搜档网
当前位置:搜档网 › ARM指令大全

ARM指令大全

ARM指令大全
ARM指令大全

目录

一、跳转指令 (4)

1、B指令 (4)

2、BL指令 (4)

3、BLX指令 (4)

4、BX指令 (5)

二、数据处理指令 (5)

1、MOV指令 (5)

2、MVN指令 (5)

3、CMP指令 (6)

4、CMN指令 (6)

5、TST指令 (6)

6、TEQ指令 (7)

7、ADD指令 (7)

8、ADC指令 (7)

9、SUB指令 (7)

10、~~~~C指令 (8)

11、R~~~~指令 (8)

12、RSC指令 (8)

13、AND指令 (9)

14、ORR指令 (9)

15、EOR指令 (9)

16、BIC指令 (9)

三、法指令与乘加指令 (10)

1、MUL指令 (10)

2、MLA指令 (10)

3、SMULL指令 (10)

4、SMLAL指令 (11)

5、UMULL指令 (11)

6、UMLAL指令 (11)

四、程序状态寄存器访问指令 (12)

1、MRS指令 (12)

2、MSR指令 (12)

五、加载/存储指令 (12)

1、LDR指令 (12)

2、LDRB指令 (13)

3、LDRH指令 (14)

4、STR指令 (14)

5、STRB指令 (14)

6、STRH指令 (15)

六、批量数据加载/存储指令 (15)

LDM(或STM)指令 (15)

IA (15)

IB (15)

DA (15)

DB (15)

FD (15)

ED (15)

FA (15)

EA (15)

七、数据交换指令 (16)

1、SWP指令 (16)

2、SWPB指令 (16)

八、移位指令(操作) (16)

1、LSL(或ASL) (17)

2、LSR (17)

3、ASR (17)

4、ROR (17)

5、RRX (17)

九、协处理器指令 (18)

1、CDP指令 (18)

2、LDC指令 (18)

3、STC指令 (18)

4、MCR指令 (19)

5、MRC指令 (19)

十、异常产生指令 (19)

1、SWI指令 (19)

2、BKPT指令 (20)

一、符号定义(Symbol Definition)伪指令 (20)

1、GBLA、GBLL和GBLS (20)

2、LCLA、LCLL和LCLS (21)

3、SETA、SETL和SETS (22)

4、RLIST (22)

二、数据定义(Data Definition)伪指令 (23)

1、DCB (23)

2、DCW(或DCWU) (23)

3、DCD(或DCDU) (24)

4、DCFD(或DCFDU) (24)

5、DCFS(或DCFSU) (25)

6、DCQ(或DCQU) (25)

7、SPACE (25)

8、MAP (26)

9、FILED (26)

三、汇编控制(Assembly Control)伪指令 (27)

1、IF、ELSE、ENDIF (27)

2、WHILE、WEND (28)

3、MACRO、MEND (29)

4、MEXIT (29)

四、其他常用的伪指令 (30)

1、AREA (30)

2、ALIGN (31)

3、CODE16、CODE32 (31)

4、ENTRY (32)

5、END (32)

6、EQU (33)

7、EXPORT(或GLOBAL) (33)

8、IMPORT (34)

9、EXTERN (35)

10、GET(或INCLUDE) (35)

11、INCBIN (36)

12、RN (36)

13、ROUT (37)

一、跳转指令

跳转指令用于实现程序流程的跳转,在ARM程序中有两种方法可以实现程序流程的跳转:Ⅰ.使用专门的跳转指令。

Ⅱ.直接向程序计数器PC写入跳转地址值。

通过向程序计数器PC写入跳转地址值,可以实现在4GB的地址空间中的任意跳转,在跳转之前结合使用

MOV LR,PC

等类似指令,可以保存将来的返回地址值,从而实现在4GB连续的线性地址空间的子程序调用。

ARM指令集中的跳转指令可以完成从当前指令向前或向后的32MB的地址空间的跳转,包括以下4条指令:

1、B指令

B指令的格式为:

B{条件} 目标地址

B指令是最简单的跳转指令。一旦遇到一个B 指令,ARM 处理器将立即跳转到给定的目标地址,从那里继续执行。注意存储在跳转指令中的实际值是相对当前PC值的一个偏移量,而不是一个绝对地址,它的值由汇编器来计算(参考寻址方式中的相对寻址)。它是24 位有符号数,左移两位后有符号扩展为32 位,表示的有效偏移为26 位(前后32MB的地址空间)。以下指令:

B Label ;程序无条件跳转到标号Label处执行

CMP R1,#0 ;当CPSR寄存器中的Z条件码置位时,程序跳转到标号Label处执行

BEQ Label

2、BL指令

BL指令的格式为:

BL{条件} 目标地址

BL 是另一个跳转指令,但跳转之前,会在寄存器R14中保存PC的当前内容,因此,可以通过将R14 的内容重新加载到PC中,来返回到跳转指令之后的那个指令处执行。该指令是实现子程序调用的一个基本但常用的手段。以下指令:

BL Label ;当程序无条件跳转到标号Label处执行时,同时将当前的PC值保存

到R14中

3、BLX指令

BLX指令的格式为:

BLX 目标地址

BLX指令从ARM指令集跳转到指令中所指定的目标地址,并将处理器的工作状态有ARM状态切换到Thumb状态,该指令同时将PC的当前内容保存到寄存器R14中。因此,当子程序使用Thumb指令集,而调用者使用ARM指令集时,可以通过BLX指令实现子程序的调用和处理器工作状态的切换。同时,子程序的返回可以通过将寄存器R14值复制到PC中来完成。

4、BX指令

BX指令的格式为:

BX{条件} 目标地址

BX指令跳转到指令中所指定的目标地址,目标地址处的指令既可以是ARM指令,也可以是Thumb指令。

二、数据处理指令数据处理指令可分为数据传送指令、算术逻辑运算指令和比较指令等。

数据传送指令用于在寄存器和存储器之间进行数据的双向传输。

算术逻辑运算指令完成常用的算术与逻辑的运算,该类指令不但将运算结果保存在目的寄存器中,同时更新CPSR中的相应条件标志位。

比较指令不保存运算结果,只更新CPSR中相应的条件标志位。

数据处理指令共以下16条。

1、MOV指令

MOV指令的格式为:

MOV{条件}{S} 目的寄存器,源操作数

MOV指令可完成从另一个寄存器、被移位的寄存器或将一个立即数加载到目的寄存器。其中S选项决定指令的操作是否影响CPSR中条件标志位的值,当没有S时指令不更新CPSR 中条件标志位的值。

指令示例:

MOV R1,R0 ;将寄存器R0的值传送到寄存器R1

MOV PC,R14 ;将寄存器R14的值传送到PC,常用于子程序返回MOV R1,R0,LSL#3 ;将寄存器R0的值左移3位后传送到R1

2、MVN指令

MVN指令的格式为:

MVN{条件}{S} 目的寄存器,源操作数

MVN指令可完成从另一个寄存器、被移位的寄存器、或将一个立即数加载到目的寄存器。与MOV指令不同之处是在传送之前按位被取反了,即把一个被取反的值传送到目的寄存器中。其中S决定指令的操作是否影响CPSR中条件标志位的值,当没有S时指令不更新CPSR 中条件标志位的值。

指令示例:

MVN R0,#0 ;将立即数0取反传送到寄存器R0中,完成后R0=-1 3、CMP指令

CMP指令的格式为:

CMP{条件} 操作数1,操作数2

CMP指令用于把一个寄存器的内容和另一个寄存器的内容或立即数进行比较,同时更新CPSR中条件标志位的值。该指令进行一次减法运算,但不存储结果,只更改条件标志位。标志位表示的是操作数1与操作数2的关系(大、小、相等),例如,当操作数1大于操作操作数2,则此后的有GT 后缀的指令将可以执行。

指令示例:

CMP R1,R0 ;将寄存器R1的值与寄存器R0的值相减,并根据

结果设置CPSR的标志位

CMPR1,#100 ;将寄存器R1的值与立即数100相减,并根据结果

设置CPSR的标志位

4、CMN指令

CMN指令的格式为:

CMN{条件} 操作数1,操作数2

CMN指令用于把一个寄存器的内容和另一个寄存器的内容或立即数取反后进行比较,同时更新CPSR中条件标志位的值。该指令实际完成操作数1和操作数2相加,并根据结果更改条件标志位。

指令示例:

CMN R1,R0 ;将寄存器R1的值与寄存器R0的值相加,并根据结果

设置CPSR的标志位

CMNR1,#100 ;将寄存器R1的值与立即数100相加,并根据结果设置

CPSR的标志位

5、TST指令

TST指令的格式为:

TST{条件} 操作数1,操作数2

TST指令用于把一个寄存器的内容和另一个寄存器的内容或立即数进行按位的与运算,并根据运算结果更新CPSR中条件标志位的值。操作数1是要测试的数据,而操作数2是一个位掩码,该指令一般用来检测是否设置了特定的位。

指令示例:

TST R1,#%1 ;用于测试在寄存器R1中是否设置了最低位(%表示二进制数)

TSTR1,#0xffe ;将寄存器R1的值与立即数0xffe按位与,并根据结果设置CPSR 的标志位

6、TEQ指令

TEQ指令的格式为:

TEQ{条件} 操作数1,操作数2

TEQ指令用于把一个寄存器的内容和另一个寄存器的内容或立即数进行按位的异或运算,并根据运算结果更新CPSR中条件标志位的值。该指令通常用于比较操作数1和操作数2是否相等。

指令示例:

TEQ R1,R2 ;将寄存器R1的值与寄存器R2的值按位异或,并根据

结果设置CPSR的标志位

7、ADD指令

ADD指令的格式为:

ADD{条件}{S} 目的寄存器,操作数1,操作数2

ADD指令用于把两个操作数相加,并将结果存放到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。

指令示例:

ADD R0,R1,R2 ;R0 = R1 + R2

ADD R0,R1,#256 ;R0 = R1 + 256

ADD R0,R2,R3,LSL#1 ;R0 = R2 + (R3 << 1)

8、ADC指令

ADC指令的格式为:

ADC{条件}{S} 目的寄存器,操作数1,操作数2

ADC指令用于把两个操作数相加,再加上CPSR中的C条件标志位的值,并将结果存放到目的寄存器中。它使用一个进位标志位,这样就可以做比32位大的数的加法,注意不要忘记设置S后缀来更改进位标志。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。

以下指令序列完成两个128位数的加法,第一个数由高到低存放在寄存器R7~R4,第二个数由高到低存放在寄存器R11~R8,运算结果由高到低存放在寄存器R3~R0:

ADDS R0,R4,R8 ;加低端的字

ADCS R1,R5,R9 ;加第二个字,带进位

ADCS R2,R6,R10 ;加第三个字,带进位

ADC R3,R7,R11 ;加第四个字,带进位

9、SUB指令

SUB指令的格式为:

SUB{条件}{S} 目的寄存器,操作数1,操作数2

SUB指令用于把操作数1减去操作数2,并将结果存放到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令可用于有符号数或无符号数的减法运算。

指令示例:

SUB R0,R1,R2 ;R0 = R1 - R2

SUB R0,R1,#256 ;R0 = R1 - 256

SUB R0,R2,R3,LSL#1 ;R0 = R2 - (R3 << 1)

10、~~~~C指令

~~~~C指令的格式为:

~~~~C{条件}{S} 目的寄存器,操作数1,操作数2

~~~~C指令用于把操作数1减去操作数2,再减去CPSR中的C条件标志位的反码,并将结果存放到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令使用进位标志来表示借位,这样就可以做大于32位的减法,注意不要忘记设置S后缀来更改进位标志。该指令可用于有符号数或无符号数的减法运算。指令示例:

SUBS R0,R1,R2 ;R0 = R1 - R2 - !C,并根据结果设置

CPSR的进位标志位

11、R~~~~指令

R~~~~指令的格式为:

R~~~~{条件}{S} 目的寄存器,操作数1,操作数2

R~~~~指令称为逆向减法指令,用于把操作数2减去操作数1,并将结果存放到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令可用于有符号数或无符号数的减法运算。

指令示例:

R~~~~ R0,R1,R2 ;R0 = R2 –R1

R~~~~ R0,R1,#256 ;R0 = 256 –R1

R~~~~ R0,R2,R3,LSL#1 ;R0 = (R3 << 1) - R2

12、RSC指令

RSC指令的格式为:

RSC{条件}{S} 目的寄存器,操作数1,操作数2

RSC指令用于把操作数2减去操作数1,再减去CPSR中的C条件标志位的反码,并将结果存放到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令使用进位标志来表示借位,这样就可以做大于32位的减法,注意不要忘记设置S后缀来更改进位标志。该指令可用于有符号数或无符号数的减法运算。指令示例:

RSC R0,R1,R2 ;R0 = R2 –R1 - !C

13、AND指令

AND指令的格式为:

AND{条件}{S} 目的寄存器,操作数1,操作数2

AND指令用于在两个操作数上进行逻辑与运算,并把结果放置到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令常用于屏蔽操作数1的某些位。

指令示例:

AND R0,R0,#3 ;该指令保持R0的0、1位,其余位清零。

14、ORR指令

ORR指令的格式为:

ORR{条件}{S} 目的寄存器,操作数1,操作数2

ORR指令用于在两个操作数上进行逻辑或运算,并把结果放置到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令常用于设置操作数1的某些位。

指令示例:

ORR R0,R0,#3 ;该指令设置R0的0、1位,其余位保持不变。

15、EOR指令

EOR指令的格式为:

EOR{条件}{S} 目的寄存器,操作数1,操作数2

EOR指令用于在两个操作数上进行逻辑异或运算,并把结果放置到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。该指令常用于反转操作数1的某些位。

指令示例:

EOR R0,R0,#3 ;该指令反转R0的0、1位,其余位保持不变。

16、BIC指令

BIC指令的格式为:

BIC{条件}{S} 目的寄存器,操作数1,操作数2

BIC指令用于清除操作数1的某些位,并把结果放置到目的寄存器中。操作数1应是一个寄存器,操作数2可以是一个寄存器,被移位的寄存器,或一个立即数。操作数2为32位的掩码,如果在掩码中设置了某一位,则清除这一位。未设置的掩码位保持不变。

指令示例:

BIC R0,R0,#%1011 ;该指令清除R0 中的位0、1、和3,其余的位保持不变。

三、法指令与乘加指令

ARM微处理器支持的乘法指令与乘加指令共有6条,可分为运算结果为32位和运算结果为64位两类,与前面的数据处理指令不同,指令中的所有操作数、目的寄存器必须为通用寄存器,不能对操作数使用立即数或被移位的寄存器,同时,目的寄存器和操作数1必须是不同的寄存器。

乘法指令与乘加指令共有以下6条:

1、MUL指令

MUL指令的格式为:

MUL{条件}{S} 目的寄存器,操作数1,操作数2

MUL指令完成将操作数1与操作数2的乘法运算,并把结果放置到目的寄存器中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的有符号数或无符号数。

指令示例:

MUL R0,R1,R2 ;R0 = R1 ×R2

MULS R0,R1,R2 ;R0 = R1 ×R2,同时设置CPSR中的相关条件标志位

2、MLA指令

MLA指令的格式为:

MLA{条件}{S} 目的寄存器,操作数1,操作数2,操作数3

MLA指令完成将操作数1与操作数2的乘法运算,再将乘积加上操作数3,并把结果放置到目的寄存器中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的有符号数或无符号数。

指令示例:

MLA R0,R1,R2,R3 ;R0 = R1 ×R2 + R3

MLAS R0,R1,R2,R3 ;R0 = R1 ×R2 + R3,同时设置CPSR中的相关条件标志位

3、SMULL指令

SMULL指令的格式为:

SMULL{条件}{S} 目的寄存器Low,目的寄存器低High,操作数1,操作数2

SMULL指令完成将操作数1与操作数2的乘法运算,并把结果的低32位放置到目的寄存器Low中,结果的高32位放置到目的寄存器High中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的有符号数。

指令示例:

SMULL R0,R1,R2,R3 ;R0 = (R2 ×R3)的低32位

;R1 = (R2 ×R3)的高32位

4、SMLAL指令

SMLAL指令的格式为:

SMLAL{条件}{S} 目的寄存器Low,目的寄存器低High,操作数1,操作数2

SMLAL指令完成将操作数1与操作数2的乘法运算,并把结果的低32位同目的寄存器Low 中的值相加后又放置到目的寄存器Low中,结果的高32位同目的寄存器High中的值相加后又放置到目的寄存器High中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的有符号数。

对于目的寄存器Low,在指令执行前存放64位加数的低32位,指令执行后存放结果的低32位。

对于目的寄存器High,在指令执行前存放64位加数的高32位,指令执行后存放结果的高32位。

指令示例:

SMLAL R0,R1,R2,R3 ;R0 = (R2 ×R3)的低32位+R0

;R1 = (R2 ×R3)的高32位+R1

5、UMULL指令

UMULL指令的格式为:

UMULL{条件}{S} 目的寄存器Low,目的寄存器低High,操作数1,操作数2

UMULL指令完成将操作数1与操作数2的乘法运算,并把结果的低32位放置到目的寄存器Low中,结果的高32位放置到目的寄存器High中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的无符号数。

指令示例:

UMULL R0,R1,R2,R3 ;R0 = (R2 ×R3)的低32位

;R1 = (R2 ×R3)的高32位

6、UMLAL指令

UMLAL指令的格式为:

UMLAL{条件}{S} 目的寄存器Low,目的寄存器低High,操作数1,操作数2

UMLAL指令完成将操作数1与操作数2的乘法运算,并把结果的低32位同目的寄存器Low 中的值相加后又放置到目的寄存器Low中,结果的高32位同目的寄存器High中的值相加后又放置到目的寄存器High中,同时可以根据运算结果设置CPSR中相应的条件标志位。其中,操作数1和操作数2均为32位的无符号数。

对于目的寄存器Low,在指令执行前存放64位加数的低32位,指令执行后存放结果的低32位。

对于目的寄存器High,在指令执行前存放64位加数的高32位,指令执行后存放结果的高32位。

指令示例:

UMLAL R0,R1,R2,R3 ;R0 = (R2 ×R3)的低32位+R0

;R1 = (R2 ×R3)的高32位+R1

四、程序状态寄存器访问指令

1、MRS指令

MRS指令的格式为:

MRS{条件} 通用寄存器,程序状态寄存器(CPSR或SPSR)

MRS指令用于将程序状态寄存器的内容传送到通用寄存器中。该指令一般用在以下两种情况:

Ⅰ.当需要改变程序状态寄存器的内容时,可用MRS将程序状态寄存器的内容读入通用寄存器,修改后再写回程序状态寄存器。

Ⅱ.当在异常处理或进程切换时,需要保存程序状态寄存器的值,可先用该指令读出程序状态寄存器的值,然后保存。

指令示例:

MRS R0,CPSR ;传送CPSR的内容到R0

MRS R0,SPSR ;传送SPSR的内容到R0

2、MSR指令

MSR指令的格式为:

MSR{条件} 程序状态寄存器(CPSR或SPSR)_<域>,操作数

MSR指令用于将操作数的内容传送到程序状态寄存器的特定域中。其中,操作数可以为通用寄存器或立即数。<域>用于设置程序状态寄存器中需要操作的位,32位的程序状态寄存器可分为4个域:

位[31:24]为条件标志位域,用f表示;

位[23:16]为状态位域,用s表示;

位[15:8]为扩展位域,用x表示;

位[7:0]为控制位域,用c表示;

该指令通常用于恢复或改变程序状态寄存器的内容,在使用时,一般要在MSR指令中指明将要操作的域。

指令示例:

MSR CPSR,R0 ;传送R0的内容到CPSR

MSR SPSR,R0 ;传送R0的内容到SPSR

MSR CPSR_c,R0 ;传送R0的内容到SPSR,但仅仅修改CPSR中的控制位域五、加载/存储指令

ARM微处理器支持加载/存储指令用于在寄存器和存储器之间传送数据,加载指令用于将存储器中的数据传送到寄存器,存储指令则完成相反的操作。常用的加载存储指令如下:

1、LDR指令

LDR指令的格式为:

LDR{条件} 目的寄存器,<存储器地址>

LDR指令用于从存储器中将一个32位的字数据传送到目的寄存器中。该指令通常用于从存储器中读取32位的字数据到通用寄存器,然后对数据进行处理。当程序计数器PC作为目的寄存器时,指令从存储器中读取的字数据被当作目的地址,从而可以实现程序流程的跳转。该指令在程序设计中比较常用,且寻址方式灵活多样,请读者认真掌握。

指令示例:

LDR R0,[R1] ;将存储器地址为R1的字数据读入寄存器R0。LDR R0,[R1,R2] ;将存储器地址为R1+R2的字数据读入寄存器R0。LDR R0,[R1,#8] ;将存储器地址为R1+8的字数据读入寄存器R0。

LDR R0,[R1,R2] !;将存储器地址为R1+R2的字数据读入寄存器R0,

并将新地址R1+R2写入R1。

LDR R0,[R1,#8] !;将存储器地址为R1+8的字数据读入寄存器R0,

并将新地址R1+8写入R1。

LDR R0,[R1],R2 ;将存储器地址为R1的字数据读入寄存器R0,并

将新地址R1+R2写入R1。

LDR R0,[R1,R2,LSL#2]!;将存储器地址为R1+R2×4的字数据读入寄存器

R0,并将新地址R1+R2×4写入R1。

LDRR0,[R1],R2,LSL#2 ;将存储器地址为R1的字数据读入寄存器R0,并将新地址R1+R2×4写入R1。

2、LDRB指令

LDRB指令的格式为:

LDR{条件}B 目的寄存器,<存储器地址>

LDRB指令用于从存储器中将一个8位的字节数据传送到目的寄存器中,同时将寄存器的高24位清零。该指令通常用于从存储器中读取8位的字节数据到通用寄存器,然后对数据进行处理。当程序计数器PC作为目的寄存器时,指令从存储器中读取的字数据被当作目的地址,从而可以实现程序流程的跳转。

指令示例:

LDRB R0,[R1] ;将存储器地址为R1的字节数据读入寄存器R0,并

将R0的高24位清零。

LDRB R0,[R1,#8] ;将存储器地址为R1+8的字节数据读入寄存器

R0,并将R0的高24位清零。

LDRH指令的格式为:

LDR{条件}H 目的寄存器,<存储器地址>

LDRH指令用于从存储器中将一个16位的半字数据传送到目的寄存器中,同时将寄存器的高16位清零。该指令通常用于从存储器中读取16位的半字数据到通用寄存器,然后对数据进行处理。当程序计数器PC作为目的寄存器时,指令从存储器中读取的字数据被当作目的地址,从而可以实现程序流程的跳转。

指令示例:

LDRH R0,[R1] ;将存储器地址为R1的半字数据读入寄存器R0,并

将R0的高16位清零。

LDRH R0,[R1,#8] ;将存储器地址为R1+8的半字数据读入寄存器R0,

并将R0的高16位清零。

LDRHR0,[R1,R2] ;将存储器地址为R1+R2的半字数据读入寄存器

R0,并将R0的高16位清零。

4、STR指令

STR指令的格式为:

STR{条件} 源寄存器,<存储器地址>

STR指令用于从源寄存器中将一个32位的字数据传送到存储器中。该指令在程序设计中比较常用,且寻址方式灵活多样,使用方式可参考指令LDR。

指令示例:

STR R0,[R1],#8 ;将R0中的字数据写入以R1为地址的存储器中,并

将新地址R1+8写入R1。

STR R0,[R1,#8] ;将R0中的字数据写入以R1+8为地址的存储器中。5、STRB指令

STRB指令的格式为:

STR{条件}B 源寄存器,<存储器地址>

STRB指令用于从源寄存器中将一个8位的字节数据传送到存储器中。该字节数据为源寄存器中的低8位。

指令示例:

STRB R0,[R1] ;将寄存器R0中的字节数据写入以R1为地址的存储

器中。

STRB R0,[R1,#8] ;将寄存器R0中的字节数据写入以R1+8为地址的

存储器中。

STRH指令的格式为:

STR{条件}H 源寄存器,<存储器地址>

STRH指令用于从源寄存器中将一个16位的半字数据传送到存储器中。该半字数据为源寄存器中的低16位。

指令示例:

STRH R0,[R1] ;将寄存器R0中的半字数据写入以R1为地址的存储器中。

STRH R0,[R1,#8] ;将寄存器R0中的半字数据写入以R1+8为地址的存储器中。

六、批量数据加载/存储指令

ARM微处理器所支持批量数据加载/存储指令可以一次在一片连续的存储器单元和多个寄存器之间传送数据,批量加载指令用于将一片连续的存储器中的数据传送到多个寄存器,批量数据存储指令则完成相反的操作。常用的加载存储指令如下:

LDM(或STM)指令

LDM(或STM)指令的格式为:

LDM(或STM){条件}{类型} 基址寄存器{!},寄存器列表{∧}

LDM(或STM)指令用于从由基址寄存器所指示的一片连续存储器到寄存器列表所指示的多个寄存器之间传送数据,该指令的常见用途是将多个寄存器的内容入栈或出栈。其中,{类型}为以下几种情况:

IA每次传送后地址加1;

IB每次传送前地址加1;

DA每次传送后地址减1;

DB每次传送前地址减1;

FD满递减堆栈;

ED空递减堆栈;

FA满递增堆栈;

EA空递增堆栈;

{!}为可选后缀,若选用该后缀,则当数据传送完毕之后,将最后的地址写入基址寄存器,否则基址寄存器的内容不改变。

基址寄存器不允许为R15,寄存器列表可以为R0~R15的任意组合。

{∧}为可选后缀,当指令为LDM且寄存器列表中包含R15,选用该后缀时表示:除了正常的数据传送之外,还将SPSR复制到CPSR。同时,该后缀还表示传入或传出的是用户模式下的寄存器,而不是当前模式下的寄存器。

指令示例:

STMFD R13!,{R0,R4-R12,LR} ;将寄存器列表中的寄存器(R0,R4到

R12,LR)存入堆栈。

LDMFD R13!,{R0,R4-R12,PC} ;将堆栈内容恢复到寄存器(R0,R4到

R12,LR)。

七、数据交换指令

1、SWP指令

SWP指令的格式为:

SWP{条件} 目的寄存器,源寄存器1,[源寄存器2]

SWP指令用于将源寄存器2所指向的存储器中的字数据传送到目的寄存器中,同时将源寄存器1中的字数据传送到源寄存器2所指向的存储器中。显然,当源寄存器1和目的寄存器为同一个寄存器时,指令交换该寄存器和存储器的内容。

指令示例:

SWP R0,R1,[R2] ;将R2所指向的存储器中的字数据传送到R0,同时将R1中的字数据传送到R2所指向的存储单元。

SWP R0,R0,[R1] ;该指令完成将R1所指向的存储器中的字数据与R0中的数据

交换。

2、SWPB指令

SWPB指令的格式为:

SWP{条件}B 目的寄存器,源寄存器1,[源寄存器2]

SWPB指令用于将源寄存器2所指向的存储器中的字节数据传送到目的寄存器中,目的寄存器的高24清零,同时将源寄存器1中的字节数据传送到源寄存器2所指向的存储器中。显然,当源寄存器1和目的寄存器为同一个寄存器时,指令交换该寄存器和存储器的内容。指令示例:

SWPB R0,R1,[R2] ;将R2所指向的存储器中的字节数据传送到R0,R0的高24

位清零,同时将R1中的低8位数据传送到R2所指向的存储单元。

SWPB R0,R0,[R1] ;该指令完成将R1所指向的存储器中的字节数据与

R0中的低8位数据交换。

八、移位指令(操作)

1、LSL(或ASL)

LSL(或ASL)操作的格式为:

通用寄存器,LSL(或ASL)操作数

LSL(或ASL)可完成对通用寄存器中的内容进行逻辑(或算术)的左移操作,按操作数所指定的数量向左移位,低位用零来填充。其中,操作数可以是通用寄存器,也可以是立即数(0~31)。

操作示例

MOV R0, R1, LSL#2 ;将R1中的内容左移两位后传送到R0中。

2、LSR

LSR操作的格式为:

通用寄存器,LSR 操作数

LSR可完成对通用寄存器中的内容进行右移的操作,按操作数所指定的数量向右移位,左端用零来填充。其中,操作数可以是通用寄存器,也可以是立即数(0~31)。

操作示例:

MOV R0, R1, LSR#2 ;将R1中的内容右移两位后传送到R0中,左端用

零来填充。

3、ASR

ASR操作的格式为:

通用寄存器,ASR 操作数

ASR可完成对通用寄存器中的内容进行右移的操作,按操作数所指定的数量向右移位,左端用第31位的值来填充。其中,操作数可以是通用寄存器,也可以是立即数(0~31)。

操作示例:

MOV R0, R1, ASR#2 ;将R1中的内容右移两位后传送到R0中,左端用

第31位的值来填充。

4、ROR

ROR操作的格式为:

通用寄存器,ROR 操作数

ROR可完成对通用寄存器中的内容进行循环右移的操作,按操作数所指定的数量向右循环移位,左端用右端移出的位来填充。其中,操作数可以是通用寄存器,也可以是立即数(0~31)。显然,当进行32位的循环右移操作时,通用寄存器中的值不改变。

操作示例:

MOV R0, R1, ROR#2 ;将R1中的内容循环右移两位后传送到R0中。5、RRX

RRX操作的格式为:

通用寄存器,RRX 操作数

RRX可完成对通用寄存器中的内容进行带扩展的循环右移的操作,按操作数所指定的数量向右循环移位,左端用进位标志位C来填充。其中,操作数可以是通用寄存器,也可以是立即

数(0~31)。

操作示例:

MOV R0, R1, RRX#2 ;将R1中的内容进行带扩展的循环右移两位后传送到R0中。

九、协处理器指令

1、CDP指令

CDP指令的格式为:

CDP{条件} 协处理器编码,协处理器操作码1,目的寄存器,源寄存器1,源寄存器2,协处理器操作码2。

CDP指令用于ARM处理器通知ARM协处理器执行特定的操作,若协处理器不能成功完成特定的操作,则产生未定义指令异常。其中协处理器操作码1和协处理器操作码2为协处理器将要执行的操作,目的寄存器和源寄存器均为协处理器的寄存器,指令不涉及ARM处理器的寄存器和存储器。

指令示例:

CDP P3,2,C12,C10,C3,4 ;该指令完成协处理器P3的初始化

2、LDC指令

LDC指令的格式为:

LDC{条件}{L} 协处理器编码,目的寄存器,[源寄存器]

LDC指令用于将源寄存器所指向的存储器中的字数据传送到目的寄存器中,若协处理器不能成功完成传送操作,则产生未定义指令异常。其中,{L}选项表示指令为长读取操作,如用于双精度数据的传输。

指令示例:

LDC P3,C4,[R0] ;将ARM处理器的寄存器R0所指向的存储器中

的字数据传送到协处理器P3的寄存器C4中。

3、STC指令

STC指令的格式为:

STC{条件}{L} 协处理器编码,源寄存器,[目的寄存器]

STC指令用于将源寄存器中的字数据传送到目的寄存器所指向的存储器中,若协处理器不能成功完成传送操作,则产生未定义指令异常。其中,{L}选项表示指令为长读取操作,如用于双精度数据的传输。

指令示例:

STC P3,C4,[R0] ;将协处理器P3的寄存器C4中的字数据传送到

ARM处理器的寄存器R0所指向的存储器中。

MCR指令的格式为:

MCR{条件} 协处理器编码,协处理器操作码1,源寄存器,目的寄存器1,目的寄存器2,协处理器操作码2。

MCR指令用于将ARM处理器寄存器中的数据传送到协处理器寄存器中,若协处理器不能成功完成操作,则产生未定义指令异常。其中协处理器操作码1和协处理器操作码2为协处理器将要执行的操作,源寄存器为ARM处理器的寄存器,目的寄存器1和目的寄存器2均为协处理器的寄存器。

指令示例:

MCR P3,3,R0,C4,C5,6 ;该指令将ARM处理器寄存器R0中的数据传送到协处

理器P3的寄存器C4和C5中。

5、MRC指令

MRC指令的格式为:

MRC{条件} 协处理器编码,协处理器操作码1,目的寄存器,源寄存器1,源寄存器2,协处理器操作码2。

MRC指令用于将协处理器寄存器中的数据传送到ARM处理器寄存器中,若协处理器不能成功完成操作,则产生未定义指令异常。其中协处理器操作码1和协处理器操作码2为协处理器将要执行的操作,目的寄存器为ARM处理器的寄存器,源寄存器1和源寄存器2均为协处理器的寄存器。

指令示例:

MRC P3,3,R0,C4,C5,6 ;该指令将协处理器P3的寄存器中的数据传

送到ARM处理器寄存器中。

十、异常产生指令

1、SWI指令

SWI指令的格式为:

SWI{条件} 24位的立即数

SWI指令用于产生软件中断,以便用户程序能调用操作系统的系统例程。操作系统在SWI 的异常处理程序中提供相应的系统服务,指令中24位的立即数指定用户程序调用系统例程的类型,相关参数通过通用寄存器传递,当指令中24位的立即数被忽略时,用户程序调用系统例程的类型由通用寄存器R0的内容决定,同时,参数通过其他通用寄存器传递。

指令示例:

SWI 0x02 ;该指令调用操作系统编号位02的系统例程。

BKPT指令的格式为:

BKPT 16位的立即数

BKPT指令产生软件断点中断,可用于程序的调试。

ARM汇编器所支持的伪指令

在ARM汇编语言程序里,有一些特殊指令助记符,这些助记符与指令系统的助记符不同,没有相对应的操作码,通常称这些特殊指令助记符为伪指令,他们所完成的操作称为伪操作。伪指令在源程序中的作用是为完成汇编程序作各种准备工作的,这些伪指令仅在汇编过程中起作用,一旦汇编结束,伪指令的使命就完成。

在ARM的汇编程序中,有如下4种伪指令:符号定义伪指令、数据定义伪指令、汇编控制伪指令、宏指令以及其他伪指令。

一、符号定义(Symbol Definition)伪指令

符号定义伪指令用于定义ARM汇编程序中的变量、对变量赋值以及定义寄存器的别名等操作。常见的符号定义伪指令有如下4种:

1、GBLA、GBLL和GBLS

语法格式:

GBLA(GBLL或GBLS)全局变量名

GBLA、GBLL和GBLS伪指令用于定义一个ARM程序中的全局变量,并将其初始化。其中:GBLA伪指令用于定义一个全局的数字变量,并初始化为0;

GBLL伪指令用于定义一个全局的逻辑变量,并初始化为F(假);

GBLS伪指令用于定义一个全局的字符串变量,并初始化为空;

由于以上三条伪指令用于定义全局变量,因此在整个程序范围内变量名必须唯一。

使用示例:

基于ARM32位单片机的机器人设计毕业论文

基于ARM32位单片机的机器人设计毕业论文 目录 摘要 (2) Abstract (3) 第一章引言 (4) 第二章S3C44B0X控制器介绍 (6) 2.1 S3C44B0X控制器管脚 (6) 2.2 Samsung S3C44B0X介绍 (8) 第三章ARM开发工具简介 (12) 3.1 ARM开发工具综述 (12) 3.2 ARM STD安装和应用 (13) 第四章S3C44B0X部资源编程 (20) 4.1 LED显示 (20) 4.2键盘控制 (23) 4.3 数码管显示 (24) 4.4 中断控制 (25) 第五章机器人的设计 (27) 5.1硬件结构 (27) 5.2软件设计 (31)

5.3结论 (44) 第六章展望 (45) 参考文献 第一章引言 ARM(Advanced RISC Machines)是微处理器行业的一家知名企业,设计了大量高性能、廉价、耗能低的RISC处理器、相关技术及软件。技术具有性能高、成本低和能耗省的特点。适用于多种领域,比如嵌入控制、消费、教育类、多媒体、DSP和移动式应用等。ARM将其技术授权给世界上许多著名的半导体、软件和OEM厂商,每个厂商得到的都是一套独一无二的ARM相关技术及服务。利用这种合伙关系,ARM很快成为许多全球性RISC标准的缔造者。 目前,总共有30家半导体公司与ARM签订了硬件技术使用许可协议,其中包括Intel、IBM、LG半导体、NEC、SONY、菲利浦和国民半导体这样的大公司。至于软件系统的合伙人,则包括微软、升阳和MRI等一系列知名公司。ARM架构是面向低预算市场设计的第一款RISC 微处理器。 ARM提供一系列核、体系扩展、微处理器和系统芯片方案。由于所有产品均采用一个通用的软件体系,所以相同的软件可在所有产品中运行(理论上如此)。典型的产品如下。 ①CPU核 --ARM7:小型、快速、低能耗、集成式RISC核,用于移动通信。 -- ARM7TDMI(Thumb):这是公司授权用户最多的一项产品,将ARM7指令集同Thumb扩展组合在一起,以减少存容量和系统成本。同时,它还利用嵌入式ICE调试技术来简化系统设计,并用一个DSP增强扩展来改进性能。该产品的典型用途是数字蜂窝和硬盘驱动器。 --ARM9TDMI:采用5阶段管道化ARM9核,同时配备Thumb扩展、调试和Harvard总线。在生产工艺相同的情况下,性能可达ARM7TDMI的两倍之多。常用于连网和顶置盒。 ②体系扩展 -- Thumb:以16位系统的成本,提供32位RISC性能,特别注意的是它所需的存容量非常小。 ③嵌入式ICE调试 由于集成了类似于ICE的CPU核调试技术,所以原型设计和系统芯片的调试得到了极大的简化。 ④微处理器 --ARM710系列,包括ARM710、ARM710T、ARM720T和ARM740T:低价、低能耗、封装式常规系统微型处理器,配有高速缓存(Cache)、存管理、写缓冲和JTAG。广泛应用于手持式计算、数据通信和消费类多媒体。 --ARM940T、920T系列:低价、低能耗、高性能系统微处理器,配有Cache、存管理和写缓冲。应用于高级引擎管理、保安系统、顶置盒、便携计算机和高档打印机。 --StrongARM:性能很高、同时满足常规应用需要的一种微处理器技术,与DEC联合研制,后来授权给Intel。SA110处理器、SA1100 PDA系统芯片和SA1500多媒体处理器芯片均采用了这一技术。 --ARM7500和ARM7500FE:高度集成的单芯片RISC计算机,基于一个缓存式ARM7 32位核,拥有存和I/O控制器、3个DMA通道、片上视频控制器和调色板以及立体声端口;ARM7500FE 则增加了一个浮点运算单元以及对EDO DRAM的支持。特别适合电视顶置盒和网络计算机(NC)。Windows CE的Pocket PC只支持ARMWindows CE可支持多种嵌入式处理器,但基于

ARM指令 中文全称及功能应用详解

指令格式:指令{条件}{S} {目的Register},{OP1}, {OP2} "{ }"中的内容可选。即,可以不带条件只有目的寄存器,或 只有目的寄存器和操作数1,也可以同时包含所有选项。“S”决定指令的操作是否影响CPSR中条件标志位的值,当没有S时指令不更新CPSR中条件标志位的值 助记符英文全称示例、功能 跳转指令 B Branch 跳转指令 B Label;程序无条件跳转到标号Label处执行 BL Branch with Link 带返回的跳转指令 BL Label ;当程序无条件跳转到标号Label处执行时,同时将当前的PC值保存到 R14中 BLX Branch with Link and exchange 带返回和状态切换的跳转指令 BLX Label;从ARM指令集跳转到指令中所指定的目标地址,并将处理器的工作状 态有ARM状态切换到Thumb状态,该指令同时将PC的当前内容保存到寄存器R14中BX Branch and exchange 带状态切换的跳转指令 BX Label ;跳转到指令中所指定的目标地址,目标地址处的指令既可以是ARM指 令,也可以是Thumb指令 数据处理MOV Move 数据传送 MOV R1,R0,LSL#3;将寄存器R0的值左移3位后传送到R1 MVN Move NOT 数据非传送 MVN R0,#0 ;将立即数0取反传送到寄存器R0中,完成后R0=-1 CMP Compare 比较指令 CMP R1,R0;将寄存器R1的值与寄存器R0的值相减,并根据结果设置CPSR的 标志位 CMN Compare negative 负数比较指令 CMN R1,R0 ;将寄存器R1的值与寄存器R0的值相加,并根据结果设置CPSR的 标志位 TST Test 位测试指令 TST R1,#0xffe ;将寄存器R1的值与立即数0xffe按位与,并根据结果设置CPSR 的标志位 TEQ Test equivalence 相等测试指令 TEQ R1,R2;将寄存器R1的值与寄存器R2的值按位异或,并根据结果设置CPSR 的标志位 ADD Add 加法运算指令 ADD R0,R2,R3,LSL#1; R0 = R2 + (R3 << 1) ADC Add with carry 带进位加法 ADCS R2,R6,R10; R2 = R6+R10+!C,且更新CPSR的进位标志位 SUB Subtract 减法运算指令 SUB R0,R1,#256; R0 = R1 – 256 SBC Subtract with carry 带进位减法指令 SUBS R0,R1,R2 ; R0 = R1 - R2 - !C,并根据结果设置CPSR的进位标志位RSB Reverse subtract 逆向减法指令 RSB R0,R1,R2 ; R0 = R2 – R1 RSC Reverse subtract with carry 带进位逆向减法指令 RSC R0,R1,R2; R0 = R2 – R1 - !C AND And 逻辑与操作指令 AND R0,R0,#3;该指令保持R0的0、1位,其余位清零。 ORR OR 逻辑或操作指令 ORR R0,R0,#3;该指令设置R0的0、1位,其余位保持不变。 EOR Exclusive OR 逻辑异或操作指令 EOR R0,R0,#3 ;该指令反转R0的0、1位,其余位保持不变。 BIC Bit clear 位清除指令 BIC R0,R0,#0b1011;该指令清除 R0 中的位 0、1、和 3,其余的位保持不变。CLZ Count left zero 计算操作数最高端0的个数 乘加指令 MUL Multiply 32位乘法指令 MUL R0,R1,R2 ;R0 = R1 × R2 MLA Multiply and accumulate 32位乘加指令 MLAS R0,R1,R2,R3;R0 = R1 × R2 + R3,同时设置CPSR中的相关条件标志位SMULL Signed multiply long 64位有符号数乘法指令 SMULL R0,R1,R2,R3;R0 = (R2 × R3)的低32位 R1 = (R2 × R3)的 高32位

ARM的汇编指令讲解

汇编知识点的要求: 1、能看的懂 2、可以做修改 3、不需要用汇编直接编写程序 汇编代码的应用场合: 1、ARM的启动代码必须要汇编,如:uboot最开始初始化硬件的代码 2、内核在最开始初始化的位置。。。。 一、ARM汇编指令的编码格式 1、编码格式 ARM汇编指令编译成机器码以后,机器码的长度是32bits,这32bits的编码有一个固定的格式。不同ARM 汇编指令,编码格式不同。 2、举例 C: if(a==10) a++; else a--;

汇编1: CMP R0, #10; ADDEQ R0,R0,#1 SUBNE R0,R0,#1 汇编2 SUBS R1, R0, #10; //S ---运算的结果会影响条件码标志位:CPSR:NZCV ADDEQ R0,R0,#1 SUBNE R0,R0,#1 提示: 空指令NOP,实际上是占用CPU的时间,但是执行后,没有什么意义。 NOP ---- MOV R0,R0 3、条件码标识 10 -10 Z = 1 C = 0 N = 0 V = 0 ================================================================================= 二、ARM的寻址方式 1、立即数寻址 操作数,有立即数。 ADD R0,R0,#1

MOV R1,#10 ORR R1,R1,#0xf @ R1=R1 | 0xf BIC R1,R1,#0xf @R1 = R1&(~(0xf)) 错误: ADD R1,#1,#2 注意:立即数合法的条件 在ARM汇编指令中,并不是所有的立即数,立即数是有一定的限制的。 什么样的立即数是合法的??? 1、如果一个立即数是小于256的(即该立即数是8bits以内的,0~255),该立即数是合法的。 2、如果一个立即数是大于等于256,该立即数经过循环左移偶数位,可以得到一个小于256的数,则该立即数合法。 256 = 0x100 ------→左移20位0x10000000----→左移4 0x1 合法 0x111 非法 0x102 非法 0x104 合法 0xfff 0xff00 0x12000 0x450000 0xab 原因: 在数据处理指令编码的时候,立即数用12bits来表示: 高4bits:循环左移左移偶数位除以2 低8bits:循环左移后的结果。 重要问题: ADD R1,R0,#0xffff 非法 解决: LDR R2,=0xffff // R2=0xffff,将立即数0xffff的值传送给R2 ADD R1, R0, R2 2、寄存器寻址 所有的操作数都是寄存器,没有立即数 ADD R0,R0,R1 MOV R1,R0 ORR R1,R1,R0 @ R1=R1 | 0xf BIC R1,R1,R0 @R1 = R1&(~(0xf))

嵌入式系统课程设计(温度检测报警系统).docx

嵌入式系统课程设计 姓名:________________________ 班级:________________________ 学 号:

目录: 一?系统要求 二?设计方案 三.程序流程图 四?软件设计 五?课程总结与个人体会 ,、系统要求 使用STM32F103作为主控CPU设计一个温度综合测控系统,具

体要求: 1、使用热敏电阻或者内部集成的温度传感器检测环境温度,每0?1秒检测一次温度,对检测到的温度进行数字滤波(可以使用平均法)。记录当前的温度值和时间。 2、使用计算机,通过串行通信获取STM32F103检测到的温度和所对应的时间。 3、使用计算机进行时间的设定。 4、使用计算机进行温度上限值和下限值的设定。 5、若超过上限值或者低于下限值,则STM32进行报警提示。

二、设计方案 本次课程设计的要求是使用STM32F10设计一个温度测控系统,这款单片机集成了很多的片上资源,功能十分强大,我使用了以下部分来完成课程设计的要求: 1、S TM32F10内置了3个12位AlD转换模块,最快转换时间为Ius。本次课程设计要求进行温度测定,于是使用了其中一个ADC对片上温度传感器的内部信号源进行转换。当有多个通道需要采集信号时,可以把ADC配置为按一定的顺序来对各个通道进行扫描转换,本 设计只采集一个通道的信号,所以不使用扫描转换模式。本设计需 要循环采集电压值,所以使用连续转换模式。 2、本次课程设计还使用到了DMA DMA是—种高速的数据传输操作,允许在外部设备和储存器之间利用系统总线直接读写数据,不需要微处理器干预。使能ADC的DMA接口后,DMA空制器把转换值从ADC 数据寄存器(ADC_DR中转移到变量ADC_ConvertedValue中,当DMA 传输完成后,在main函数中使用的ADC_ConvertedValue的内容就是ADC专换值了。 3、S TM32内部的温度传感器和ADCx_IN16输入通道相连接,此 通道把传感器输出的电压值转换成数字值。STM内部的温度传感器支持的温度范围:-40到125摄氏度。利用下列公式得出温度 温度(° C) = {(V25 - VSENSE) / Avg_Slope} + 25 式中V25是VSENSEi 25摄氏度时的数值(典型值为1.42V) AVg_Slope是温度与VSENS曲线的平均斜率(典型值为4.3mV∕C) 利用均值法对转换后的温度进行滤波,将得到的温度通过串口输出。

基于arm的指纹识别毕业设计

v .. . .. 基于ARM的指纹识别系统设计 摘要 世界正朝着互联化的方向发展,而物联网正是这个数字革命的核心之一。在目前流行的物联网技术中,要求嵌入式终端能够提供成熟且价格便宜的生物特征识别技术,目前来说指纹识别的技术应用最为广泛,我们不仅在门禁、考勤系统中可以看到指纹识别技术的身影,市场上有了更多指纹识别的应用:如手机、指纹锁、银行支付验证都可应用指纹识别的技术。 在指纹识别控制领域,也会用到各种微控制器,本文采用了三星半导体S3C6410作为控制核心,S3C6410应用了专为要求高性能、低成本、低功耗的嵌入式消费类电子设计的ARM9内核。按性能分成两个不同的系列:该系列内核时钟频率已经达到72MHz。 指纹识别基于两种特征点来识别:(i)组成指纹的指纹整体特征结构(ii)局部的特征点。本文提出了一种可以在自动指纹识别系统中使用的基于特征点的指纹识别算法。本文提到的方法基于从细化提取的特征点,二值化一个指纹图像分割图。该系统采用在指纹分类的指纹索引匹配,大大提高了匹配算法的性能。 关键字:ARM9,指纹识别,特征识别,图像处理 . . . 资料. .

v .. . .. Abstract The world is moving in the direction of the development of the Internet, the Internet of is one of the core of the digital revolution. In the current network technology, the embedded terminal capable of providing biometric technology is mature and the price is cheap, at present technology of fingerprint recognition is the most widely, we can not only see the fingerprint recognition technology in access control, attendance system, fingerprint recognition application is more on the market: such as mobile phone, fingerprint lock, bank payment verification can be applied to fingerprint recognition technology. In the fingerprint recognition and control field, we will also use a variety of micro controller, this paper uses Samsung S3C6410 as the control core, S3C6410 application designed for high performance, low cost, low power embedded consumer electronic design based on ARM9 kernel. According to performance is divided into two different series: this series of core clock frequency has reached 72MHz. Fingerprint identification two feature points based on: (I) to identify the fingerprint feature structure fingerprint (II) feature local. This paper proposes a can be used in automatic fingerprint recognition system of fingerprint . . . 资料. .

DSP汇编指令总结

DSP汇编指令总结 一、寻址方式: 1、立即寻址: 短立即寻址(单指令字) 长立即数寻址(双指令字) 第一指令字 第二指令字 16位常数=16384=4000h 2、直接寻址 ARU 辅助寄存器更新代码,决定当前辅助寄存器是否和如何进行增或减。N规定是否改变ARP值,(N=0,不变)

4.3.1、算术逻辑指令(28条) 4.3.1.1、加法指令(4条); 4.3.1.2、减法指令(5条); 4.3.1.3、乘法指令(2条); 4.3.1.4、乘加与乘减指令(6条); 4.3.1.5、其它算数指令(3条); 4.3.1.6、移位和循环移位指令(4条); 4.3.1.7、逻辑运算指令(4条); 4.3.2、寄存器操作指令(35条) 4.3.2.1、累加器操作指令(6条) 4.3.2.2、临时寄存器指令(5条) 4.3.2.3、乘积寄存器指令(6条) 4.3.2.4、辅助寄存器指令(5条) 4.3.2.5、状态寄存器指令(9条) 4.3.2.6、堆栈操作指令(4条) 4.3.3、存储器与I/O操作指令(8条)4.3.3.1、数据移动指令(4条) 4.3.3.2、程序存储器读写指令(2条) 4.3.3.3、I/O操作指令(2条) 4.3.4、程序控制指令(15条) 4.3.4.1、程序分支或调用指令(7条) 4.3.4.2、中断指令(3条) 4.3.4.3、返回指令(2条) 4.3.4.4、其它控制指令(3条)

4.3.1、算术逻辑指令(28条) 4.3.1.1、加法指令(4条); ▲ADD ▲ADDC(带进位加法指令) ▲ADDS(抑制符号扩展加法指令) ▲ADDT(移位次数由TREG指定的加法指令) 4.3.1.2、减法指令(5条); ★SUB(带移位的减法指令) ★SUBB(带借位的减法指令) ★SUBC(条件减法指令) ★SUBS(减法指令) ★SUBT(带移位的减法指令,TREG决定移位次数)4.3.1.3、乘法指令(2条); ★MPY(带符号乘法指令) ★MPYU(无符号乘法指令) 4.3.1.4、乘加与乘减指令(6条); ★MAC(累加前次积并乘)(字数2,周期3) ★MAC(累加前次积并乘) ★MPYA(累加-乘指令) ★MPYS(减-乘指令) ★SQRA(累加平方值指令) ★SQRS(累减并平方指令) 4.3.1.5、其它算数指令(3条); ★ABS(累加器取绝对值指令) ★NEG(累加器取补码指令) ★NORM(累加器规格化指令) 返回 4.3.1.6、移位和循环移位指令(4条); ▲ SFL(累加器内容左移指令) ▲ SFR(累加器内容右移指令) ▲ROL(累加器内容循环左移指令) ▲ROR(累加器内容循环右移指令) 返回 4.3.1.7、逻辑运算指令(4条); ▲ AND(逻辑与指令) ▲ OR(逻辑或指令) ▲ XOR(逻辑异或指令) ▲ CMPL(累加器取反指令) 返回 4.3.2、寄存器操作指令(35条) 4.3.2.1、累加器操作指令(6条)

嵌入式系统课程设计汇本(温度检测报警系统)

嵌入式系统课程设计 : 班级: 学号:

目录: 一.系统要求 二.设计方案 三.程序流程图 四.软件设计 五.课程总结与个人体会

一、系统要求 使用STM32F103作为主控CPU设计一个温度综合测控系统,具体要求: 1、使用热敏电阻或者部集成的温度传感器检测环境温度,每0.1秒检测一次温度,对检测到的温度进行数字滤波(可以使用平均法)。记录当前的温度值和时间。 2、使用计算机,通过串行通信获取STM32F103检测到的温度和所对应的时间。 3、使用计算机进行时间的设定。 4、使用计算机进行温度上限值和下限值的设定。 5、若超过上限值或者低于下限值,则STM32进行报警提示。

二、设计方案 本次课程设计的要使用STM32F103设计一个温度测控系统,这款单片机集成了很多的片上资源,功能十分强大,我使用了以下部分来完成课程设计的要求: 1、STM32F103置了3个12位A/D转换模块,最快转换时间为1us。本次课程设计要求进行温度测定,于是使用了其中一个ADC对片上温度传感器的部信号源进行转换。当有多个通道需要采集信号时,可以把ADC配置为按一定的顺序来对各个通道进行扫描转换,本设计只采集一个通道的信号,所以不使用扫描转换模式。本设计需要循环采集电压值,所以使用连续转换模式。 2、本次课程设计还使用到了DMA。DMA是一种高速的数据传输操作,允许在外部设备和储存器之间利用系统总线直接读写数据,不需要微处理器干预。使能ADC的DMA接口后,DMA控制器把转换值从ADC 数据寄存器(ADC_DR)中转移到变量ADC_ConvertedValue中,当DMA 传输完成后,在main函数中使用的ADC_ConvertedValue的容就是ADC转换值了。 3、STM32部的温度传感器和ADCx_IN16输入通道相连接,此通道把传感器输出的电压值转换成数字值。STM部的温度传感器支持的温度围:-40到125摄氏度。利用下列公式得出温度 温度(°C) = {(V25 - VSENSE) / Avg_Slope} + 25 式中V25是 VSENSE在25摄氏度时的数值(典型值为1.42V) Avg_Slope是温度与VSENSE曲线的平均斜率(典型值为4.3mV/C) 利用均值法对转换后的温度进行滤波,将得到的温度通过串口输出。

Thumb指令集与ARM指令集的区别

标题:Thumb指令集与ARM指令集的区别 2010-06-21 21:43:58 Thumb指令集 Thumb指令可以看做是ARM指令压缩形式的子集,是针对代码密度【1】的问题而提出的,它具有16为的代码密度。Thumb不是一个完整的体系结构,不能指望处理程序只执行Thumb指令而不支持ARM指令集。因此,Thumb指令只需要支持通用功能,必要时,可借助完善的ARM指令集,例如:所有异常自动进入ARM状态。 在编写Thumb指令时,先要使用伪指令CODE16声明,而且在ARM指令中要使用BX指令跳转到Thumb指令,以切换处理器状态。编写ARM指令时,可使用伪指令CODE32声明。 【1】.代码密度:单位存储空间中包含的指令的个数。例如 ARM指令是32位的,而Thumb指令时16位的,如果在1K 的存储空间中,可以放32条ARM指令,就可以放64条Thumb指令,因此在存放Thunb指令时,代码密度高。 Thumb指令集与ARM指令集的区别 Thumb指令集没有协处理器指令、信号量指令以及访问CPSR或SPSR的指令,没有乘加指令及64位乘法指令等,且指令的第二操作数受到限制;除了跳转指令B有条件执行功能外,其他指令均为无条件执行;大多数Thumb数据处理指令采用2地址格式。Thumb指令集与ARM指令集的区别一般有如下几点: ? 跳转指令 程序相对转移,特别是条件跳转与ARM代码下的跳转相比,在范围上有更多的限制,转向子程序是无条件的转移。 ? 数据处理指令

数据处理指令是对通用寄存器进行操作,在大多数情况下,操作的结果须放入其中一个操作数寄存器中,而不是第三个寄存器中。 数据处理操作比ARM状态的更少,访问寄存器R8—R15受到一定限制。 (除MOV和ADD指令访问寄存器R8—R15外,其他数据处理指令总是更新CPSR中ALU状态标志) 访问寄存器R8—R15的Thumb数据处理指令不能更新CPSR中的ALU状态标志 ? 单寄存器加载和存储指令 在Thumb状态下,单寄存器加载和存储指令只能访问寄存器 R0—R7 ? 批量寄存器加载和存储指令 LDM和STM指令可以将任何范围为R0——R7的寄存器子集加载或存储

(完整word版)汇编语言常用指令大全,推荐文档

MOV指令为双操作数指令,两个操作数中必须有一个是寄存器. MOV DST , SRC // Byte / Word 执行操作: dst = src 1.目的数可以是通用寄存器, 存储单元和段寄存器(但不允许用CS段寄存器). 2.立即数不能直接送段寄存器 3.不允许在两个存储单元直接传送数据 4.不允许在两个段寄存器间直接传送信息 PUSH入栈指令及POP出栈指令: 堆栈操作是以“后进先出”的方式进行数据操作. PUSH SRC //Word 入栈的操作数除不允许用立即数外,可以为通用寄存器,段寄存器(全部)和存储器. 入栈时高位字节先入栈,低位字节后入栈. POP DST //Word 出栈操作数除不允许用立即数和CS段寄存器外, 可以为通用寄存器,段寄存器和存储器. 执行POP SS指令后,堆栈区在存储区的位置要改变. 执行POP SP 指令后,栈顶的位置要改变. XCHG(eXCHanG)交换指令: 将两操作数值交换. XCHG OPR1, OPR2 //Byte/Word 执行操作: Tmp=OPR1 OPR1=OPR2 OPR2=Tmp 1.必须有一个操作数是在寄存器中 2.不能与段寄存器交换数据 3.存储器与存储器之间不能交换数据. XLAT(TRANSLATE)换码指令: 把一种代码转换为另一种代码. XLAT (OPR 可选) //Byte 执行操作: AL=(BX+AL) 指令执行时只使用预先已存入BX中的表格首地址,执行后,AL中内容则是所要转换的代码. LEA(Load Effective Address) 有效地址传送寄存器指令 LEA REG , SRC //指令把源操作数SRC的有效地址送到指定的寄存器中. 执行操作: REG = EAsrc 注: SRC只能是各种寻址方式的存储器操作数,REG只能是16位寄存器 MOV BX , OFFSET OPER_ONE 等价于LEA BX , OPER_ONE MOV SP , [BX] //将BX间接寻址的相继的二个存储单元的内容送入SP中 LEA SP , [BX] //将BX的内容作为存储器有效地址送入SP中 LDS(Load DS with pointer)指针送寄存器和DS指令 LDS REG , SRC //常指定SI寄存器。 执行操作: REG=(SRC), DS=(SRC+2) //将SRC指出的前二个存储单元的内容送入指令中指定的寄存器中,后二个存储单元送入DS段寄存器中。

嵌入式温度采集系统

******************* 实践教学 ******************* 兰州理工大学 计算机与通信学院 2014年春季学期 嵌入式系统开发技术课程设计 题目:嵌入式温度采集系统设计 专业班级: 姓名: 学号: 指导教师: 成绩:

摘要 本设计是基于嵌入式技术作为主处理器的温度采集系统,辅以单独的数据采集模块采集数据,实现了智能化的温度数据采集、传输、处理与显示等功能,并讨论了如何提高系统的速度、可靠性和可扩展性。 温度是表示物体冷热程度的物理量,微观上来讲是物体分子热运动的剧烈程度。在整个宇宙当中,温度无处不存在。湿度表示气体中的水蒸汽含量,有绝对湿度和相对湿度两种表示方法。总之,环境温湿度的检测与调节仪器的设计和开发具有非常大的市场前景和实用价值。 嵌入式系统是一般由嵌入式微处理器,外围硬件设备,嵌入式操作系统,用户应用程序四个部分组成。用于实现对其他设备的控制,监视或管理等功能。嵌入式系统已经广泛已经广泛应用于科学研究,工业控制,军事技术,交通通信,医疗卫生,消费娱乐等领域,人们常用的手机,PDA,汽车,智能家电,GPS等均是嵌入式系统的典型代表。本设计将其中对温湿度的读取是利用CC2530的I/O (P1.0和P1.1)模拟一个类IIC的过程。对光照的采集使用内部的AIN0通道。 关键词: 温度,湿度,嵌入式,CC2530,SHT10

目录 一、前言 (1) 二、基本原理 (2) 2.1 CC2530 结构及实现原理 (2) 2.2 SHT10结构及实现原理 (4) 三、系统分析 (7) 3.1程序流程图 (7) 3.2 软件子系统设计 (8) 四、实验结果及分析 (11) 4.1 湿度采集 (11) 4.1.1 湿度采集试验结果 (11) 4.1.2 结果分析 (11) 4.2 温度采集 (12) 4.2.1 湿度采集实验结果 (12) 4.2.2 结果分析 (12) 五、结论 (13) 六、参考文献 (14) 致谢 (15)

(完整版)基于ARM的射频识别读写器设计毕业设计

本科毕业论文(设计)

摘要 射频识别(Radio Frequency Identification,RFID)是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,识别过程无需人工干预,是一种新的自动识别技术[1]。RFID是利用射频的方式进行非接触的双向通信,而非接触式IC 射频卡成功地解决了无源(卡中无电源) 和免接触这一个难题。RFID具有非接触、长距离工作、适应环境能力强、可识别运动目标等优点,射频识别技术已经在越来越多的领域内出现,因此,对射频卡的开发应用也具有一定的现实意义。本文的设计是基于Philips公司的Mifare1 S50/S70芯片的射频识别系统的设计方案,制作一套以ARM微处理器为MCU的射频识别读写器系统,设计RF 接口电路,制作相应的硬件电路模块,分析非接触式IC 卡系统的通信协议,通过Keil C软件编程实现读写器与非接触式IC 卡系统的通信,并完成校园卡考勤系统。

关键词: RFID; 自动识别; ARM; 非接触式IC卡; Keil C Abstract RFID is a non-contact automatic identification technology,it identify target and get the related data through radio frequency signal automatically,the identification process without human intervention, is a kind of new automatic identification technology. RFID for non-contact two-way communication by the way of radio frequency, and non-contact IC radio frequency card has successfully solved the difficulty problems: without power supply and non-contact. RFID has many advantages: non-contact,long-distance work,good adaptability for environment and can recognize the moving objects,RFID technology has appeared in more and more field,so the development and application of radio frequency card also has certain practical significance. The design of this article is based on the Mifare 1 S50 / S70 chip radio frequency

(完整word版)汇编语言指令集合-吐血整理,推荐文档

8086/8088指令系统记忆表 数据寄存器分为: AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放操作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据. BH&BL=BX(base):基址寄存器,常用于地址索引; CH&CL=CX(count):计数寄存器,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器. DH&DL=DX(data):数据寄存器,常用于数据传递。他们的特点是,这4个16位的寄存器可以分为高8位: AH, BH, CH, DH.以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。 另一组是指针寄存器和变址寄存器,包括: SP(Stack Pointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置; BP(Base Pointer):基址指针寄存器,可用作SS的一个相对基址位置; SI(Source Index):源变址寄存器可用来存放相对于DS段之源变址指针; DI(Destination Index):目的变址寄存器,可用来存放相对于ES 段之目的变址指针。 指令指针IP(Instruction Pointer) 标志寄存器FR(Flag Register) OF(overflow flag) DF(direction flag) CF(carrier flag) PF(parity flag) AF(auxiliary flag) ZF(zero flag) SF(sign flag) IF(interrupt flag) TF(trap flag) 段寄存器(Segment Register) 为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址: CS(Code Segment):代码段寄存器; DS(Data Segment):数据段寄存器; SS(Stack Segment):堆栈段寄存器;

嵌入式温度监测与报警系统设计毕业设计(论文)

毕业设计(论文) 题目: 嵌入式温度监测与报警系统设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

ARM指令大全

目录 一、跳转指令 (4) 1、B指令 (4) 2、BL指令 (4) 3、BLX指令 (4) 4、BX指令 (5) 二、数据处理指令 (5) 1、MOV指令 (5) 2、MVN指令 (5) 3、CMP指令 (6) 4、CMN指令 (6) 5、TST指令 (6) 6、TEQ指令 (7) 7、ADD指令 (7) 8、ADC指令 (7) 9、SUB指令 (7) 10、~~~~C指令 (8) 11、R~~~~指令 (8) 12、RSC指令 (8) 13、AND指令 (9) 14、ORR指令 (9) 15、EOR指令 (9) 16、BIC指令 (9) 三、法指令与乘加指令 (10) 1、MUL指令 (10) 2、MLA指令 (10) 3、SMULL指令 (10) 4、SMLAL指令 (11) 5、UMULL指令 (11) 6、UMLAL指令 (11) 四、程序状态寄存器访问指令 (12) 1、MRS指令 (12) 2、MSR指令 (12) 五、加载/存储指令 (12) 1、LDR指令 (12) 2、LDRB指令 (13) 3、LDRH指令 (14) 4、STR指令 (14) 5、STRB指令 (14) 6、STRH指令 (15) 六、批量数据加载/存储指令 (15) LDM(或STM)指令 (15)

IA (15) IB (15) DA (15) DB (15) FD (15) ED (15) FA (15) EA (15) 七、数据交换指令 (16) 1、SWP指令 (16) 2、SWPB指令 (16) 八、移位指令(操作) (16) 1、LSL(或ASL) (17) 2、LSR (17) 3、ASR (17) 4、ROR (17) 5、RRX (17) 九、协处理器指令 (18) 1、CDP指令 (18) 2、LDC指令 (18) 3、STC指令 (18) 4、MCR指令 (19) 5、MRC指令 (19) 十、异常产生指令 (19) 1、SWI指令 (19) 2、BKPT指令 (20) 一、符号定义(Symbol Definition)伪指令 (20) 1、GBLA、GBLL和GBLS (20) 2、LCLA、LCLL和LCLS (21) 3、SETA、SETL和SETS (22) 4、RLIST (22) 二、数据定义(Data Definition)伪指令 (23) 1、DCB (23) 2、DCW(或DCWU) (23) 3、DCD(或DCDU) (24) 4、DCFD(或DCFDU) (24) 5、DCFS(或DCFSU) (25) 6、DCQ(或DCQU) (25) 7、SPACE (25) 8、MAP (26) 9、FILED (26) 三、汇编控制(Assembly Control)伪指令 (27) 1、IF、ELSE、ENDIF (27) 2、WHILE、WEND (28)

AVRmega8汇编指令汇总.

指令集概述 指令操作数说明操作标志 # 时钟数 算数和逻辑指令 ADD Rd, Rr 无进位加法Rd ← Rd + Rr Z,C,N,V,H 1 ADC Rd, Rr 带进位加法Rd ← Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K 立即数与字相加Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr 无进位减法Rd ← Rd - Rr Z,C,N,V,H 1 SUBI Rd, K 减立即数Rd ← Rd - K Z,C,N,V,H 1 SBC Rd, Rr 带进位减法Rd ← Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K 带进位减立即数Rd ← Rd - K - C Z,C,N,V,H 1 SBIW Rdl,K 从字中减立即数Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr 逻辑与Rd ← Rd ? Rr Z,N,V 1 ANDI Rd, K 与立即数的逻辑与操作Rd ← Rd ? K Z,N,V 1 OR Rd, Rr 逻辑或Rd ← Rd v Rr Z,N,V 1 ORI Rd, K 与立即数的逻辑或操作Rd ← Rd v K Z,N,V 1 EOR Rd, Rr 异或Rd ← Rd ⊕ Rr Z,N,V 1 COM Rd 1 的补码Rd ← 0xFF ? Rd Z,C,N,V 1 NEG Rd 2 的补码Rd ← 0x00 ? Rd Z,C,N,V,H 1 SBR Rd,K 设置寄存器的位Rd ← Rd v K Z,N,V 1

CBR Rd,K 寄存器位清零Rd ← Rd ? (0xFF - K Z,N,V 1 INC Rd 加一操作Rd ← Rd + 1 Z,N,V 1 DEC Rd 减一操作Rd ← Rd ? 1 Z,N,V 1 TST Rd 测试是否为零或负Rd ← Rd ? Rd Z,N,V 1 CLR Rd 寄存器清零Rd ← Rd ⊕ Rd Z,N,V 1 SER Rd 寄存器置位Rd ← 0xFF None 1 MUL Rd, Rr 无符号数乘法R1:R0 ← Rd x Rr Z,C 2 MULS Rd, Rr 有符号数乘法R1:R0 ← Rd x Rr Z,C 2 MULSU Rd, Rr 有符号数与无符号数乘法 R1:R0 ← Rd x Rr Z,C 2 FMUL Rd, Rr 无符号小数乘法R1:R0 ← (Rd x Rr << 1 Z,C 2 FMULS Rd, Rr 有符号小数乘法R1:R0 ← (Rd x Rr << 1 Z,C 2 FMULSU Rd, Rr 有符号小数与无符号小数乘法R1:R0 ← (Rd x Rr << 1 Z,C 2跳转指令 RJMP k 相对跳转PC ← PC + k + 1 无 2 IJMP 间接跳转到(Z PC ← Z 无 2 RCALL k 相对子程序调用PC ← PC + k + 1 无 3 ICALL 间接调用(Z PC ← Z 无 3 RET 子程序返回PC ← STACK 无 4 RETI 中断返回PC ← STACK I 4

相关主题