称为泵的工作范围。我们利用叶轮的切割或者变频技术可以扩大泵的工作范围。 我们把同一类型的水泵,将它的各种不同比转数以及相同比转数不同口径的泵的工作区域集中画在同一个Q-H坐标平面上。为了使图面上大泵的方块不致太大,坐标可以采用对数坐标,于是就得到了该类型泵的系列型谱。各类型的泵均有各自的型谱,使用户选用水泵十分方便。 每种系列用几种比转数的水力模型,泵的口径按一定的流量间隔比变化。同一口径的泵扬程也按一定的间隔变化。ISO 2858规定了标准的型谱

水泵变频运行的特性曲线

水泵变频运行的特性曲线(一) 1引言 水泵冷油泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述。但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析。 2水泵罗茨真空泵变频运行分析的误区 2.1有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律 流量比例定律扬程比例定律Q1/Q2=n1/n2 H1/H2=(n1/n2) 2 3 轴功率比例定律 P1/P2=(n1/n2) 并由此得出结论 :水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的 3次方成正比。 以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如 下问题 : (1)为什么水泵变频运行时频率在 30~35Hz以上时才出水? (2)为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个 突跳,然后才随着转速的升高而升高? 2.2绘制水泵的性能特性曲线和管道阻力曲线 很多人绘制出水泵的性能特性曲线和管道阻力曲线如图 1所示。

图 1 水泵的特性曲线 图 1中,水泵液下排污泵在工频运行的特性曲线为 F,额定工作点为 A,额定 1 流量 Q,额定扬程 H,管网理想阻力曲线 R =K Q与流量 Q成正比。采用节流调 A A 1 1 节时的实际管网阻力曲线 R,工作点为 B,流量 Q,扬程 H。采用变频调速且没 2 B B 有节流的特性曲线 F,理想工作点为 C,流量 Q,扬程 H ;这里 Q =Q。 2 C C B C 按图 1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率 也降到零,但这与实际情况是不相符的。实际水泵变频调速时,频率降到30~35H z以下时就不出水了,流量已经降到零。 2.3变频泵与工频泵并联 变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小, 因此怀疑变频泵是否会不出水?是否工频泵的水会向变频泵倒灌?

相关主题