搜档网
当前位置:搜档网 › Interactive Visualization of space science data in virtual 3D scene

Interactive Visualization of space science data in virtual 3D scene

Interactive Visualization of space science data in virtual 3D scene
Interactive Visualization of space science data in virtual 3D scene

Interactive Visualization of space science data in virtual 3D scene

HE Huan1,2, MENG Xin 1

1Center for Space Science and Applied Research Chinese Academy of Sciences

Beijing, 100190, China

2Graduate University of the Chinese Academy of Sciences,

Beijing, 100049, China

hehuan@https://www.sodocs.net/doc/369721456.html,, mengxin@https://www.sodocs.net/doc/369721456.html,

Abstract

In this information age, researchers are generating data at such a high rate that it is no longer feasible to view the data using printed text or graphs. Visualization technology raises the level of understanding so that researchers can acquire more knowledge and insights from their data, and working period was reduced. Firstly, role of visualization for space science was analyzed. According to requirements, a visualization system for space science data was developed aimed at facilitating mission planning, probing into relationships among exploration data, visualizing simulation results and manipulating results interactively. The way for presenting space science data in this system was introduced. Lastly, the shortages and further improvements of the system were pointed out.

1. Introduction

Space scientists have long been faced with huge, continually growing repositories of data from spacecraft missions or simulation models. The quantities of information involved so enormous that traditional methods for data analysis and assimilation would quickly be overwhelmed [1].

Meanwhile, computer scientists have already begun to study computer graphics and apply computer graphics technology to visualize data from different areas of science. It transforms the symbolic into the geometric, enabling researchers to observe their simulations and computations. Visualization offers a method for seeing the unseen. It enriches the process of scientific discovery and fosters profound and unexpected insights [2]. When space science information is put into a computer graphics system, a new level of understanding and exploring the outer space and space physics becomes possible. Based on the reasons mentioned above, a visualization system for space science data was developed by us aimed at demonstrating the whole mission plans, illustrating simulation results, so that space scientists can be used to quickly and easily address problems that would preciously laborious to solve.

2. Roles of visualization for space science

An oft quoted tenet of visualization is “the purpose of visualization is insight, not pictures.”[3] Thus visualization is interdisciplinary by nature—the user of the visualization provides context for the visualization. By understanding visualization’s place in the overall analysis process, a better understanding of the visualization process is gained.

part of the scientific process. This process is based upon the assumption that physical phenomena can be described through objective means. To achieve objectivity, theories about the nature of phenomena should be testable and repeatable. The scientific method was developed in order to satisfy the testability and repeatability criteria. The

Second International Symposium on Intelligent Information Technology Application

method consists of four steps: observation, theorization, experimentation, and analysis [4]. The usability of visualization can be enhanced significantly by displaying the context in which the quantities were measured. In the case of space science data of complex universe, these contexts are given as spatial and temporal dependencies. Therefore, it is of utmost importance to visualize the geographical frame of reference in appropriate way.

3. System overview

Space is defined as that area beyond the Earth’s measurable atmosphere which has very few particles of any size and is flooded with electromagnetic energy. In order to describing them clearly, lots of parameters are needed, such as density, temprature, velocity of particles, and so on. Parameters of different type were used to be depicted in different frame of references. And as well known, those parameters are in large scale in spatial range.

3.1. System requirements

Applying visualization to explore space science data means displaying huge amounts of parameters. Moreover, there are strong interrelations between quantities of these parameters and their space context as well as their temporal course. Thus, we have to present all quantities within their context.

First of all, considering the environment of space science data, the whole spatial area is huge and sparse. It can be considered as an empty space except for several astronomical bodies. Besides, the astronomical bodies are usually separated by enormous distances. Users will easily get lost in the vast emptiness and fail to locate objects of interest. Furthermore, in this vast space, there are lots of reference coordinates to describe parameters which space scientists are concerned about.

Secondly, the sources of space science data are wide and varied. It can be exploration data from different payloads, or output of numerical simulation models. Those data can be described as a multitude of time dependent 2D and 3D data sets, each consisting of several scalar and vector variables. And most of them are time-related. The individual data sets may have different time intervals, and they do not necessarily share a common computational grid.

Thirdly, from another side, static images can be misleading and mask important features of data, while motion in visualization brings out hidden features which are inherently dynamic. Interactive manipulation and control of visualization is an important tool which allows scientists to explore more quickly and focus on the region of interest.

In views of above characteristics of visualization system for space science data, we designed a system specially from following aspects to satisfy its requirements.

3.2. Rendering pipeline

Figure 2 shows the pipeline for rendering data into 3D animations under the user’s interactive control. Raw data were transformed to regular data grids in advance. Then, the system transforms data grids into graphical primitives that consist of 3D vectors and polygons. The rendering of graphical primitives creates a virtual environment. Users can reach into this virtual environment with a mouse or keyboard to move slices through the data grids, and rotate and zoom their view [5].

views

Figure2. the pipeline for rendering data under the

user’s interactive control

As mentioned in section 3.1, raw data are disorderly and unsystematic. In order to present them in one virtual 3D scene, we transformed raw data into regular data in advance; here we named it as transformed data. In consideration of their spatio-temporal and multi-property, the transformed data can be regarded as 5-dimensional data—time, property (such as pressure, density, or velocity, and so on), 3D spatial grids [6]. As showed in right-up corner of figure 2, transformed data’s structure is illustrated. The horizontal direction represents different properties, and the vertical direction represents time. And each cell in the structure is a 3D spatial data. By visual

mapping method, the transformed data were mapped into graphical primitives, which can be horizontal isoline slices, vertical isoline slices, or isosurfaces, and so on.

3.3. Scene graph

As data for visualization were depicted in different coordinate system, we setup a series of coordinate systems. On one hand, data can be easily used in our system, just pushing into the matrix they belong to. On the other hand, we can control viewpoint flexibly by hanging the viewport to the coordinate system users are concerned about. So that viewport can move with the objects users are interested at. Therefore, we created an integrated frame of reference in solar system we needed in our system. The relationship is illustrated in figure 3. It was depicted in tree structure. Each node in the tree stores the relationship between the node itself and its direct parent node. Relationships between the other nodes can be computed out by transverse the tree.

4. Visual simulation

4.1. Framework visualizing

Our first attempt is applying Vega Prime[7,8] (VP) to visualize the environment in 3D. According to the coordinate systems established, 3D models such as planets were positioned in corresponding coordinate system. Then a framework of solar system scenario was built up. The scene was shown as figure 4. Lilac circle lines are orbits of 8 planets. Other models or exploration data can also be positioned in the same way through the rendering pipeline mentioned above.

Figure 4. the scenario of solar system

Solar ecliptic

coordinate system

Earth inertial

coordinate system

Mercury inertial

coordinate system

Earth fixed

coordinate system

Moon inertial

coordinate system

local coordinate

system

GSM coordinate

system

SM coordinate

system

Venus inertial

coordinate system

Mars inertial

coordinate system

Jupiter inertial

coordinate system

Saturn inertial

coordinate system

Neptune inertial

coordinate system

Satellite’s orbital

coordinate system

Satellite’s fixed-body

coordinate system

Mercury fixed

coordinate system

Venus fixed

coordinate system

Mars fixed

coordinate system

Jupiter fixed

coordinate system

Saturn fixed

coordinate system

Uranus fixed

coordinate system

Neptune fixed

coordinate system

Moon fixed

coordinate system

Uranus inertial

coordinate system

correspondingly. If only numerical data that was modified were pointed out by text or by chart, scientists can not catch its meaning immediately, or get wrong understanding. But demonstrating them in 3D, it is quite another thing, which is much more intuitive. In figure 5, it is depicting the scenario that the double stars cooperate with Cluster to exploration the geomagnetism. To represent geomagnetic field, we chose magnetic line, using different color to represent different value of L, as showed in figure 5. The white and green color cones represent the process of communications between payload and ground station, representing the communicating status. Satellite orbits were coded in different color, with the changing color of its orbit. When spacecraft is moving in or out the radiation belt, its orbit color was changed according to electronic density, the green part of the orbit means the spacecraft was entering into the inner radiation belt, while the blue part of the orbit means the spacecraft was entering into the outer radiation belt. By doing so, we can clearly see working-state of all satellite. In the same time, we can adjust parameter of simulated objects dynamically to meet the mission requirements. For example, area which is detected by payload can clearly marked out through visualization, and payload’s direction can be adjusted interactively to meet the mission’s requirements.

Figure 5. scenario of the double star cooperating with

clusters

4.3. Visualizing for experimental analysis

As well known, the increasing level of detail in scientific and engineering applications (e.g., deep space exploration data or space weather simulations), made possible by advances in computer technology and systems results in an ever increasing volume of data. It is extremely difficult to find out their distributing rules by our cognitive ability. But viewing them in graphic representation gives us another way to see them.

Figure 6. visualization of absolute particle density in

the ecliptic plane

Figure 7. visualization of relative particle density in

the ecliptic plane

In figure 6 and 7, absolute and relative particle density in the ecliptic plane ranging from sun to earth was illustrated in one simualtion of CME(Coronal Mass Ejections), which was provided by key laboratory for space weather (LSW) of Center for Space Science and Applied Research Chinese Academy of Sciences (CSSAR). Distribution of particle density in other plane can also be showed by user interactive manipulation. By this way, we can find out abnormal region immediately by mapping property value to different color. And broadcasting process of CME can also be exhibited by showing particle density distribution in sequence indexed by time.

5. Conclusions

We have demonstrated some methods that we used for visualization of space science data. It is now well performed in our simulation projects. For mission planning, simulation objects’ parameter can be adjusted interactively, so users can evaluate current plan’s satisfiability in short time, thus the cycle of mission planning was largely reduced. For experimental analysis, huge data were displayed in graphical representation. It improves researchers’ spatial cognition, offers a method

for seeing the unseen, enriches the process of scientific discovery and fosters profound and unexpected insights. It also provides a way for researchers to process and manipulate their data interactively. But there are lots of works need to be done in our future work. Now, user can only manipulate their data through mouse and keyboard, people who are not familiar with it may find it hard to manipulate. User interface needs to be improved. Data organization is also worthy of putting attention to in order to satisfy ever increasing volume of data, reduce rendering time. And most importantly, more useful representation of data mapping methods needs to be developed. So that it can facilitate scientists or engineers tremendously to perceive visually features which are hidden in the data. Some statistical tools also need to be developed to facilitate analysis.

References

[1]Matthias Kreuseler(2000). “Visualization of geographically

related multidimensional data in virtual 3D scenes”.

Computers & Geosciences. Vol. 26, pp.101-108.

[2]McCormick, B.H., T.A. DeFanti, M.D. Brown (ed) (1987),

“Visualization in Scientific Computing”, Computer Graphics

Vol. 21, No. 6, November

[3]Jankun-Kelly, T. J. (2003), “Visualizing Visualization: A

Model and Framework for Visualization Exploration”, University of California, , UMI Microform 3097456

[4]Craig Upson, Thomas A. Faulhaber, Jr., David Kamins,

David Laidlaw, David Schlegel,Jeffrey Vroom, Robert Gurwitz, and Andries van Dam(1989). “The application

visualization system: A computational environment for scientific visualization”. Computer Graphics and Applications, IEEE, Vol. 9, No.4, pp.30–42,

[5]Mankofsky, A.; Szuszczewicz, E.P.; Blanchard, P.;

Goodrich, C.; McNabb, D.; Kulkarni, R.; Kamins, D.

(1994). “Visualization and data analysis in space and atmospheric science”. Visualization, 1994., Visualization

apos;94, Proceedings., IEEE Conference on, pp.341-344. [6]Hibbard, W.L. Paul, B.E. Santek, D.A. Dyer, C.R.

Battaiola, A.L. Voidrot-Martinez, M.-F.(1994), “Interactive visualization of Earth and space science computations”, Computer, Vol.27, No. 7, pp.65-72.

[7]Vega Prime Programmer’s Guide Version 2.0.3[M].

Multigen-Paradigm Inc. March 2006.

[8]Vega Prime Reference Guide Version 2.0.3[M]. Multigen-

Paradigm Inc. March 2006.

景观设计中的“灰色空间”_百度文库(精)

景观设计中的“灰色空间” 景观表现, 装饰表现 “灰空间”的建筑概念是由日本著名建筑师黑川纪章提出的。“灰空间”一方面指色彩,另一方面指介乎于室内外的过渡空间。对于前者他提倡使用日本茶道创始人千利休阐述的“利休灰”思想,以红、蓝、黄、绿、白混合出不同倾向的灰色装饰建筑牷对于后者他大量利用庭院、走廊等过渡空间,并将其放在重要位置上。在日本建筑中,灰空间是一种过渡的空间,无法明确的界定是室外还是室内,但它的存在,却在一定程度上抹去了建筑内外部的界限,使两者成为一个有机的整体。空间的连贯和设计的统一创造出内外一致的建筑,消除了内外空间的隔阂,给人一种自然有机的整体感觉。也可以说是“从内部进行的环境设计”。 “灰空间”一说,大都指建筑中的空间概念,属过渡性地带,即半室内,半室外的空 间。 然而,对于空间的创造,空间体验占同样重要地位的园林设计而言,即使不提这一名词,过渡性空间的考虑与设计也显得十分突出,其作用亦是不容忽视的。诸如园林中各要素间的过渡,映衬;园林空间与建筑空间,城市大空间的衔接;自然空间与人工空间的转换等,灰 空间都起着不可替代的作用。 在空间和实体的艺术创造,灰空间的装饰表现在两个方面,作为景观因素,它可以丰富园林景观的层次,增加园林景观的深度,由此产生有强烈对比效果的虚与实。留园入口空间“一波三折”的处理手法是极佳的佐证。鉴于此,有必要对园林中的灰空间做出探讨、总结。因为这些地方往往是与人们关系最为密切又最易被忽视的。细部体现水平,细部同样表达着对 人的关心。 植被、水体———硬质空间的柔化园林设计中植被、水体的应用对于硬质空间的柔化作用是显而易见的;同时,也因其自身的特色,为景观提供了富有生机,充满感性、活力的空间。不同形式,不同色彩的组合、搭配在视觉、听觉上给人以感观的刺激;也因为在形式、色彩上的变化,给园林景观在时间上以空间的转换,不至于单调、无变化。 台阶———不同高差的转化台阶是不同高差的地面结合方式之一。虽然,属于交通性质的过渡空间,但也能创造出动人的线的造型,产生出巨大的艺术魅力。正因如此,台阶在园林设计中往往会摆脱其纯功能性,夸大并与场地结合,营造出多功能极富韵律感的空间。 小品———视线的引导城市中的各种设施,如花坛、灯具、雕塑、花架、座椅等,一般是出现在不同空间的连接处,像开放空间与秘密空间;自然空间与人工空间;园林内空间与城市外空间。小品在此不仅起着点缀的作用,同时也是对视线的引导和汇聚,形成焦点,标志着 此空间与彼空间的区别,暗示其存在。 铺装———空间的划分园林设计中地面铺装同样起着对空间进行划分的作用。当然,这里并非单指在材料上的变化,很大程度上也是体现在形式上的变化。古代的卵石模纹,日本的“榻榻米”都因其自身形式的组合,使得所在空间或突出,或连续。在视觉上、心理上都收到 了良好的效果。

创客空间运营管理方案试行

创客空间运营管理方案(试行) 第一章总则 第一条为了响应国家关于“大众创业、万众创新”的号召,鼓励创客、创新、创业实践活动,深圳市XXXXXX有限公司创立了创客空间(以下简称创客空间)。为保证创客空间各项工作正常有序地开展,特制定本管理方案。 第二条创客空间是为创客开展创客活动和为创业团队开展硬件创新活动提供 指导与帮助的服务性机构。创客空间的主要任务是帮助创客实现创客作品、为创业个人或团队实现产品化和市场化提供场地、工具设备及XX设计技术支持等服务。 第三条创客空间具有孵化器功能。准许进入创客空间孵化的可以是暂时还未在工商行政管理部门进行登记的创业个人或团队;也可以是已经注册登记的小微企业。 第二章组织机构及职责 第四条为加强对创客空间的管理及更好的服务创客与创业者,设立创客空间管理委员会(以下简称管委会),管委会成员由XXXXXX总经理、企业内部各创客团队负责人、外聘顾问组成。创客空间的日常管理由运营组负责,由管委会直接指导开展工作。创客空间聘请优秀创客及创业家、设计师、工程师等组成梦想顾问团,提供更好的创客及创业咨询帮助。 第五条管委会主要职责 1、确定创客空间的发展方向、目标和计划; 2、协调创客空间与公司其他部门的衔接、协调工作; 3、审核运营部各项规章制度,遴选适合人选,定期检查各项管理制度的落实执行情况; 4、针对入驻创客、创业项目的重大需求进行讨论协调。 第六条运营组主要职责

1、全面负责创客空间的日常管理工作,制定创客空间管理制度和年度工作思路; 2、组织策划开展周末创客、其他各类创客、创新、创业活动及培训课程; 3、聘请各类技术专家、专业教师、创业人士等为创客和创业者的发展提供指导、培训和咨询,包括管理、营销、技术、法律、财务等方面的咨询; 4、负责对创客空间入驻个人、团体进行入驻资格审核; 5、对场地、工具、设备的定期维护保养,对安全性的定期检查; 6、负责创客空间及入驻项目的对外宣传、合作及市场推广等工作; 7、创客空间其他日常工作。 第七条梦想顾问团的工作职责 1、为创客、创业个人或团队提供个性化的咨询服务; 2、开展免费或有偿的课程培训服务; 3、发现、扶持有前途的项目或团队。 第三章入驻创客空间条件、程序与退出 第八条申请进驻创客空间的基本条件 1、具有完全民事行为能力的成年人。未成年人需经监护人知情和同意。 2、提交《创客/创业计划书》。 3、所有开发及经营活动须符合国家有关法律、法规、规章,不得从事危害国家安全的行为。 4、具有合约精神,愿意严格遵守相关管理规定,签订入驻合同。 第九条入驻创客空间申办程序 1、入驻创客空间需要提交的材料 (1)入驻创客空间申请书;

创客空间建设方案

创客空间建设方案 一、建设背景及意义 (一)建设背景 随着李克强总理在达沃斯论坛上提出“大众创业、万众创新”,“创客”这个新名词也被首次写入政府工作报告。2015年3月2日,科技部“发展众创空间推进大众创新创业电视电话会议”中进一步强调,推进大众创新创业是新时期科技工作的重要任务。2015年3月11日,国务院办公厅印发《关于发展众创空间推进大众创新创业的指导意见》,共计提出8项重点任务,其中第一条就是加快构建众创空间。 创客是创新创业重要的助推者之一,我国国内目前创客的规模仍较小,进一步推进国内的创客运动,需要高校培养更多的新型创客人才。着眼于新工业革命的兴起,在当前互联网“+”的时代下,培养具有“创新、创造、创业、分享”精神的新时代大学生是高校发展的必然趋势。打破专业界限,基于多学科、跨专业,“跨界融合、集成创新”的创新型高校创客空间是高等院校适应新工业革命发展的必然要求。 (二)建设意义 高校在开展“创客空间”的建设方面尚没有规律可循,都是在探索阶段。在我院建设高水平院校的形势下,结合我院“培养态度好、知识新、技能强的实用人才”的办学理念,建立具有“我院特色”的“创客空间”。这不仅是认真贯彻落实《国家中长期教育改革和发展规划纲要》和《关于进一步加强高技能人才工作的意见》的精神;也是深化我院教育教学改革,培养学生创新精神和实践能力的重要途径;更是落实以创新带动创业,创业带动就业,促进我院毕业生充分就业创业的重要措施。同时,我院创客空间的建设,将进一步提高学院知名度,为建设全国高水平院校及创新创业实训基地示范院校打下坚实的基础,具有十分显著的现实意义。 二、建设方案 (一)整体方案介绍 本方案基于线上“创新创意”互联网资源分享平台,通过创客教学体验区、创客开发制作区、创客交流区、创客作品展示区,采用STEAM创新教学方法,以线下产品制作与线上理论学习相结合的模式,采用先进的物联网技术、移动互联技术、桌面操作工具等建立一个线上线下互联互通的创客空间。通过该平台的建设大学生“创客”们可以协作、共享,实现从创意到产品的转变,再通过社会资源的对接、孵化实现从“产品”到“商品”的转化。 同时也为创业者和投资人牵线搭桥,为在江北大学城创业孵化中心创业企业、创业小团队搭建完美的金融服务平台,并为无办公地点团队提供办公场所和交流平台,是所有创业追梦人寻找项目和灵感青睐的归属地。 (二)具体方案及主要功能 1、创新创意平台 旨在为有创新创意的学生、众多制造商、天使投资者搭建一座桥梁,让学生提出好的创意,整合学生资源参与创意设计,为好的创意产品找到合适的生产者和投资者,为制造商寻找好的产品和投资机会。通过该平台,能够让有创新创意思想的学生零成本地更快实现创业梦想。

“双创杯”商业计划书模板2(1)

天津工业大学数学科学学院、物理科学 与技术学院 “双创杯”创客大赛 商业计划书 项目名称:_____________________ 项目负责人:____________________ 指导教师:_____________________ 联系电话:_______________________ E_mail:_________________________ 日期:___________________________

目录(请标注页码) 1.执行概要 2.企业概况 3.管理团队 4.公司结构、知识产权和所有权 5.产业分析 6.营销计划 7.运营计划 8.财务计划 9.时间进度 10.关键风险因素 11.附录

1.执行概要 1.1机会(尚待解决的问题或未满足的需求) 1.2.企业概述(企业如何解决这些问题或满足这些需求)1.3目标市场 1.4竞争优势 1.5管理团队 1.6财务预测概要 1.7企业需求描述(如果计划面向潜在投资者,必须阐明需要的资本数额及其使用方案)

1.8投资者退出战略(如果计划面向投资者) 2.企业概况 2.1产品、服务与客户 产品或服务描述 __________________________________________________ ____________________________________________________ ______________________ 客户描述 __________________________________________________ ____________________________________________________ ______________________ 2.2商业构想和市场机会 商业构想描述 (如,客户尚未满足的需求、满足顾客需求的产品或服务的种类、如何接近顾客等。) ___________________________________________________

天津工业大学嵌入式期末复习

嵌入式期末重点 ———J_x_T 一、单选题(1分*15) 二、填空题(1分*15) 三、简答题(5分*5) 四、程序题(12分+13分)(来自操作系统实验) 五、综合题(20分)(实验,给图和功能进行分析和编程,任务、 优先级、中断…写代码。) 嵌入式系统的整体架构 ※硬件 §操作模式和特权极别

两种操作模式分别为:处理者模式(handler mode)和线程模式(thread mode)。两种特权等级分别为:特权级和用户级。 1、操作模式转换 1、复位后,CM3默认进入特权级线程模式; 2、从特权级切换到用户级,置位CONTROL[0]; 3、用户级切换回特权级,必须执行指令SVC,触发SVC异常,在异常服务例程 中清零CONTROL[0]才能回到特权级; 4、处理异常服务例程必须使用特权级HANDLEER模式; 5、由特权级线程模式触发异常,异常处理完成后依然回到特权级线程模式; 由用户级线程模式触发异常,异常处理完成后依然回到用户级线程模式。 2、R13栈指针与处理模式 MSP(主栈指针):默认栈指针,被操作系统(OS)内核以及异常处理使用。 PSP(进程栈指针):被用户应用程序代码使用。 3、特殊寄存器与处理模式 Cortex-M3 中的特殊功能寄存器包括: 程序状态寄存器组(xPSR)(APSR、IPSR、EPSR)

中断屏蔽寄存器组(PRIMASK, FAULTMASK,以及 BASEPRI) 控制寄存器(CONTROL) CONTROL寄存器只有最低两位[1:0]有意义。 CONTROL寄存器主要用来定义特权等级、选择堆栈指针。 特殊寄存器只能被专用的 MSR/MRS 指令访问,而且它们也没有与之相关联的访问地址,即存储器地址。 MRS 通用寄存器, 特殊寄存器; 读特殊功能寄存器的值到通用寄存器 MSR 特殊寄存器, 通用寄存器 ; 写通用寄存器的值到特殊功能寄存器 CONTROL 寄存器也是通过 MRS 和 MSR 指令来操作的: MRS R0, CONTROL ;将CONTROL寄存器读入R0 MSR CONTROL, R0 ;将R0寄存器读入CONTROL §异常处理 所有的异常均在handler模式下处理 进入异常时,自动压栈,退出异常时,自动出栈 什么时候手动??

浅谈景观设计中的灰空间设计要点

浅谈景观设计中的灰空间设计 一、灰空间的背景知识 “灰空间”的建筑概念是由日本著名的建筑师黑川纪章提出的。“灰空间”的含义:一方面是指色彩,他提倡使用日本茶道创始人千利休所阐述的“利休灰”思想,以红、蓝、黄、绿、白混合出不同倾向的灰色装饰的建筑。对于“灰空间”的定义,黑川纪章讲到:“灰色是由黑和白混合而成的,混合的结果既非黑亦非白,而变成一种新的特别的中间色”。另一方面是指室内到室外的过渡空间,它大量利用了庭院、廊道等过渡空间,并将其放在重要位置 上。 在日本的建筑中,灰空间是一种过渡的空间,无法明确的界定是室外还是室内,但它的存在,却在一定程度上抹去了建筑内外部的界限,使两者成为一个相对有机的整体。空间的连贯和设计的统一创造出了和谐的景观,消除了内外空间的隔阂,给人一种自然放松的感觉。往往是通过一些元素,如屋顶,柱子,形成一个感觉上的虚拟空间,比如园林中的廊空间,正是这种性质的空间。给人虚虚实实,却自在通畅之感,形成了独特的空间艺术。 二、灰空间设计的意义 (一)空间过渡 “灰空间”一说,大都指建筑中的空间概念,属过渡性地带,即半室内,半室外的空间。也可以说是“从内部进行的环境设计”。空间的创造对于景观设计也同样重要,在景观设计中,过渡性空间的考虑与设计也显得十分重要,其作用亦是不容忽视的。诸如构成景观各要素间的过渡、映衬;景观空间与建筑空间的衔接;自然空间与人工空间的转换等,可以说灰空间都起着不可替代的作用。 (二)丰富景观层次 在现代景观设计中,灰空间作为景观因素,它可以丰富室外景观的层次,增加其景观的深度,从而产生有强烈对比效果的虚实关系。丰富了空间和实体艺术创造形式。很多中国古典园林就是运用了这种做法,例如,留园入口“一波三 折”的处理手法就是极佳的佐证,让空间了变化和转折,给人一种神秘感。在空间和实体的艺术创造,灰空间的作用表现在两个方面。作为景观因素,它可以丰富园林景观的层次,增加园林景观的深度,由此产生有强烈对比效果的虚与实。 三、灰空间设计在景观设计中的体现 景观设计中的灰空间包括很多方面,下面将对景观设计中的灰空间做出具体的分析、探讨和总结。 (一)台阶 在进行景观设计的过程中,我们会遇到不同的地形,为了达到最终的设计目

2016新型孵化器众创空间建设运营方案

互联网+众创空间实施方案

目录 一、众创空间总体要求 二、众创空间重点任务 (一)众创空间建设行动 (二)创业主体培育行动 (三)创业企业孵育行动 (四)创业投融资促进行动(五)创业服务提升行动 (六)创业文化营造行动三、众创空间支持政策 (一)降低市场准入门槛 (二)降低创业成本 四、众创空间保障措施 (一)强化统筹协调 (二)开展先行先试 (三)营造良好氛围

一、总体要求 (一)推进思路 为贯彻落实国家、省和市委、市政府的统一部署,大力实施“创业创新”行动,加强顶层设计,统筹协调联动,分工推进落实,集成政策支持,营造良好环境,使各类创业主体各显其能、各展其才,最大限度地激发全民创业潜力、释放创业活力;大力发展新技术、新产品、新业态、新模式,培育新的经济增长点,以创业促创新,以创业促就业,以创业促发展,为深入实施创新驱动发展战略提供新动能。 (二)实施原则 坚持市场导向,转变政府职能。充分发挥市场在资源配置中的决定性作用,以社会力量为主构建市场化的众创空间,以满足个性化、多样化消费需求和开放式、体验式创新为重点,加强协调联动和政策集成,促进创新创意与市场需求和社会资本有效对接。 创新服务模式,促进开放共享。通过市场化机制、专业化服务和资本化途径,有效集成创业服务资源,提供低成本、便利化、全要素的增值服务。充分运用互联网和开源技术构建开放创新创业平台,加强技术转移,整合利用全球创新资源,加强产学研合作,促进科技资源开放共享。 强化科技支撑,激发创业活力。发挥科技创新支撑作用,运用互联网、大数据、云计算等现代信息技术,促进创新创业要素在更大范围内高效组合、优化配置,降低创业成本,整合各类社会资源和科技资源协同支持创新创业,依靠大众创新创业推进转型升级。

中小学校园创客空间建设方案详细

中小学校园创客空间建设方案 基于STEAM创客教育的整体解决方案 校园STEAM创客教育 随着创客日益受到社会关注,开展创客教育已成为教育界讨论并实践的热点。如何开展创客教育,如何正确的认知创客教育,同样有待我们共同关注与探索。

一、创客教育与STEAM教育之间的关系 “校园创客空间”最重要的抓手是课程和活动。所以在建设上只注重硬件,不重视课程建设是不完整的做法。 ★青少年创新教育: 创新教育,是有目的地培养青少年的创新精神、创新能力和创新人格的教育。创客教育和STEAM教育是创新教育的两种重要方式。创客教育和STEAM教育对创新教育具有最直接的关联和影响,创新人才的培养需要同时扇动创客教育和STEAM教育两只“翅膀”。 ★青少年STEAM 教育: STEAM教育倡导将各个领域的知识通过综合的课程结合起来,加强学科间的相互配合,让学生在综合的环境中学习,在项目活动中应用多个学科的知识解决问题。 “STEAM其实是对基于标准化考试的传统教育理念的转型,它代表着一种现代的教育哲学,更注重学习的过程,而不是结果。本质上来说,我们敢于让学生们犯错,让他们尝试不同的想法,让他们听到不同的观点。与考试相反的,我们希望孩子们创造能够应用于真实生活的知识。”

★教育部最新发布的《关于“十三五”期间全面深入推进教育信息化工作的指导意见》中第六条摘要 教育部:创客教育是未来中国综合国力提升与教育产业升级的重要工作! 二、校园创客空间的建设目标: 营造能够充分支持学生进行多方面探究性学习的良好环境。激发学生设计创意的兴趣、爱设计创意的欲望,让学生亲身经理设计创意的过程、获得设计知识、掌握创意方法、培养创新素养的活动场所。 探究性实验是在教师引导下,由学生自己设计实验步骤,并经历探究过程,自己从中得出结论。因此,创新综合实验室会提供各种各样的探究仪器、设计实现工具,创设一个面对真实事物进行探究与面对想象设计进行实现的环境。综合

中小学校园创客空间建设方案

中小学校园创客空间建设方案 1

中小学校园创客空间建设方案 基于STEAM创客教育的整体解决方案 校园STEAM创客教育

随着创客日益受到社会关注,开展创客教育已成为教育界讨论并实践的热点。如何开展创客教育,如何正确的认知创客教育,同样有待我们共同关注与探索。 一、创客教育与STEAM教育之间的关系 “校园创客空间”最重要的抓手是课程和活动。因此在建设上只注重硬件,不重视课程建设是不完整的做法。 ★青少年创新教育: 创新教育,是有目的地培养青少年的创新精神、创新能力和创新人格的教育。创客教育和STEAM教育是创新教育的两种重要方式。创客教育和STEAM教育对创新教育具有最直接的关联和影响,创新人才的培养需要同时扇动创客教育和STEAM教育两只“翅膀”。 ★青少年STEAM 教育:

STEAM教育倡导将各个领域的知识经过综合的课程结合起来,加强学科间的相互配合,让学生在综合的环境中学习,在项目活动中应用多个学科的知识解决问题。 “STEAM其实是对基于标准化考试的传统教育理念的转型,它代表着一种现代的教育哲学,更注重学习的过程,而不是结果。本质上来说,我们敢于让学生们犯错,让她们尝试不同的想法,让她们听到不同的观点。与考试相反的,我们希望孩子们创造能够应用于真实生活的知识。” ★教育部最新发布的《关于“十三五”期间全面深入推进教育信息化工作的指导意见》中第六条摘要

教育部:创客教育是未来中国综合国力提升与教育产业升级的重要工作! 二、校园创客空间的建设目标: 营造能够充分支持学生进行多方面探究性学习的良好环境。激发学生设计创意的兴趣、爱设计创意的欲望,让学生亲身经理设计创意的过程、获得设计知识、掌握创意方法、培养创新素养的活动场所。 探究性实验是在教师引导下,由学生自己设计实验步骤,并经历探究过程,自己从中得出结论。因此,创新综合实验室会提供各种各样的探究仪器、设计实现工具,创设一个面对真实事物进行探究与面对想象设计进行实现的环境。综合实验室所进行的实验活动充分体现学生主体性,提高学生的参与度,既有利于学生基本知识技能的形成,又有利于培养学生的动手能力与解决实际问题的能力。 三、校园创客空间的布局及课程体系: 1、校园创客空间的布局 1-1、创客教学学习区 用于大班授课让学生了解创客精神和创客文化,经过在线学习全球的创客教育情况和创客的发展;用于学生学习程序的编写,培养学生的编程思维和编程能力;结合电子硬件,让学生学习以及掌握电子程序实现的方式,了解程序和功能的实现;结合配套的高级创客工具箱,让学生能够自由活动创意出有电子功能的简单模型作品;用于学生学习机器人结构以及机器人控制程序,了解更多机器人的实现方式。熟练使用三维设计软件,使作品更趋向于产品化。

(完整word版)试卷 天津工业大学

天津工业大学电气工程与自动化学院2009~2010学年第1学期微机原理及接口技术试卷(A)班级学号姓名 注意事项:1、本试卷共8 页,满分为100 分,考试时间为110 分钟。 2、答题时请使用蓝、黑钢笔或圆珠笔,不得使用红颜色墨水笔。除特 殊要求外不得使用铅笔。 一. 填空题:(每空 1 分,共30 分) 1. 十六进制数93H和55H,它们的二进制分别为B和B, 若它们是微机中的有符号数,相应的十进制数分别为和,若在微机中将它们相加,结果应为H。 2. 存储器扩展方式有三种,分别为、、。 3. 8086CPU主要有和组成。8086CPU数据总线根数为, 地址总线根数为,寻址空间为。8051单片机是位机,数据总线根数为,地址总线根数为,寻址空间为。 4. 8086CPU系统复位后CS= ,IP= 。8051单片机系统复 位后PC= 。 5. 8086CPU的一个基本总线周期包含个时钟周期,8051单片机一 个机器周期包含个时钟周期。 6.一个完整的中断过程包括、、和。8086CPU 采用矢量型中断,若矢量号n = 4,则对应的矢量地址为。7. 80286在保护地址方式下,物理存储空间为和虚拟存储空间 为,采用实现对虚拟存储空间的寻址。

二. 选择题:(每题 1 分,共10 分) 1. MPU是的英文缩写。 (A)中央处理器(B)微控制器 (C)微处理器(D)单片机 2. 8086CPU中断矢量表40H单元处开始存放08H、09H、00H和20H, 某中断的矢量号为10H,则该中断服务程序的入口地址是。 (A)02908H (B)02809H (C)20908H (D)20809H 3. 8086/8088指令系统中寻找操作数有四种不同的寻址方式,指令MOV AX , [2500H]中,其源操作数属于。 (A)立即数寻址(B)直接寻址 (C)寄存器寻址(D)寄存器间接寻址 4. 8051单片机内部RAM低128B分为若干个区域,其中位寻址区范围 为。 (A)00H~1FH (B)20H~2FH (C)30H~3FH (D)40H~4FH 5. 8051单片机有组R0~R7。 (A)1 (B)2 (C)3 (D)4 6. 8250串行通信接口芯片,通过设定串行通信的波特率。 (A)线路控制寄存器(B)波特率因子寄存器 (C)线路状态寄存器(D)中断允许寄存器 7. 中断控制器8259A内部端口地址有个。 (A)1 (B)2 (C)3 (D)4 8. 8051单片机响应外部中断1的条件是。 (A)SETB EA (B)SETB EX1 (C)A and B (D)以上条件均不满足 9. 8051单片机有4个并行口,其中口负责8位数据的输出。 (A)P0 (B)P1 (C)P2 (D)P3 10. 当ADC0809模拟量输入电压范围为0 ~5V时,若引脚REF(+)接 +5V,那么其分辨率为。 (A)1/64 (B)1/128 (C)1/256 (D)1/512

浅谈景观设计中的灰空间设计

浅谈景观设计中的灰空间设计 “灰空间”一说,大都指建筑中的空间概念,属过渡性地带,即半室内,半室外的空间。 然而,对于空间的创造,空间体验占同样重要地位的园林设计而言,即使不提这一名词,过渡性空间的考虑与设计也显得十分突出,其作用亦是不容忽视的。诸如园林中各要素间的过渡,映衬;园林空间与建筑空间,城市大空间的衔接;自然空间与人工空间的转换等,灰空间都起着不可替代的作用。 在空间和实体的艺术创造,灰空间的作用表现在两个方面。作为景观因素,它可以丰富园林景观的层次,增加园林景观的深度,由此产生有强烈对比效果的虚与实。留园入口空间“一波三折”的处理手法是极佳的佐证。 鉴于此,有必要对园林中的灰空间做出探讨、总结。因为这些地方往往是与人们关系最为密切又最易被忽视的。细部体现水平,细部同样表达着对人的关心。 植被、水体———硬质空间的柔化园林设计中植被、水体的应用对于硬质空间的柔化作用是显而易见的;同时,也因其自身的特色,为景观提供了富有生机,充满感性、活力的空间。不同形式,不同色彩的组合、搭配在视觉、听觉上给人以感观的刺激;也因为在形式、色彩上的变化,给园林景观在时间上以空间的转换,不至于单调、无变化。 台阶———不同高差的转化台阶是不同高差的地面结合方式之一。虽然,属于交通性质的过渡空间,但也能创造出动人的线的造型,产生出巨大的艺术魅力。正因如此,台阶在园林设计中往往会摆脱其纯功能性,夸大并与场地结合,营造出多功能极富韵律感的空间。 小品———视线的引导城市中的各种设施,如花坛、灯具、雕塑、花架、座椅等,一般是出现在不同空间的连接处,像开放空间与秘密空间;自然空间与人工空间;园林内空间与城市外空间。小品在此不仅起着点缀的作用,同时也是

创客空间孵化器孵化商业计划书(Word版)

创客空间孵化器孵化商业计划书目录 第一部分孵化器概况 第二部分孵化企业入驻、毕业及跟踪管理服务标准2 一. 孵化企业筛选标准 2 二.选择孵化企业的基本准则2 三.入孵企业的创业计划2 四. 入孵企业的创业计划评估2 五.孵化企业入驻安排 2 六.孵化毕业企业的标准2 七.孵化企业的毕业服务2 八.企业入驻孵化器的准入程序与毕业程序图2九. 附件2 第三部分在孵企业创业辅导服务标准 2 一.对孵化企业开展咨询诊断工作2 二、协助企业申报各类计划2 三.创业辅导培训2 四、企业联络员、创业辅导员与创业导师 2 第四部分行政办公服务标准2 一.公共秘书服务2

二. 商务代理服务2 三.办公礼仪服务2 第五部分物业服务标准2 一.基础公用设施管理2 二.物业清洁管理 2 三.园林绿化养护与管理 2 四.安全防范管理 2 五.档案资料 2 六. 附件 2 第六部分技术创新服务内容 2 一.硬件设施服务 2 二. 增值服务 2 三.资源的网络化服务2

第一部分孵化企业入驻、毕业及跟踪管理服务标准 一. 孵化企业筛选标准 1. 一级孵化 按照科技部《科技企业孵化器(高新技术创业服务中心)认定和管理办法》中规定的孵化企业应具备的基本条件: (1)企业注册地及办公场所必须在孵化器孵化场地内且签订孵化协议; (2)属新注册企业或申请进入孵化器前企业成立时间不到2年; (3)企业在孵化器孵化的时间一般不超过3年; (4)企业注册资金一般不得超过200万元; (5)属迁入企业的,上年营业收入一般不得超过200万元; (6)企业租用孵化器孵化场地面积低于1000平方米; (7)企业从事研究、开发、生产的项目或产品(服务)应属于科学技术部等部门颁布的《国家重点支持的高新技术领域》范围; (8)企业的负责人是熟悉本企业产品研究、开发的科技人员。 2. 二级孵化 (1)与科技园签订有效的租赁协议、孵化协议或购买办公用房,在华苑产业区内进行工商注册和税务登记; (2)年技工贸总收入不超过1亿元; (3)企业从事研究、开发、生产的项目或产品(服务)应属于科学技术部等部门颁布的《国家重点支持的高新技术领域》范围; 二.选择孵化企业的基本准则 在科技部颁布的孵化企业应具备的条件基础上,孵化器可根据自身的具体情况制定一个选择孵化企业的标准,可考虑以下准则: 1. 创业者的创业动机; 2. 创业团队的构建是否合理; 3. 是否具有支付租金和服务费用的能力; 4. 是否拥有可以商品化的产品或服务; 5. 是否具有快速成长的能力;

大众创新万众创业项目“众创空间”建设整体运营方案策划方案

大众创新万众创业项目众创空间建设方案

目录 一、建设众创空间的重要意义 (1) 二、指导思想、组织机构与工作目标 (1) 三、众创空间建设方案 (3) 四、众创空间职能与扶持方式 (4) 五、众创空间入住条件与优惠政策 (5) 六、项目实施方案 (7) 七、开展创业服务与落实退出机制 (9) 产学研孵化众创空间管理办法 (10)

“众创空间”众创空间建设方案 为贯彻落实党的十八届三中、四中全会精神及最近召开的两会精神、以及国务院办公厅《关于发展众创空间推进大众创新创业的指导意见》中提出的“大众创业,万众创新”的“众创空间”战略,认真落实我市《关于加快我市民营经济发展的意见》;着力解决我市民营经济发展中的突出问题,促进我市民营经济持续健康快速发展,激发全民创新创业热情,实现我市十三五“激活存量、扩大增量、调优结构、培养龙头、做精产品、延长链条、经济指标实现翻番增长”的奋斗目标,按照党中央、国务院的总体要求,结合我市实际,特制定建设如下方案,请领导审核。 一、建设众创空间的重要意义 近年来,围绕“三三”发展战略、“六大发展”发展重点,不断进行产业结构调整与升级,随着民营经济发展步伐迅速加快,经济发展主体的多元化需求不断增加,一批企业家主体(包括企业中层管理、营销、科技人员)、外出务工经商人员、在校大学生和毕业生、农村致富带头人的创业热情不断高涨,等等,设立综合创业孵化与实训基地的各项要素已经完全具备。但是创业初始阶段普遍存在规模偏小、布局分散、产业层次低、用地难、融资难、应对风险能力弱等问题。 为解决创业主体创业中存在的热点难点问题,通过政府引导、市场运作、政策支持等措施,建立我市综合创业孵化与实训基地,为广大创业者开辟一片“试验田”,起到积极的示范作用和龙头带动作用,引导广大创业者走合法、优质、高效的创业道路,储备一批成长性中小企业,培育一批规模创新企业,为我市经济发展提供后续动力,对提升我市经济发展水平和促进民营经济快速发展具有重要意义。 二、指导思想、组织机构与工作目标 (一)指导思想和整体思路

城市高架桥下部灰空间景观设计研究报告

城市高架桥下部灰空间景观设计研究报告 1 研究背景 (4) 1.1研究意义 (4) 1.2研究目的 (5) 1.3国内外相关研究动态 (6) 1.3.1国外研究动态 (6) 1.3.2国内研究动态 (7) 2 研究内容、目标与方法 (8) 2.1研究内容 (8) 2.2研究目标 (9) 2.3研究方法 (9) 2.3.1文献阅读法 (9) 2.3.2现场调研法 (10) 2.4技术路线 (11) 3 案例分析 (12) 3.1美国波士顿大挖掘“BIG DIG” (12) 2.3.1项目简介 (12) 2.3.2项目的难度 (13) 2.3.3项目小结 (14) 3.2阿姆斯特丹A8高速公路公园 (14) 3.2.1项目概况 (14) 3.2.2项目设计理念 (15) 3.2.3项目小结 (15) 3.3美国纽约高线公园 (16) 3.3.1项目概况 (16)

3.3.2设计理念 (18) 3.3.3设计要点 (19) 3.3.4项目总结 (20) 3.4案例分析小结 (20) 4 城市高架桥下部灰空间的景观特性 (22) 4.1城市高架桥的概念、类型与特性 (22) 4.1.1高架桥的概念与分类 (22) 4.1.2城市高架桥的空间特性 (22) 4.1.3城市高架桥的景观特点 (23) 4.2影响高架桥下部空间景观构成的因素 (25) 5 XX市二环路高架桥概述 (27) 5.1XX市二环高架桥立面构造和道路结构特征 (28) 5.2XX市二环路高架桥立柱绿化形式 (30) 5.3XX市二环高架桥中央分车带绿化形式 (31) 6 XX市二环高架桥下部灰空间景观改造设计 (33) 6.1设计思路 (33) 6.2设计理念 (34) 6.2.1立体绿化模式 (34) 6.2.2自然式植物配置手法 (36) 6.2.3引入乡土景观 (37) 6.2.4个性化设计 (39) 6.3设计方案 (41) 6.3.1标准段设计 (41) 6.3.2立柱绿化形式 (46) 6.4节点设计方案 (50) 6.4.1XX市二环高架桥东段——“城市之声”景观设计 (50) 6.4.2XX市二环高架桥西段——“时间剪影”段景观设计 (52)

创客空间运营管理方案(试行)(精)

创客空间运营管理方案(试行 第一章总则 第一条为了响应国家关于“大众创业、万众创新”的号召,鼓励创客、创新、创业实践活动,深圳市XXXXXX有限公司创立了创客空间(以下简称创客空间。为保证创客空间各项工作正常有序地开展,特制定本管理方案。 第二条创客空间是为创客开展创客活动和为创业团队开展硬件创新活动提供指导与帮助的服务性机构。创客空间的主要任务是帮助创客实现创客作品、为创业个人或团队实现产品化和市场化提供场地、工具设备及XX设计技术支持等服务。 第三条创客空间具有孵化器功能。准许进入创客空间孵化的可以是暂时还未在工商行政管理部门进行登记的创业个人或团队;也可以是已经注册登记的小微企业。 For personal use only in study and research; not for commercial use 第二章组织机构及职责 第四条为加强对创客空间的管理及更好的服务创客与创业者,设立创客空间管理委员会(以下简称管委会,管委会成员由XXXXXX总经理、企业内部各创客团队负责人、外聘顾问组成。创客空间的日常管理由运营组负责,由管委会直接指导开展工作。创客空间聘请优秀创客及创业家、设计师、工程师等组成梦想顾问团,提供更好的创客及创业咨询帮助。 第五条管委会主要职责 For personal use only in study and research; not for commercial use

1、确定创客空间的发展方向、目标和计划; 2、协调创客空间与公司其他部门的衔接、协调工作; 3、审核运营部各项规章制度,遴选适合人选,定期检查各项管理制度的落实执行情况; For personal use only in study and research; not for commercial use 4、针对入驻创客、创业项目的重大需求进行讨论协调。 第六条运营组主要职责 1、全面负责创客空间的日常管理工作,制定创客空间管理制度和年度工作思路; 2、组织策划开展周末创客、其他各类创客、创新、创业活动及培训课程; 3、聘请各类技术专家、专业教师、创业人士等为创客和创业者的发展提供指导、培训和咨询,包括管理、营销、技术、法律、财务等方面的咨询; 4、负责对创客空间入驻个人、团体进行入驻资格审核; 5、对场地、工具、设备的定期维护保养,对安全性的定期检查; 6、负责创客空间及入驻项目的对外宣传、合作及市场推广等工作; 7、创客空间其他日常工作。 第七条梦想顾问团的工作职责 1、为创客、创业个人或团队提供个性化的咨询服务; 2、开展免费或有偿的课程培训服务;

创客空间整体解决方案

创客空间采购方案 二零一六年五月 目录 一、创客空间方案说明 (2) 创客教室区域规划....................................................................................................................... 2 1.1 产品与教学 1.2 (6) 模型制作类软件学习1.3 . (6) 功能实现类课程学习1.4 (7) 潜能开发 1.5 (11) 预期成果 (12) 1.6创客空间教室建设详细清单 二、 (15)

1 / 22 2.1基本工具 (15) .................................................................................................................................... 17 .课程套件2.2 19 ..................................................................................................................................... 2.3其他器材............................................................................................................................ 20 2.4.装饰设计清单 21 .................................................................................................................................... 必备成果2.5 . 21 ........................................................................................................................................ .评分办法三、 创客空间方案说明一、 创客教育,一般而言目前我们理解的是在校培养学生的创客能力,创客教育,教育是方式和手段,让学生具备创的知识,意识和能力是目的,如果一个地方纯属创客,那就只需要提供一个空间,一个造物的空间,让学生自由去造物,没有教和育的环节,,那就是老师教,学生学,学什么呢?学的是造的基本技能,创和教育纯属教育的话,的融合我们成为创客教育,那么创客教育真正的含义是什么?一个创客的养成有四个阶段,这四个阶段就是教、学、想、造,针对这四个阶段,创客教室的设计就必然是北京大学多元文化教育研究中心对创客教室的规划如 下:硬件设施和软性课程的结合,创客教室区域规划1.1我们要打造最适 合中国青少年科学乐园。和以往创客教室不同的是模块化更清晰,锻炼孩子团队协作性更强,安全性更高,整个教室涵盖课程面积更广泛,分别设置了几区,授课区,模块调试区,作品存放区,材料存放区,创意共RP个区域分别为展示区,享区。

天津工业大学硕士研究生入学考试大纲

天津工业大学硕士研究生入学考试大纲 (高等代数) 一. 多项式理论 一元多项式的概念、运算及带余除法,多项式的整除,最大公因式,多项式的互素,不可约多项式,多项式因式分解问题的理论,多项式的重因式,多项式函数及多项式根,有理系数多项式的有理根。 二. 行列式 掌握n阶行列式的概念与性质;会运用行列式性质,通过降阶和三角化的方法及其综合使用,较熟练地计算行列式;掌握克莱姆法则。 三. 线性方程组 用矩阵的初等变换解一般线性方程组,矩阵的秩,线性方程组有解的判别定理及其应用,n个未知量n个方程的齐次线性方程组有非零解的充要条件,基础解系,一般线性方程组通解。 四. 矩阵 矩阵运算,逆矩阵,矩阵乘积的行列式及秩的定理,初等矩阵,初等矩阵与初等变换的的关系,用初等变换求逆矩阵的理论与方法。 五. 二次型 掌握二次型的概念,矩阵的合同概念及其性质;掌握将二次型化为标准形的方法;掌握复数域与实数域上二次型的规范形;熟练掌握正定二次型的概念和判别法。 六. 向量空间 掌握向量空间的概念,向量空间的子空间,子空间的交与和,子空间的直和,向量组的线性相关性,向量空间中基与维数,向量坐标,过渡矩阵,向量空间同构,线性方程组的有解判定定理、矩阵的秩,熟练掌握齐次线性方程组的基础解系的概念与求法,以及一般线性方程组解的结构。 七. 线性变换 线性变换的概念,线性变换的矩阵,矩阵的相似、特征值、特征向量,线性变换的值域与核,不变子空间,矩阵可对角化的理论与方法,最小多项式。 八.欧氏空间 两个向量的内积,欧氏空间,向量的长度、两个向量的夹角,度量矩阵,标准正交基,正交变换和正交矩阵,对称变换与对称矩阵。 主要参考书:北京大学,高等代数(第三版)2005年

探析住宅空间设计中灰空间的运用

探析住宅空间设计中灰空间的运用 发表时间:2019-06-25T11:06:50.790Z 来源:《基层建设》2019年第7期作者:刘力 [导读] 摘要:住宅已经成为城市中居住者们日益关注的话题,它既是一个私密空间,又是一个共同的空间中不同空间。 江苏筑原建筑设计有限公司江苏省常州市 213000 摘要:住宅已经成为城市中居住者们日益关注的话题,它既是一个私密空间,又是一个共同的空间中不同空间。作为住宅不同空间的设计,是一个体现人们生活感受的问题。灰空间在住宅设计中的应用,就在此展现其应有的魅力。本文将探析住宅空间设计中灰空间的运用,以此展开阐述。 关键词:概念;重要性;作用;运用策略 1、“灰空间”的概念 灰空间的概念一词,通过网络大家应该能够了解,它是起源于一个日本的建筑设计者。从建筑上我们可以理解为是建筑与建筑的过度空间。例如:阳台、庭院、走廊、门楼、过道等,它既是一种封闭性的,又是一种封闭性的过度空间,这种空间从小区的角度应该理解为广场、绿地等空间设计。虽然这一词出自日本,但是从我华夏文明的古建筑中,要早于日本上千年的时间,所以我不认为是日本优先发明的;中国的四合院就是典型的灰空间的设计模式。只不过是日本人重新起了名字吧了,总之灰空间就是建筑空间的的过度区域。 2、住宅空间设计中灰空间运用的重要性; 伴随着城市的不断扩大,城市的建筑在慢慢的将人们原有的空间所占据。纵观我国的建筑模式,基本都是传统的田园风貌,这种风貌特点就是能够让人们能够时刻感受到空间旷野的自然生态。但是城市建筑的兴起,尤其是城市建筑将原有的传统风貌逐渐取代,而形成了如今高楼林立的城市,建筑之间没有了原始的自然绿色。再就是城市管理者为了获取更大的土地资源,随意的增加容积率,是建筑与建筑之间的空间在慢慢的减小,使居住者在视觉中找不到任何的平衡感和自由感空间模式。尤其现在的设计者,在原有红线边缘进行设计,考虑的是建设者的利益,而忽略居住者自由空间的感受。一个建筑如果缺少了与室外过度的空间,无形之中剥夺了人们的秘密空间。一个好的住宅应该考虑给居住者在室外、室内空间的过度视觉,建筑与建筑之间没有过度空间,这样的住宅无法满足居住者的精神要求,也没有了空间之间的互动安全感受。所以在这种居住环境下,应该着重考虑灰空间在建筑设计中融入于运用,让人们能够感受到人与环境的自然融入和和谐,正是我们当前城市所需要考虑问题,此问题充分体现了灰空间在设计运用中的重要性。 3、灰空间在建筑设计的作用; 3.1、有利于建筑机能的完善;建筑机能,包括休息、工作、和日常的生活。而在建筑设计中如果这些建筑机能得不到完善,那么这个建筑也就不是一个完整的建筑。由此可以看出建筑空间围成的模式,从某种程度上来看都是带有私密性空间性的,其空间的组成是私密空间与开放式空间,一个空间过度到另一个空间中过程,这个过程是影响到居住者的个人习惯的。此时如果利用灰空间设计思路融入到建筑设计中来,可以从私密空间到开敞式空间的过度,从而改善了建筑空间设计的不足,促进了建筑各机能的完善,由此可见灰空间在建筑机能完善方面起了决定性的作用。 3.2、有利于空间与空间的之间的结合;如今的建筑设计,根据不同的人群进行了不同的设计,在这个空间里出现了各种适合不同人群的空间构造。在这些空间构造之间,如果一味追求实用,而忽略到不同空间居住者的生存方式,影响了不同装修风格的连贯性,由此可见不管是以人群划分,还是以建筑格式划分,这都给设计者造了困难。而此时的灰空间的设计融入,将两个空间设置成过度空间,在这个空间中充分的进行结合设计,使两个空间在的人群在进入过度空间时,很难从视觉器官上感到不合适,从而化解了空间设计的矛盾。所以说,灰空间的设计介入,有利于空间与空间之间结合。 3.3、展现空间格局的新“境界”;从目前的建筑工程设计中看,由于建筑与建筑之间的间距缩小,给人们的生活感受不是很好,甚至有时给人造成压抑感。建筑设计者此时应充分的利用灰空间的设计理念,在建筑与建筑之间做一些新颖的设计策略。建筑与建筑之间根据实际情况,设计了一些假山、凉亭、廊架等小品设计,使人们在一个建筑中走出时,所能够看到的不是对面的建筑,而是一些景观小品,其设计境界就像一个自然界的融入,让居住者感觉到境界的不同,好像回归了自然。这就是灰空间在建筑与建筑之间的应用,其通过在空间中设置一个景物的色彩点化,而使人能够感受到好像身处在崭新的境界。 4、住宅空间设计中灰空间的运用策略 4.1、利用底层构造加强灰空间的设计策略;对于城市的建筑,尤其是高层建筑其底层空间构造也也是很多的,例如檐廊、廊棚、雨棚的构造,这些构造在建筑中是非常常见的构造模式。由于其处于底层,其设计应该充分考虑其与自然的有力结合,让人们从感官上摆脱混凝土元素的直接影响,从而通过底层设计,让植物的泥土气息与新鲜空气,再现自然环境的渲染。在对底层的相关的构件进行结合设计时,设计者们应该围绕架空底层构件模式,增加自然景观在这些空间构件的设计。例如,围绕雨棚进行绿色植物的设计;围绕檐廊增加颜色设计思路,围绕廊棚适当的增加景观小品的环绕等,都有利于底层空间的利用。所以说底层构造加强灰空间的运用设计思路,让居住者们在自己的私密空间进入公共空间时,能够体验到自然的真正的气息。 4.2、利用开敞式空间的进行灰空间设计;开敞式空间从建筑空间定位来看有很多种;如住户室内的阳台、住户室外的露台、小区的公共广场等都属于开敞式空间。在在此只拿住户室外的露台进行阐述。露台一般的来说属于别墅的特色,在高层建筑设计格局中,是很少见到的。这就体现了露台所对的人群的不同。设计者应该充分利用灰空间这一特点,在此展开其特色的设计。例如:对露台的空间进行整体设计后,利用其整个空间地型,可以进行亭子的设计。亭子设计成木质的或者为铁艺的。中间设计成石头圆桌,四到五个石凳。颜色应该根据居住者的习惯确定。如此设计,可以让居住者在闲暇之余,坐在自己的露台,深刻感受的不同空间带来的感受,可以缓解精神。亭子周围根据居住者的习惯适当的增加些绿色植物,这就是灰空间利用开敞式空间进行的设计,由私密空间进入另一个空间,不同的空间,创造不同的空间效果。 4.3、加强城市建筑顶部空间的灰空间设计;如今高层建筑已经成为城市的特色,由于容积率的增加,建筑与建筑空间的空间设计也在变的狭小。在此建筑设计者应该充分利用建筑顶层的空间,进行灰空间的融入,设计增加空中花园或者空中庭院。建筑设计者们应该根据高层建筑的情况,在建筑本身形成几段设计。例如:每隔几层设计成为空中庭院。这种庭院依据建筑的格局进行整体布置,充分利用整体立面的错落性,展现空中庭院的特色。也可以利用建筑之间的狭小特色,设置空中连廊,由此增加灰色空间的设计理念。这就是加强城市建筑顶部空间的灰空间的设计策略。让居住者在狭小的空间中,找到不一样的空间的体验,从而感受到自然的气息。

相关主题