搜档网
当前位置:搜档网 › 弹簧振子周期公式的研究

弹簧振子周期公式的研究

弹簧振子周期公式的研究
弹簧振子周期公式的研究

教案(首页)

备课笔记附后:

实验二 弹簧振子周期公式的研究

【实验目的】

1. 学习建立实验公式的实验方法,找出弹簧振子的周期公式。

2. 通过公式简化、曲线直化和数据处理,练习作图和图解。

【实验原理】

已知弹簧振子的振动周期T 与倔强系数K 、振子质量m 相关,为了找出T 、K 、m 三者之间的关系,从量纲分析,可以假设满足下式

β

α

m AK T = (1) 式中α、β和A 均为待定常数。如果能通过实验测量和数据处理找到α、β和A 的具体数值,那么(1)式就被具体地确定了。如果找不出α、β和A 的数值,则说明(1)式的假设是错误的,还需要对T 、K 、m 三者的函数关系做新的假设。

为了简化,先使倔强系数K 或振子质量m 保持不变进行实验。例如先使振子质量m 保持不变,则(1)式可写成

常数===βαAm C K C T 11 (2) 这样,对应于不同的倔强系数K 的弹簧,就有不同的振动周期T ,可以测定一组T ~K 的对应值。

再使倔强系数K 保持不变(用同一个弹簧),则(1)式又可写成

22常数===αβAK C m C T (3) 这样,对于不同的振子质量m ,又有不同的振动周期T ,可以测定一组T ~m 的对应值。 从(2)式和(3)式可见,只要α、β不等于1,则T ~K 和T ~m 间的关系就不是直线关系。为了便于图解,可将(2)式和(3)式取对数,将曲线直化、得到

K C T lg lg lg 1α+= (4) m C T lg lg lg 2β+= (5)

式中常数α、β可以从图线的斜率求出,1C 、2C 可从图线的截距求得。然后将得到的1C 、

2C 值和α、β值,分别代入(2)式或(3)式而确定A 值。当α、β和A 值确定之后,

则所求的周期公式就被具体地确定了。

为了完成以上实验,需要先对各弹簧的倔强系数K 进行测定。

【实验内容】

1. 因六个砝码的误差较大,实验前应先作出校测,记录数据。

2. 弹簧倔强系数K 的测定 用一次增荷法(取31050-?=? m 公斤)测定K 值。计算公式为

x

F

K ??=

五个弹簧各测一次,记录数据。

3. 振子质量m 一定(统一用3号砝码),测定一组T ~K 的对应值。

4. 倔强系数K 一定(统一用3号弹簧),测定一组T ~m 的对应值

5. 将K T lg ~lg 和m T lg ~lg 两组数据作图,从图求出α、β和A 值(从(2)式和(3)式可以得到两个A 值,求其平均值)。

【主要实验数据】

表0 实验仪器型号及主要技术参数记录

表1:对六个砝码质量的校测

表2:弹簧增荷kg 10 49.61 3

-?=?m

3-

作出T lg ~K lg 图。

-1作出T lg ~m lg 图。

从T lg ~K lg 图求出 1lg C = 0.1419

1C = 1.386 α= - 0.4203

从T lg ~m lg 图求出 2lg C = 0.425 2C = 2.661 β=0.4762

由公式及相应数据解出两个A 值,

292.52619

.0386

.1)06.0(386.14762.011====

βm C A 368.54957

.0661

.2311.5661.24203.022====

-αK C A 平均值=A 5.33

因此得到弹簧振子的周期公式为

=T (5.33)K -0.42

m 0.48

和公式 K

m T π

2= 相比较,A 、α和β的相对误差分别为

% 4 % 16 % 15 ===βαE E E A

误差分析:

主要误差来自弹簧振子没有真正竖直振动,导致读数有偏差。

注意事项:

1. 测定弹簧倔强系数K时,先要在弹簧下端加20克砝码的荷重,使弹簧“拉开”,把这时弹簧的长度作为初长。这样处理,可以减小实验误差。

2. 在测量弹簧的振动周期T时,先倒着数5、4、3、2、1、0,当数到“0”时开始计时,然后再正着数到50为止。

3. 测量弹簧的振动周期时,振动的振幅不宜过大,避免弹簧横向摆动,便于测准振动周期。

4. 因实验用的弹簧很“软”,其最大负荷量约100克,实验时加到70克砝码已接近最大负荷量,决不能在这些弹簧下挂更重的东西,以免损坏。

5. 为防止砝码和弹簧丢失,实验结束后将砝码和弹簧整理在盒子里。

弹簧振子实验报告

弹簧振子实验报告 一、引言 ?实验目的 1.测定弹簧的刚度系数(stiffness coefficient). 2.研究弹簧振子的振动特性,验证周期公式. 3.学习处理实验数据. ?实验原理 一根上端固定的圆柱螺旋弹簧下端悬一重物后,就构成了弹簧振子.当振子处于静止状况时,重物所受的重力与弹簧作用于它的弹性恢复力相平衡,这是振子的静止位置就叫平衡位置.如用外力使振子离开平衡位置然后释放,则振子将以平衡位置为中心作上下振动.实验研究表明,如以振子的平衡位置为原点(x=0),则当振子沿铅垂方向离开平衡位置时,它受到的弹簧恢复力F在一定的限度与振子的位移x成正比,即 F =_ kx⑴ 式中的比例常数k称为刚度系数(stiffness coefficient),它是使弹簧产生单位形变所须的载荷?这就是胡克定律?式(1)中的负号表示弹性恢复力始终指向平衡位置.当位移x 为负值,即振子向下平移时,力F向上.这里的力F表示弹性力与重力mg的综合作用结果.

根据牛顿第二定律,如振子的质量为m,在弹性力作用下振子的运动方程为: + Arx = O x = Asin +(/>) (3) 式表明?弹簧振子在外力扰动后,将做振幅为A,角频率为宀0的简谐振 动,式中的(叫/ +。)称为相位,0称为初相位?角频率为叫的振子其振动周期 (4) (4) 式表示振子的周期与其质量、弹簧刚度系数之间的关系,这是弹簧振子的 最基本的特性?弹簧振子是振动系统中最简单的一种,它的运动特性(振幅,相 位,频率,周期)是所有振动系统共有的基本特性,研究弹簧振子的振动是认识 更复杂震动的基础. 弹簧的质量对振动周期也有影响?可以证明,对于质量为“0的圆柱形弹簧, 振子周期为 (5) m o/ m o/ 式中 ?称为弹簧的等效质量,即弹簧相当于以 ?的质量参加了振子的 振动?非圆柱弹簧(如锥形弹簧)的等效质量系数不等于1/3. d 2x 上式可化为一个典型的二阶常系数微分方程乔 =0 其解为 (3) 可得 x =

高中物理的所有公式归纳

高中物理公式、规律汇编表 一、力学 1、 胡克定律: F = kx (x 为伸长量或压缩量;k 为劲度系数,只与弹簧的 原长、粗细和材料有关) 2、 重力: G = mg (g 随离地面高度、纬度、地质结构而变化;重力约等 于地面上物体受到的地球引力) 3 、求F 1、F 2两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 + F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合 外力为零。 F 合=0 或 : F x 合=0 F y 合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值 反向 (2* )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1) 滑动摩擦力: f= μ F N 说明 : ① F N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G ② μ为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、 接触面相对运动快慢以及正压力N 无关. (2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明:

结构自振周期

场地土类别、结构自振周期、设计特征周期的概念解读常有众智平台朋友来询问场地土类别与地震力是什么关系,结构自振周期折减对结构的地震力有什么影响,设计特征周期是什么概念,土的卓越周期又是怎么回事,本文结合规范对这些内容进行了整理,对这几个概念的相关关系也做了一些论述,期望与大家一起交流学习,具体综述如下: 一、场地土类别 《建筑抗震设计规范》第4.1.6对场地土类别是这样划分的:建筑的 场地类别,应根据土层等效剪切波速和场地覆盖层厚度按表4.1.6划分为四类,其中Ⅰ类分为Ⅰ0、Ⅰ1两个亚类。当有可靠的剪切波速和覆盖层厚度且其值处于表4.1.6所列场地类别的分界线附近时,应允许按插值方法确定地震作用计算所用的特征周期。 《抗规》第4.1.4条、4.1.5条对场地覆盖层的厚度及图层的等效剪切波束分别作了规定。 相关概念:

场地--工程群体所在地,具有相似的反应谱特征。其范围相当于厂区、居民小区和自然村或不小于1.0km2的平面面积。 与震害的关系:土质愈软覆盖层厚度愈厚,建筑震害愈严重,反之愈轻,软弱土层对地震力具有放大作用。历次大地震的经验表明,同样或相近的建筑,建造于Ⅰ类场地时震害较轻,建造于Ⅲ、Ⅳ类场地震害较重。 规范采取的相应措施:《抗规》第4.1.1条将场地划分为对建筑抗震有利、一般、不利和危险的地段。具体设计时,结构设计师对不利地段,应提出避开要求;当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 另外《抗规》第3.3.2、4.1.8,、4.1.9对相关措施提出了严格要求,设计人员不应忽视。 二、结构自振周期 概念: 结构自振周期是结构按某一振型完成一次自由振动所需的时间,是结构本身固有的动力特性,只与自身质量及刚度有关,结构有几个振型就有几个自振周期,一一对应。 应用:

《弹簧振子》模型

“弹簧振子”模型 太原市第十二中学 姚维明 模型建构: 【模型】常见弹簧振子及其类型问题 在简谐运动中,我们对弹簧振子(如图1,简称模型甲)比较熟悉。在学习过程中,我们经常会遇到与此相类似的一个模型(如图2,简称模型乙)。认真比较两种模型的区别和联系,对于培养我们的思维品质,提高我们的解题能力有一定的意义。 【特点】①弹簧振子做简谐运动时,回复力F=-kx ,“回复力”为振子运动方向上的合力。加速度为m kx a -= ②简谐运动具有对称性,即以平衡位置(a=0)为圆心,两侧对称点回复力、加速度、位移都是对称的。这是解题的关键。 模型典案: 【典案1】把一个小球挂在一个竖直的弹簧上,如图2。当它平衡后再用力向下拉伸一小段距离后轻轻放手,使小球上下振动。试证明小球的振动是简谐振动。 〖证明〗设弹簧劲度系数为k ,不受拉力时的长度为l 0,小球质量为m ,当挂上小球平衡时,弹簧的伸长量为x 0。由题意得mg=kx 0 容易判断,由重力和弹力的合力作为振动的回复力 假设在振动过程中的某一瞬间,小球在平衡位置下方,离开平衡位置O 的距离为x,取向下的方向为正方向 则回复力F=mg+[-k(x 0+x)]=mg-kx 0-kx= -kx 根据简谐运动定义,得证 比较: (1)两种模型中,弹簧振子都是作简谐运动。这是它们的相同之处。 (2)模型甲中,由弹簧的弹力提供回复力。因此,位移(x),回复力(F),速度(v),加速度(a),各量大小是关于平衡位置O 点对称的。 (3)模型乙中,由弹簧的弹力和重力两者的合力提供回复力。弹簧的弹力大小关于平衡位置是不对称...的,这点要特别注意。但是,回复力(加速度)大小关于平衡位置是对称..的。在解题时我们经常用到这点。 【典案2】如图3所示,质量为m 的物块放在弹簧上, 弹簧在竖直方向上做简谐运动,当振幅为A 时,物体对弹 簧的最大压力是物重的1.8倍,则物体对弹簧的最小压力是 物重的多少倍?欲使物体在弹簧振动中不离开弹簧,其振幅 最大为多少? 〖解析〗1)选物体为研究对象,画出其振动过程的几个 特殊点,如图4所示, O 为平衡位置,P 为最高点,Q 为最低点。 图2 m 图3 P 点

自振周期折减系数

自振周期折减系数 1 概念 由于计算模型的简化和非结构因素的作用,导致多层钢筋混凝土框架结构在弹性阶段的计算自振周期(下简称“计算周期”)比真实自振周期(下简称“自振周期”)偏长。因此,无论是采用理论公式计算还是经验公式计算;无论是简化手算还是采用计算机程序计算,结构的计算周期值都应根据具体情况采用自振周期折减系数(下简称“折减系数”)加以修正,经修正后的计算周期即为设计采用的实际周期(下简称“设计周期”),设计周期=计算周期×折减系数。如果折减系数取值不恰当,往往使结构设计不合理,或造成浪费、或甚至产生安全隐患。诚然,折减系数是钢筋混凝土框架结设计所需要解决的一个重要问题。 2 影响自振周期因素 影响自振周期因素是诸多方面的,加之多层钢筋混凝土框架结构实际工程的复杂性,抗震规范没有、也不可能对折减系数给出一个确切的数值。许多文献中给出,当主要考虑填充墙的刚度影响时,折减系数可0.6~0.7[2];根据填充墙的多少、填充墙开洞情况,其对结构自振周期影响的不同,可取0.50~0.90。这些都是以粘土实心砖为填充墙的经验值,不言而喻,采用不同填充墙体材料的折减系数是不相同的。当采用轻质材料或空心砖作填充墙,当然不应该套用实心砖为填充墙的折减系数。对于粘土实心砖外的其它墙体可根据具体情况确定折减系数。结构计算分析总是要进行简化的,简化程度取决于当时的计算工具;简化是有条件的,而关键是简化模型尽可能符合真实受力模型。多层钢筋混凝土框架结构的计算周期往往与其自振周期有较大出入,笔者认为,此偏差主要来自计算模型的简化,没有计入那些难于准确计算的因素造成的。一分为二的说,没有计入的那些因素,常常使计算周期比自振周期长,在一定条件下也会使计算周期比自振周期短,主要表现为以下几方面: 3 计算周期长的原因 1.填充墙的刚度影响 大多数多层钢筋混凝土框架结构的设计计算中,并没有计算填充墙、装修(饰)材料、支撑、设备等非结构构件的刚度。实际工程中,由于未考虑砖填充墙的刚度常常使计算周期比实测自振周期(下简称“实测周期”)大很多[7].填充墙的影响与填充墙的材料性能、数量、单片墙体长度、墙体完整性(开洞情况)、与框架的连接情况息息相关。定性地说,填充墙的数量多、单片墙体长度大、墙体开洞少且小、与框架连接好,它对框架结构的刚度增加大,反之就小。 我国的框架填充墙的发展趋势是,逐步取消粘土砖(保护粘土资源、能源、环境等的要求),采用多样化轻质填充砌体、轻墙板取而代之。采用不同材料的填充墙,由于填充墙材料的刚度、变形性能、延性的不同,其对结构的空间刚度影响显然不相同。在其它条件相同时,采用轻质填充墙比粘土砖填充墙对结构的刚度影响小。 一般框架结构都要有填充墙,当砖填充墙多,可能会成为影响结构自振周期的主要的直接因素。 2.基坑回填土及混凝土刚性地坪对底层框架柱的侧限作用通常,在计算模型中,多层钢筋混凝土框架结构的底层柱高(计算高度),一般取基顶至一层楼盖顶之间的距离,见下图1.由于基顶至室内、外之间回填土必须严格夯实。例如压

简谐运动周期公式的推导

简谐运动周期公式的推导 【摘要】:本文通过简谐运动与圆周运动的联系,用圆周运动的周期公式推导出了简谐运动周期公式。 【关键辞】:简谐运动、周期、匀速圆周运动、周期公式 【正文】: 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标图2 图3 图4

系。 则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= 二零一一年三月九日 图5

弹簧振子的简谐振动

弹簧振子的简谐振动 弘毅学堂汪洲2016300030016 实验目的: (1)测量弹簧振子的振动周期T。 (2)求弹簧的倔强系数k和有效质量 m 实验器材 气垫导轨、滑块、附加砝码、弹簧、光电门、数字毫秒计。 实验原理: 在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图2.2.4所示。如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐运动。

设质量为1m 的滑块处于平衡位置,每个弹簧的伸长量为0x ,当1m 距平衡点x 时,1m 只受弹性力10()k x x -+与10()k x x --的作用,其中1k 是弹簧的倔强系数。根据牛顿第二定律,其运动方程为 1010()()k x x k x x mx -+--= 令 12k k = 则有 kx mx -= ① 方程①的解为 00sin()x A t ω?=+ 说明滑块做简谐振动。式中,A 为振幅,0?为初相位,0ω叫做振动系统的固有圆频率。有 0k m ω= 且

10m m m =+ 式中,m 为振动系统的有效质量,0m 为弹簧的有效质量,1m 为滑块和砝码的质量。 0ω由振动系统本身的性质所决定。振动周期T 与0ω有下列关系 222T πω= == ② 在实验中,我们改变1m ,测出相应的T ,考虑T 与m 的关系,从而求出k 和0m 。 实验内容: (1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。 (2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记录A T 的值。要求记录5位有效数字,共测量10次。 (3)再按步骤(2)将滑块从平衡位置拉至光电门右边某一位置测量B T ,重复步骤(2)共测量10次。 取A T 和B T 的平均值作为振动周期T ,与T 相应的振动系统有效质量是10m m m =+,其中1m 就是滑块本身(未加砝码块)的质量,0m 为弹簧的有效质量。 (4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周期。有效质量20m m m =+,其中2m 为滑块本身质量加上两块砝码的质量和。 (5)再用30m m m =+和40m m m =+测量相应的周期T 。式中, 3m =1m +“4块砝码的质量” 4m =1m +“6块砝码的质量” 注意记录每次所加砝码的号码,以便称出各自的质量。 (6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。 (7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。 数据处理:

弹簧振子周期影响因素

弹簧振子周期的影响因素 (南京 210096) 摘要:本文研究了弹簧质量对弹簧振子系统周期的影响,分析了不同方法近似成立的条件并对计算结果进行了讨论。并且通过对弹簧振子研究的进一步探析,发现如果弹簧的形状不是几何对称, 即使用相同的方法对弹簧两端分别挂测,其质量对周期公式产生的影响也是不同的。从而发现弹簧振子的周期与其重心位置也是有关的。 关键词:弹簧振子;周期;质量;重心 Spring vibrator cycle impact factors (Information science and engineering college of Southeast University, Nanjing, 210096) Abstract:This paper studies the quality of spring spring vibration subsystem the influence of the cycle, and analyzes on the different methods of approximate established condition and the calculation results are discussed. And through the spring vibrator further analysis, found that if the shape of the spring is not symmetrical geometric, that is, using the same method of spring ends hang separately measured, its quality to cycle the impact of the formula is also different. Spring vibrator to find the cycle of barycenter position is also related with. key words: spring vibrator; cycle;quality;focus 人们在讨论弹簧振子的振动情况时,往往忽略弹 簧本身的质量。实际弹簧振子由质量为m、劲度系数为k的弹簧和连接于弹簧一端的质量为M的振动物体组成。由于弹簧本身有质量,这种弹簧振子不是理想振子,它的振动周期与弹簧的质量有着密切的联系。当我们把这种影响仅归于质量因素时,振子的周期可以写成与弹簧有效质量有关的表达式。 而且质量一定,形状不规则的弹簧,其运动周期还与他的形状及重心相关。 作者简介:1实验回顾 在“弹簧振子周期公式研究”的实验中,最后的课题探究采用控制变量的方法,控制振子质量M不变,研究弹簧自身质量m对弹簧振子振动周期的影响。测得的数据见表1。

弹簧振子周期公式的研究

教案(首页) 备课笔记附后:

实验二 弹簧振子周期公式的研究 【实验目的】 1. 学习建立实验公式的实验方法,找出弹簧振子的周期公式。 2. 通过公式简化、曲线直化和数据处理,练习作图和图解。 【实验原理】 已知弹簧振子的振动周期T 与倔强系数K 、振子质量m 相关,为了找出T 、K 、m 三者之间的关系,从量纲分析,可以假设满足下式 β α m AK T = (1) 式中α、β和A 均为待定常数。如果能通过实验测量和数据处理找到α、β和A 的具体数值,那么(1)式就被具体地确定了。如果找不出α、β和A 的数值,则说明(1)式的假设是错误的,还需要对T 、K 、m 三者的函数关系做新的假设。 为了简化,先使倔强系数K 或振子质量m 保持不变进行实验。例如先使振子质量m 保持不变,则(1)式可写成 常数===βαAm C K C T 11 (2) 这样,对应于不同的倔强系数K 的弹簧,就有不同的振动周期T ,可以测定一组T ~K 的对应值。 再使倔强系数K 保持不变(用同一个弹簧),则(1)式又可写成 22常数===αβAK C m C T (3) 这样,对于不同的振子质量m ,又有不同的振动周期T ,可以测定一组T ~m 的对应值。 从(2)式和(3)式可见,只要α、β不等于1,则T ~K 和T ~m 间的关系就不是直线关系。为了便于图解,可将(2)式和(3)式取对数,将曲线直化、得到 K C T lg lg lg 1α+= (4) m C T lg lg lg 2β+= (5) 式中常数α、β可以从图线的斜率求出,1C 、2C 可从图线的截距求得。然后将得到的1C 、 2C 值和α、β值,分别代入(2)式或(3)式而确定A 值。当α、β和A 值确定之后, 则所求的周期公式就被具体地确定了。 为了完成以上实验,需要先对各弹簧的倔强系数K 进行测定。 【实验内容】 1. 因六个砝码的误差较大,实验前应先作出校测,记录数据。 2. 弹簧倔强系数K 的测定 用一次增荷法(取31050-?=? m 公斤)测定K 值。计算公式为 x F K ??= 五个弹簧各测一次,记录数据。 3. 振子质量m 一定(统一用3号砝码),测定一组T ~K 的对应值。 4. 倔强系数K 一定(统一用3号弹簧),测定一组T ~m 的对应值

弹簧质量与弹簧振子振动周期关系的探讨(精)

第26卷第5期 V01.26No.5 周口师范学院学报 JournalofZhoukouNormalUniversity 2009年9月 Sep.2009 弹簧质量与弹簧振子振动周期关系的探讨 周俊敏,王玉梅 (周口师范学院物理系,河南周口466001) 摘要:从能量的观点出发,分别讨论了弹簧振子垂直地面放置和平行地面放置时所遵守的运动方程,并通过解微分方程,得出结论.这些结论对指导实验和生产实践有一定的参考价值. 关键词:弹簧振子;振动周期;机械能守恒;运动方程中图分类号:0326文献标识码:A 文章编号:1671—9476(2009)05—0058—03 弹簧振子在生产实践中有着十分广泛的应用,而振动的周期是描述振动系统运动的一个非常重要的基本物理量,因此探讨弹簧质量对弹簧振子振动周期的影响就显得十分必要.在实验教学中笔者发现,大部分实验教材直接给出弹簧振子的振动周 r‘‘—?———=7 的正方向,建立坐标系如图1(b)所示.设质点的位置坐标为X,引即为质点相对于坐标原点的位移. 取物体为研究对象,作用在物体上的力有两个:重力大小为mg,方向竖直向下;弹簧对物体的拉力F=一k(x+z。),方向竖直向上.由此可知物体的合力F台一一点(z+X。)+mg=一妇.由简谐 图1 期公式为T一2,r^/m+cM,学生通过实验测出f V K 值的范围为0.32~0.34,但未从理论上分析c值在这一范围的原因[1-3].另外,教材中分析弹簧振子振动周期时,大都从力的观点[4_51出发得出运动方程.笔者从能量的观点出发,分别讨论弹簧振子垂直地面放置和平行地面放置时所遵守的运动方程,并通过解运动方程得出弹簧振子的振动周期以及 1

弹簧质量与弹簧振子振动周期关系的探讨

弹簧质量对弹簧振子振动周期的影响 摘 要:从能量的观点出发,通过对有弹簧质量弹簧振子的振动实验进行研究,分析弹簧振子振动周期与弹簧质量的关系。 关 键 词:弹簧振子;弹簧质量;振动周期 振动作为自然界中最为普遍的运动形式之一, 在物理学的基础理论研究中具有显著地位, 正确理解与掌握振动的客观规律对于深入研究并掌握自然界的普遍运动规律具有十分重要的理论意义和实践意义。作为自然界各种振动形式中最简单的一个抽象物理模型——简谐振子, 由一质量为m 的质点和一劲度系数为k 的无质量理想弹簧所组成, 其振动周期为 2T = (1) 在高中和大学物理中,弹簧质量对振动的影响往往被忽略。显然,这在弹簧质量远小于振子质量的情况下是可行的。但在一些实际问题中,人们往往会用弹簧的有效质量来对理想的弹簧振子振动周期公式进行修正。查阅相关资料可知,由机械能守恒定律计算出有效质量为031 m (其中0m 为弹簧质量);进一步由质心运动定理却得出有效质量为 02 1 m ,从而得到 “弹簧振子佯谬”;而利用数值计算解超越方程的方法,得出“有效质量随振子与弹簧质量比的增大而减小”,“当振子与弹簧质量比较大时,有效质量可小于03 1 m ”,“不能简单地认为有效质量介于031m 和 02 1 m 之间”等结论。理论繁杂冗乱,令人眼花缭乱。本文通过对弹簧振子垂直地面放置的模型进行分析,并通过解微分方程,得出最终的周期公式。 考虑弹簧质量时弹簧振子的振动周期(弹簧与地面垂直情况) 查阅资料可知,弹簧振子的周期T 与劲度系数k 、振子质量m 有关,在弹簧质量不可忽略时,还要考虑弹簧自身质量0m 的影响,则弹簧振子的振动周期公式可写为: k Cm m T 0 2+=π (2) 式中0Cm 即为弹簧的有效质量,C 为待定系数,在下文中称为“有效质量系数”。 为了验证该公式并分析在弹簧与地面垂直情况下有效质量系数的大小,可以对该模型进 行进一步分析。

附录F:结构基本自振周期的经验公式

附录F 结构基本自振周期的经验公式 F.1 高耸结构 F.1.1 一般高耸结构的基本自振周期,钢结构可取下式计算的较大值,钢筋混凝土结构可取下式计算的较小值: H T )013.0~007.0(1= (F.1.1) 式中:H ——结构的高度(m)。 F.1.2 烟囱和塔架等具体结构的基本自振周期可按下列规定采用: 1,烟囱的基本自振周期可按下列规定计算: 1)高度不超过60m 的砖烟囱的基本自振周期按下式计算: d H T 2 2 110 22.023.0-?+= (F.1.2-1) 2)高度不超过150m 的钢筋混凝土烟囱的基本自振周期按下式计算: d H T 2 2 110 10.041.0-?+= (F.1.2-2) 3)高度超过150m ,但低于210m 的钢筋混凝土烟囱的基本自振周期按下式计算: d H T 2 2 110 08.053.0-?+= (F.1.2-3) 式中:H ——烟囱高度(m); d ——烟囱1/2高度处的外径(m)。 2,石油化工塔架(图F.1.2)的基本自振周期可按下列规定计算: 图F.1.2 设备塔架的基础形式 (a)圆柱基础塔;(b)圆筒基础塔; (c)方形(板式)框架基础塔;(d)环形框架基础塔 1)圆柱(筒)基础塔(塔壁厚不大于30mm)的基本自振周期按下列公式计算: 当H 2/D 0<700时 2 3 110 85.035.0D H T -?+= (F.1.2-4)

当H 2/D 0≥700时 2 3 110 99.025.0D H T -?+= (F.1.2-5) 式中:H ——从基础底板或柱基顶面至设备塔顶面的总高度(m); D 0——设备塔的外径(m);对变直径塔,可按各段高度为权,取外径的加权平均值。 2)框架基础塔(塔壁厚不大于30mm)的基本自振周期按下式计算: 2 3 110 40.056.0D H T -?+= (F.1.2-6) 3)塔壁厚大于30mm 的各类设备塔架的基本自振周期应按有关理论公式计算。 4)当若干塔由平台连成一排时,垂直于排列方向的各塔基本自振周期T 1可采用主塔(即周期最长的塔)的基本自振周期值;平行于排列方向的各塔基本自振周期T 1可采用主塔基本自振周期乘以折减系数0.9。 F.2 高层建筑 F.2.1 一般情况下,高层建筑的基本自振周期可根据建筑总层数近似地按下列规定采用: 1,钢结构的基本自振周期按下式计算: T 1=(0.10~0.15)n (F.2.1-1) 式中:n ——建筑总层数。 2,钢筋混凝土结构的基本自振周期按下式计算: T 1=(0.05~0.lO)n (F.2.1-2) F.2.2 钢筋混凝土框架、框剪和剪力墙结构的基本自振周期可按下列规定采用: 1,钢筋混凝土框架和框剪结构的基本自振周期按下式计算: 3 2 3 110 53.025.0B H T -?+= (F.2.2-1) 2,钢筋混凝土剪力墙结构的基本自振周期按下式计算: 3 103 .003.0B H T += (F.2.2-2) 式中:H ——房屋总高度(m); B ——房屋宽度(m)。

各种弹簧振子的周期研究及其求解方法 论文

各种弹簧振子的周期研究及其求解方法 上海大学09级自强学院朱小强 摘要: 在高中和大学间断的学习过程中,我们接触到很多关于简谐运动的周期求解的有关问题,而且对于不同情况下的简谐运动的周期求解有着不同的方法。笔者在接触了几种情况下的简谐运动后,发现一些求解周期问题的一般性方法,其中主要包括三种:利用纯数学运算的方法求解、利用能量守恒的方法求解、利用运动学的方法求解。在这几种方法里面,利用的较为普遍也较为简单的方法是利用能量守恒的方法,其他的方法可能在一定程度上比较复杂一点,不过也可以求解。当然,关于本文中的部分周期求解结果有着不同的意见,可能是因为前提假设不同,所以求解的结果会有所不同。 关键词:弹簧阵子周期能量守恒简谐运动

在高中和大学的物理学习过程中,我们会接触到很多的关于弹簧振子的问题。在大学的物理学习过程中,我们所了解到的主要有两种弹簧振子:水平放置的和竖直放置的振子 我们在学习的过程中主要讨论的问题是围绕着振子所做的简谐运动的位移表达式展开,比如说我们经常会求物体在某位移处的速度,或者是当速度为某值时所对应的位移,或者是求解有关能量的转换守恒。但是真正在关于各种弹簧振子的周期的推倒上并没有下很多的笔墨。本文主要讨论几种情况下的弹簧振子的周期求解方法:①轻弹簧水平运动的情况;②轻弹簧竖直运动的情况;③一般情况下弹簧水平运动的情况;④一般情况下弹簧竖直运动的情况;⑤单摆的周期求解。 1. 轻弹簧水平运动 设物体的质量为m ,弹簧的劲度系数为k ,物体做简谐运动的周期为T ,初相位为,角速度为,则对于该系统周期的求法比较简单,可以有以下方法: ① 公式法:物体做简谐运动的位移随时间变化的关系式为: )cos(?ω+=t A x 对时间求导有: )sin(?ωω+-=t A v 再次对时间求导有: )cos(2?ωω+-=t A a 由简谐运动的特征方程有: x m k a m a kx F - ==-= 由以上方程可得:

3.7 结构自振周期的计算

职业技术学院一、能量法计算基本周期 3.7结构自振周期的计算设体系按i振型作自由振动。速度为应用抗震设计反应谱计算地震作用下的结构反应,除砌体结构、底部框架抗震墙砖房和内框架房屋采用底部剪力法不需要计算自振周期外,其余均需计算自振周期。计算方法: 矩阵位移法解特征问题、近似公式、经验公式。t时刻的位移为重力荷载代表值作用下的水平位移解: 例.已知: 求结构的基本周期。G2G1 (1)计算各层层间剪力 (2)计算各楼层处的水平位移 (3)计算基本周期二、等效质量法(折算质量法)将多质点体系用单质点体系代替。多质点体系的最大动能为单质点体系的最大动能为---体系按第一振型振动时,相应于折算质点处的最大位移;---单位水平力作用下顶点位移。重力荷载代表值作用下的水平位移解: 例.已知: 求结构的基本周期。G2G1能量法的结果为T1 0.508s三、顶点位移法对于顶点位移容易估算的建筑结构,可直接由顶点位移估计基本周期。1体系按弯曲振动时抗震墙结构可视为弯曲型杆。无限自由度体系,弯曲振动的运动方程为悬臂杆的特解为振型基本周期为重力作为水平荷载所引起的位移为2体系按剪切振动时框架结构可近似视为剪切型杆。无限自由度体系,剪切杆的的运动方程为悬臂杆的特解为振型基本周期为重力作为水平荷载所引起的位移为3体系按剪弯振动时框架-抗震墙结构可近似视为剪弯型杆。基本周期为四、自振周期的经验公式根据实测统计,忽略填充墙布置、质量分布差异等,初步设计时可按下列公式估算 (1)高度低于25m且有较多的填充墙框架办公楼、旅馆的基本周期

(2)高度低于50m的钢筋混凝土框架-抗震墙结构的基本周期H---房屋总高度;B---所考虑方向房屋总宽度。 (3)高度低于50m的规则钢筋混凝土抗震墙结构的基本周期 (4)高度低于35m的化工煤炭工业系统钢筋混凝土框架厂房的基本周期

弹簧振子振动周期的讨论

弹簧振子周期公式的探究 梅丹兵(21610115) (东南大学交通学院,南京市,210000) 摘 要: 基于本学期在“弹簧振子周期”实验中出现的实验数据和理论数据相差较大的缘故,本文探究了在“弹簧振子周期”实验中弹簧质量对系统周期的影响,并利用数学知识推导出了一个符合实验数据的合理公式。 关键词: 振动周期;弹簧振子;有效质量;非线性改变 A discussion on the cycle of vibration of springs Mei Danbing (Transportation Institute of SEU , Nanjing 210000) Abstract: Based on the reason that the big difference between the experimental data and the theoretical data in the experiment about “the cycle of vibration of springs “,the article explored the influence of the quality of springs on the vibration cycle ,and made full use of the mathematical knowledge to derive a rational formula in line with experimental data. key words: Vibration cycle ; springs ;effective quality ; Non-linear change 引言 在本学期的“简谐振动”一章中我们学习了弹簧振子周期公式,并做了相关的物理实验。根据课本上简谐运动的周期公式可推导出弹簧振子的振动周期公式为 K M T π 2= (1) 其中M 为振子质量,K 为弹簧劲度系数。 而我们发现由(1)式计算出得的理论值0T 与实验测得的测量值1T 之间的偏差达到了2.58%,其中固然有测量误差和阻力误差,但不可排除的是(1) 式中的M 仅指振子的质量,而没有考虑弹簧的质量。由于本实验中弹簧劲度系数K 与振子质量M 都很小,这时弹簧自身的质量已不能忽略。那么如何考虑弹簧质量对系统周期的影响呢?假如弹簧的质量为m ,可以肯定K m M T +≠π 2,因为弹簧虽参与振动,但其上各点的振动情况是不一样的。通过查阅相关文献我们得知此时系统的振动周期为 K M T m 312+=π (2) 于是在原实验基础上,我们测量了弹簧的质量m ,

周期、振型问题

1、《高层规程》3.2.6规定-----结构基本自振周期大致为:框架结构T1=(0.08~0.10)n, 框—剪和框—筒结构T1=(0.06~0.08)n 剪力墙和筒中筒结构T1=(0.05~0.06)n 2、周期比即结构扭转为主的第一自振周期(也称第一扭振周期)Tt 与平动为主的第一自振周期(也称第一侧振周期)T1的比值。周期比主要控制结构扭转效应,减小扭转对结构产生的不利影响,使结构的抗扭刚度不能太弱。因为当两者接近时,由于振动藕连的影响,结构的扭转效应将明显增大。2.2 相关规范条文的控制:[高规]4.3.5条规定,结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比(即周期比),A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。[高规]5.1.13条规定,高层建筑结构计算振型数不应小于9,抗震计算时,宜考虑平扭藕连计算结构的扭转效应,振型数不小于15,对于多塔楼结构的振型数不应小于塔楼数的9倍,且计算振型数应使振型参与质量不小于总质量的90%。2.3 电算结果的判别与调整要点: (1).计算结果详周期、地震力与振型输出文件。因SATWE电算结果中并未直接给出周期比,故对于通常的规则单塔楼结构,需人工按如下步骤验算周期比: a)根据各振型的两个平动系数和一个扭转系数(三者之和等于1)判别各振型分别是扭转为主的振型(也称扭振振型)还是平动为主的振型(也称侧振振型)。一般情况下,当扭转系数大于0.5时,可认为该振型是扭振振型,反之应为侧振振型。当然,对某些极为复杂的结构还应结

合主振型信息来进行判断;b)周期最长的扭振振型对应的就是第一扭振周期Tt,周期最长的侧振振型对应的就是第一侧振周期T1;c)计算Tt / T1,看是否超过0.9(0.85)。对于多塔结构周期比,不能直接按上面的方法验算,这时应该将多塔结构分成多个单塔,按多个结构分别计算、分别验算(注意不是在同一结构中定义多塔,而是按塔分成多个结构)。(2).对于刚度均匀的结构,在考虑扭转耦连计算时,一般来说前两个或几个振型为其主振型,但对于刚度不均匀的复杂结构,上述规律不一定存在。总之在高层结构设计中,使得扭转振型不应靠前,以减小震害。SATWE程序中给出了各振型对基底剪力贡献比例的计算功能,通过参数Ratio(振型的基底剪力占总基底剪力的百分比)可以判断出那个振型是X方向或Y方向的主振型,并可查看以及每个振型对基底剪力的贡献大小。(3).振型分解反应谱法分析计算周期,地震力时,还应注意两个问题,即计算模型的选择与振型数的确定。一般来说,当全楼作刚性楼板假定后,计算时宜选择“侧刚模型”进行计算。而当结构定义有弹性楼板时则应选择“总刚模型”进行计算较为合理。至于振型数的确定,应按上述[高规]5.1.13条执行,振型数是否足够,应以计算振型数使振型参与质量不小于总质量的90%作为唯一的条件进行判别。(4).如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。即周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性。考虑周期比限制以后,

结构自振周期是结构自由振动的周期

predominant period 地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。 卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。三级为松软土层,卓越周期在二级和四级之间。四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s. 自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。

基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。 基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。 高阶振型:相对于低阶振型而言。一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。 特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。 在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。Tg越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。

物理实验报告 excel 表格弹簧振子周期公式

利用excel 进行弹簧振子周期公式的研究 许建 03010402 (东南大学 能源与环境学院;南京211189) 摘要:弹簧振子的运动是典型的简谐振动,本实验以弹簧振子的运动为研究对象,学习如何对一个运动规律进行观察、分析、测量,再经过数据处理找出实验公式的研究方法。利用excel 表格制散点图,可绘制线性直线,直接得到其线性方程,和其相对误差,进而得到弹簧振子的实验周期公式 关键词:弹簧振子 excel 线性方程 Using excel to research the cycle formulas of spring vibrator Abstract: Spring oscillator movement is the typical simple harmonic oscillator, This experiment foucses on spring oscillator movement , Learning how to make a movement rule by observation, analysis, measurement, and by the data processing to find out the research methods of experimental formula. Use excel form the scatter plot chart, can map linear straight line, the linear equations obtained directly, and the relative error, and then get spring vibrator experiment cycle formula Key words : Spring vibrator excel linear equations 引言: 一般我们是用制图纸绘制弹簧振子周期公式变化后的线性直线,由于人为的误差,笔的粗细,取点时候的偏差都会直接影响到精度的测定,所以我推荐使用excel 表格进行这些数据的处理,和绘图分析,可以完全减少人为的误差,提高实验的准确精度,同时也可以让大家更加熟悉excel 表格的使用 学习导航 实验原理 我们已经知道弹簧振子的周期与劲度系数K 、振子质量m 相关为了找 出它们之间的关系,从量纲分析人手可以假设它们之间满足关系式 T = (1)

弹簧振子振动周期的公式讨论

弹簧振子振动周期的公式讨论 陈思平 西华师范大学物理与电子信息学院指导教师:罗志全四川·南充 637002 摘要:本论文主要研究弹簧振子在振动过程中,如果改变弹簧振子的放置方式、不忽略弹簧质量与摩擦力、复杂的振子系统振动时以及在几种特殊情况下振子的振动周期公式。 关键词:弹簧振子;周期公式 Th e di scu ssi on of Sprin g Vibr ation cy cl e f ormul a Chen Siping Department of physics and electronic information, China West Normal University Instructor: Luo Zhiquan Sichuan·Nanchong 637002 Abstr act:In the thesis,they are researched mainly that the spring oscillator in the vibration process, if changes in spring placement of oscillator,not ignore the spring mass and friction, the complex oscillator vibration and in some special cases, the vibration cycle oscillator formula. Key w or ds:spring oscillator; cycle formula 目录 摘要 (1) ABSTR ACT (1) 1.引言 (2) 2.理想状态下弹簧振子的相关结论 (2) 3.放置方式对振子振动周期的影响 (3) 4.摩擦力对振子振动周期的影响 (4) 5.弹簧质量对振子振动周期的影响 (7)

相关主题