搜档网
当前位置:搜档网 › 内装主轴电机BiS

内装主轴电机BiS

Enhancing the performance of the machine tools with the simple drive mechanism

Compact and large torque by neodymium-iron magnets Low torque ripple by optimum magnetic circuit design High speed and high power using Sub Module SM

Larger torque and higher power available by efficient heat

radiation with resin mold and cooling jacket.

Feature

Enhancing the performance of the machine tools with the simple drive mechanism

I

Large torque at low speed and high power at high speed by

speed range switching control

Lower motor temperature by optimum control of magnetic

flux.

Lower noise, lower vibration and higher reliability using the

latest winding and casting technique

Larger torque and higher power available by efficient heat

radiation with resin mold and cooling jacket. (Option)

i

I i

i

I

i

i I I

i

FANUC BUILT-IN SPINDLE MOTOR B i

I series and B i

S series make spindles high precision and low vibration with simple mechanical structure.

B i

I series has high power up to high speed, therefore it is suitable for spindle of various lathe and machining center.

B i

S series is suitable or turning and gear cutting machine due to large torque at low speed by strong neodymium-iron magnets.

“I ” of B i I means “Induction”.

“S” of B i S means “Strong motor with neodymium-iron magnets”.

Feature

I

I

I

Larger torque and higher power available by Resin Mold Higher power or lower motor temperature can be available by

efficient heat radiation with resin mold. (It is necessary to raise chiller capacity.)

i I i

Resin Mold i I i

i i i

High precision spindle position control by SPINDLE HRV SPINDLE HRV realizes high response, high precision and high efficiency control for spindle of machine tool. In combination w ith Series 30i / 31i / 32i , SPINDLE HRV4 supports Nano Interpolation for Nano CNC system and realizes higher precision spindle position control for Cs contouring and rigid tapping. I n rigid tapping, synchronization b etween spindle and tapping axis is better with applying feed-forward control and cycle time i s reduced b y shorter time for in-position check.

SPINDLE HRV Control

System configuration

i series CNC

F erial SERVO AMPLIFIER i SP

i i

Output on the same Motor Temperature

Motor Temperature at the same Output

Without Resin Mold

Without Resin Mold

With Resin Mold

With Resin Mold

& CS24i 24

Worldwide Customer Service and Support

worldwide through subsidiaries and affiliates. FANUC provides the highest quality service with the prompt response at any location nearest you.

CNC CNC 401-0501 TEL(0555)84-6030/FAX5540

FANUC Training Center

FANUC Training Center operates versatile

training courses to develop skilled engineers effectively in several days.

Inquiries : Yamanakako-mura, Yamanashi, Japan 401-0501 Phone : 81-555-84-6030Fax : 81-555-84-5540

Maintenance and Customer Support

401-0597 (0555)84-5555( ) FAX 84-5512 http://www.fanuc.co.jp

FA

(0555)84-6120 FAX 84-5543

(0568)73-7821 FAX 73-5387

(06)6614-2111 FAX 6614-2121

(042)589-8913 FAX 589-8899

(029)837-1162 FAX 837-1165

(011)385-5080 FAX 385-5084

(096)232-2121 FAX 232-3334

(0555)84-6030 FAX 84-5540

(0766)56-4421 FAX 56-4429 (027)251-8431 FAX 251-8330 (086)292-5362 FAX 292-5364 (022)378-7756 FAX 378-7759

(0258)66-1101 FAX 66-1141

America

GE Fanuc Automation Americas, Inc. Tel 1-434-978-5000 Fax 1-434-978-5320FANUC AMERICA CORPORATION Tel 1-847-898-5000 Fax 1-847-898-5001 Europe, the middle east and Africa GE Fanuc Automation CNC Europe S.A. Tel 352-727979-1 Fax 352-727979-214FANUC EUROPE SERVICE GmbH Tel 49-7158-187300 Fax 49-7158-187411FANUC FRANCE S.A.S. Tel 33-1-4569-6333 Fax 33-1-4569-0325FANUC U.K. LIMITED Tel 44-1895-634182 Fax 44-1895-676140FANUC ITALIA S.p.A. Tel 39-02-4887-291 Fax 39-02-4571-3566FANUC IBERIA, S.A. Tel 34-93-664-4820 Fax 34-93-665-0695FANUC TURKEY LTD

Tel 90-216-651-1408 Fax 90-216-651-1405FANUC BULGARIA CORPORATION Tel 359-2-963-3319 Fax 359-2-963-2873FANUC CZECH s.r.o.

Tel 420-234-072-950 Fax 420-234-072-960FANUC SOUTH AFRICA (PROPRIETARY) LIMITED Tel 27-11-392-3610 Fax 27-11-392-3615"FANUC AUTOMATION" LLC

Tel 7-095-956-9780

Fax 7-095-956-9785

Asia and Oceania

FANUC KOREA CORPORATION Tel 82-55-346-0122 Fax 82-55-346-2548FANUC TAIWAN LIMITED

Tel 886-4-2359-0522 Fax 886-4-2359-0771BEIJING-FANUC Mechatronics CO., LTD. Tel 86-10-6298-4726 Fax 86-10-6298-4741FANUC INDIA PRIVATE LIMITED Tel 91-80-2852-0057 Fax 91-80-2852-0051FANUC THAI LIMITED

Tel 66-2-662-6111 Fax 66-2-662-6120FANUC MECHATRONICS (MALAYSIA) SDN. BHD. Tel 60-3-7628-0110 Fax 60-3-7628-0220PT. Fanuc GE Automation Indonesia Tel 62-21-4584-7285 Fax 62-21-4584-7288FANUC SINGAPORE PTE. LTD. Tel 65-6-567-8566 Fax 65-6-566-5937FANUC OCEANIA PTY. LIMITED

Tel 61-2-8822-4600 Fax 61-2-8822-4666FANUC PHILIPPINES CORPORATION Tel 63-2-891-3313 Fax 63-2-891-3315FANUC VIETNAM LIMITED Tel 84-8-824-6638 Fax 84-8-824-6637FANUC HONG KONG LIMITED

Tel 852-2375-0026

Fax 852-2375-0015

Headquarters Oshino-mura, Yamanashi 401-0597, Japan Phone: 81-555-84-5555 Fax: 81-555-84-5512 http://www.fanuc.co.jp

FA FA 191-8509 3-5-1 TEL 0120-240-716 FAX 0120-240-833

Charlottesville

Detroit

Chicago

Kimhae Dalian

Beijing London

Paris Barcelona Luxembourg Prague Stuttgart Istanbul

Moscow

Sofia Milan

Shanghai Hong Kong Shenzhen Bangkok

Bangalore Kuala Lumpur Singapore Jakarta

Johannesburg

Ho Chi Minh

Manila

Sydney Taipei Taichung FANUC Headquarters

All specifications are subject to change without notice. No part of this catalog may be reproduced in any form.

Built-in SP B i -01, 2005.4, Printed in Japan

电机的选型计算

3873滚珠丝杠电机选型计算 设计要求: 夹具加工件重量:W1=300kg 提升部位重量:W2=100kg 行走最大行程:S= 1200mm 最大速度:V=20000mm/min 使用寿命:Lt=20000h 滑动阻力:u=0。01 电机转数:N=1333RPM 运转条件: v(m/min) 加速下降时间:T1=0.75S 匀速下降时间T2=3S 减速下降时间T3=0.75S t(sec) 加速上升时间T4=0.75S 匀速上升时间T5=3S 减速上升时间T6=0.75S 匀速下降3s 1,螺杆轴径,导程,螺杆长度选定 a:导程(l) 由电机最高转数可得

L大于或等于V/N=20000/1333=15mm 即导程要大于15mm,根据THK样本得导程16mm 即L=16mm b:轴负荷计算 1,加速下降段 a1=V/T=20000/60X0.75=444(mm/s2)=0.444m/s2 f=u(W1+W2)xG=0.01(300+100)x9.8=40N F1=(W1+W2)xG-f-(W1+W2)xa1=(300+100)x9.8-40-(300+100)x0.444=3702N 2,匀速下降段 F2=(W1+W2)xG-f=(300+100)x9.8-40=3880N 3减速下降段 F3=(W1+W2)xG-f+(W1+W2)xa1=(300+100)x9.8-40+(300+100)x0.444=4058N 4 加速上升段 F4=(W1+W2)xG+f+(W1+W2)xa1=(300+100)x9.8+40+(300+100)x0.444=4137N 5,匀速上升段 F5=(W1+W2)xG+f=(300+100)x9.8+40=3960N

电动机的选择及设计公式

一、电动机的选择 1、空气压缩机电动机的选择 1.1电动机的选择 (1)空压机选配电动机的容量可按下式计算 P=Q(Wi+Wa) ÷1000ηηi2 (kw) 式中P——空气压缩机电动机的轴功率,kw Q——空气压缩机排气量,m3/s η——空气压缩机效率,活塞式空压机一般取0.7~0.8(大型空压机取大值,小型空压机取小值),螺杆式空压机一般取0.5~0.6 ηi——传动效率,直接连接取ηi=1;三角带连接取ηi=0.92 Wi——等温压缩1m3空气所做的功,N·m/m3 Wa——等热压缩1m3空气所做的功,N·m/m3 Wi及Wa的数值见表 Wi及Wa的数值表(N·m/m3) 1.2空气压缩机年耗电量W可由下式计算 W= Q(Wi+Wa)T ÷1000ηηiηmηs2 (kw·h) 式中ηm——电动机效率,一般取0.9~0.92 ηs ——电网效率,一般取0.95 T ——空压机有效负荷年工作小时

2、通风设备电动机的选择 (1)通风设备拖动电动机的功率可按下式计算 P=KQH/1000ηηi (kw) 式中K——电动机功率备用系数,一般取1.1~1.2 Q——通风机工况点风量,m3/s H——通风机工况点风压轴流式通风机用静压,离心式通风机用全压,Pa η——通风机工况点效率,可由通风机性能曲线查得 ηi——传动效率,联轴器传动取0.98,三角带传动取0.92 (2)通风机年耗电量W可用下式计算 W=QHT/1000ηηiηmηs 式中ηm——电动机效率, ηs ——电网效率,一般取0.95 T ——通风机全年工作小时数 3、矿井主排水泵电动机的选择 (1)电动机的选择 排水设备拖动电动机的功率可按下式计算 P=KγQH/1000η (kw) 式中K——电动机功率备用系数,一般取1.1~1.5 γ——矿水相对密度,N/m3 Q ——水泵在工况点的流量,m3/s H ——水泵在工况点的扬程,m

罩极电机

罩极式交流电动机以结构简单,制作成本低,运行噪声较小等原因而被广泛应用在电风扇、电吹风、吸尘器等小型家用电器中。 罩极式电动机只有主绕组,没有启动绕组。 但是在定子的两极处各设有一副短路环,也称为“电极罩极圈”,当电动机通电后,主磁极部分产生了磁场,这磁场是脉动的,电机不会旋转。 但是在短路环中产生短路电流,从而使磁极上被罩部分的产生的磁场,比未罩住部分的磁场滞后些,因而磁极构成旋转磁场,电动机转子便旋转启动工作了。 实际上,这短路环就相当于电机的启动绕组了。 这就是罩极电机的由来 3.罩极式电动机 罩极式电动机是单向交流电动机中最简单的一种,通常采用笼型斜槽铸铝转子。它根据定子外形结构的不同,又分为凸极式罩极电动机隐极式罩极电动机。 凸极式罩极电动机的定子铁心外形为方形、矩形或圆形的磁场框架,磁极凸出,每个磁极上均有1个或多个起辅助作用的短路铜环,即罩极绕组。凸极磁极上的集中绕组作为主绕组。 隐极式罩极电动机的定子铁心与普通单相电动机的铁心相同,其定子绕组采用分布绕组,主绕组分布于定子槽内,罩极绕组不用短路铜环,而是用较粗的漆包线绕成分布绕组(串联后自行短路)嵌装在定子槽中(约为总槽数的),起辅助组的作用。主绕组与罩极绕组在空间相距一定的角度。 当罩极电动机的主绕组通电后,罩极绕组也会产生感应电流,使定子磁极被罩极绕组罩住部分的磁通与未罩部分向被罩部分的方向旋转。 罩极式电动机没有短路环会不运转.当罩极式电动机的励磁线圈通电后,罩极式电动机磁极的磁通分布在空间上是移动的,由末罩部分向被罩部分移动,好像旋

转磁场一样,从而使笼形结构的转子获得启动转矩,并且也决定了电动机的转向由末罩部分向被罩部分旋转.如果没有短路环,罩极式电动机磁极的磁通分布在空间上就不能形成移动,转子也就不能获得启动转矩,所以,没有短路环罩极式电动机不运转. 21、通常什么原因造成异步电动机空载电流过大? 答: 原因是: (1)电源电压太高; (2)空气隙过大; (3)定子绕组匝数不够; (4)三角形、Y 接线错误; (5)电机绝缘老化。在单相电动机中,产生旋转磁场的另一种方法称为罩极法,又称单相罩极式电动机。此种电动机定子做成凸极式的,有两极和四极两种。每个磁极在全极面处开有小槽,如图3所示,把磁极分成两个部分,在小的部分上套装上一个短路铜环,好象把这部分磁极罩起来一样,所以叫罩极式电动机。单相绕组套装在整个磁极上,每个极的线圈是串联的,连接时必须使其产生的极性依次按N、S、N、S排列。当定子绕组通电后,在磁极中产生主磁通,根据楞次定律,其中穿过短路铜环的主磁通在铜环内产生一个在相位上滞后90度的感应电流,此电流产生的磁通在相位上也滞后于主磁通,它的作用与电容式电动机的起动绕组相当,从而产生旋转磁场使电动机转动起来。 以下是罩极xx的原理: 定子由硅钢片叠压是成,每个磁极上绕有集中绕组,称为主绕组,每个极面上的一边开有小槽,其中嵌入短路铜环,罩着磁极的铜环相当于变压器的副绕组,能产生感应电势与短路电流.当定子绕组通入交流电流时,磁极下面的磁场中心线从没有被短路铜环罩住的左边部分向右移动,这是由于短路环的感应电流,总是阻止短路环包围的那部分磁通的存在的变化,以致穿过短路环的磁通在时间上滞后未罩部

罩极电机的基本简介

罩极电机的基本简介 一:概述 将电能转化为机械能(此时称为电动机);或将机械能转化为电能(此时称为发电机);或是将一种形式的电能转化为另一种形式的电能(此时称为变压器)等等所有这些能够实现能量的转化的这样一种设备统称电机。 电机工作的基本原理是应用两大定律:即法拉第电磁感应定律与欧姆定律,同样遵循能量守恒定律。 电机有交流电机、直流电机以及交直流两用电机。交流电机又分为异步电机、同步电机。本司生产的罩极电机即是异步电机的一种,步进电机是同步电机的一种也称脉冲电动机,串激电机则可以设计为交直流两用电动机。 所谓微电机一般来说是指输入功率为1000W以下的电机,而输入功率在750W以下的微电机也称为分马力电机。 本司生产的罩极电机是单相异步驱动微电机的一种,其结构特别简单,一般采用凸极定子,主绕组为集中绕组,而在每个磁极表面开有小槽,其中嵌放短路环(或称罩极线圈)作为副绕组,其功能是将短路环所罩住的磁势移相,从而形成椭圆形磁场产生定向起动力矩,将电机起动。这种电机具有结构简单、制造方便、适合批量生产和成本低廉的优点,而且运转时噪音低,没有无线电干扰。其缺点是运行性能和起动性能较差,效率和功率因数较低。因此一般用于空载或轻载起动的小容量场合,如电扇、仪用风机和电动模型等产品。 二:基本技术要求 常规罩极电机的额定指标主要有下列几项: 1)电压(V)指电机在正常运行时,定子绕组应接的电源电压。世界各国、各地区使用的电压很多不同,因此电机的电压规格也很多,譬如:120V、230V、220V、240V、100V 等,在工业应用中也有用12V、24V、36V、45V等。电源电压的允许偏差为不大于±5%。 2)频率(Hz)即交流电源的频率,我国电力网的频率规定为50赫兹,有的出口产品为60赫兹。频率允许偏差不超过±1%。 3)功率(W)指电机在额定运行时转轴的机械输出功率,对于输出功率较小的电动机,为便于用户选用,也可用输出转矩来表示,有些电机是以整机综合指标考核的,此时往往用最大输入功率来反映它的功率指标。我们公司的电机铭牌上标示的功率一般是指额定最大输入功率。 4)转速(RPM)表示电机在额定的电压、频率和输出功率的情况下运行的旋转速度。通常,电机的转速是指电机转轴的转速,对于某些与齿轮系组成一体的特种产品,则往往表示经过齿轮减速后输出转轴的实际旋转速度,罩极电机的转速均低于由电源频率和电机磁极数决定的同步转速。 5)电流(A)指电机在额定条件运行时定子绕组的输入电流,可用来检查电机是否过载或有故障。 6)效率(η)指电机在额定运行时输出功率与输入功率的比值。一般是在电机达到热稳定状态后,用测功仪直接测其输出转矩,并记录额定转速,从而计算出输出功率,而电机输入功率则直接从测试仪表读出。

电机选型计算-个人总结版

电机选型-总结版 电机选型需要计算工作扭矩、启动扭矩、负载转动惯量,其中工作扭矩和启动扭矩最为重要。 1工作扭矩T b计算: 首先核算负载重量W,对于一般线形导轨摩擦系数μ=0.01,计算得到工作力F b。 水平行走:F b=μW 垂直升降:F b=W 1.1齿轮齿条机构 一般齿轮齿条机构整体构造为电机+减速机+齿轮齿条,电机工作扭矩T b的计算公式为: T b=F b?D 2 其中D为齿轮直径。 1.2丝杠螺母机构 一般丝杠螺母机构整体构造为电机+丝杠螺母,电机工作扭矩T b 的计算公式为: T b=F b?BP 2πη 其中BP为丝杠导程;η为丝杠机械效率(一般取0.9~0.95,参考下式计算)。 η=1?μ′?tanα1+μ′ tanα

其中α为丝杠导程角;μ’为丝杠摩擦系数(一般取0.003~0.01,参考下式计算)。 μ=tanβ 其中β丝杠摩擦角(一般取0.17°~0.57°)。 2启动扭矩T计算: 启动扭矩T为惯性扭矩T a和工作扭矩T b之和。其中工作扭矩T b 通过上一部分求得,惯性扭矩T a由惯性力F a大小决定: F a=W?a 其中a为启动加速度(一般取0.1g~g,依设备要求而定,参考下式计算)。 a=v t 其中v为负载工作速度;t为启动加速时间。 T a计算方法与T b计算方法相同。 3 负载转动惯量J计算: 系统转动惯量J总等于电机转动惯量J M、齿轮转动惯量J G、丝杠转动惯量J S和负载转动惯量J之和。其中电机转动惯量J M、齿轮转动惯量J G和丝杠转动惯量J S数值较小,可根据具体情况忽略不计,如需计算请参考HIWIN丝杠选型样本。下面详述负载转动惯量J的计算过程。 将负载重量换算到电机输出轴上转动惯量,常见传动机构与公式如下:

电机的选型计算资料

电机选型计算书 PZY 电机(按特大型车设计即重量为2500吨) 一、提升电机 根据设计统计提升框架重量为:2200kg,则总提升重量为G=2500+2200=4700kg 。设计提升速度为5-5.5米/分钟,减速机效率为0.95。 则提升电机所需要的最小理论功率: P=386.444495 .0605.58.94700=??? 瓦。 设计钢丝绳绕法示意图: 如图所示F=1/2*G ,V2=2*V1 即力减半,速度增加一 倍,所以F=2350 kg 。 根据设计要求选择电机功率应P >4444.386瓦,因为所有车库专用电机厂家现有功率P >4444.386瓦电机最小型号 5.5KW ,所以就暂定电机功率P=5.5KW ,i=60。 钢丝绳卷筒直径已确定为260mm ,若使设备提升速度到 5.5m/min 即0.09167m/s ;

由公式: D πων= 可求知卷筒转速: r D 474.1326 .014.311=?==πνω 查电机厂家资料知:电机功率:P=5.5KW 速比: i=60电机输出轴转速为ω=25r ,扭矩为M=199.21/kg ·m ,输出轴径d=φ60mm 。 则选择主动链轮为16A 双排 z=17,机械传动比为: 25474.13i 1' ==z z 54.31474 .131725z 1=?= 取从动轮16A 双排z=33; 1).速度校核: 所选电机出力轴转速为ω=25r ,机械减速比为33/17,得提升卷筒转速: r 88.1233 17251=?=ω 综上可知:提升钢索自由端线速度: min)/(52.1026.088.1214.3m D =??==πων 则提升设备速度为:v=10.52/2=5.26m/min 。 2).转矩校核: 设备作用到钢索卷筒上的力为:G/2=2350kg 。

罩极电机支架组件结构剖析

罩极电机支架组件结构剖析 发布于:2010-11-15 10:15:19 已被阅览284次 一、罩极电机概述 罩极电机由于结构简单、成本低,虽然存在功率小、启动转矩小、效率很低(一般 20%左右)的缺点,但在对启动力矩要求不高的小功率负载或容易卡住的负载中还是得以广泛的应用,如应用于冰箱、空调、暖风机、抽油烟机、排风扇、烤箱和脱水机等,其主要负载是风叶。 罩极电机的设计与其它电机一样,主要分结构设计和电磁设计。由于罩极电机功率一般为几瓦到几十瓦,产品结构及加工工艺对其性能影响较大,目前其电磁设计程序还不很成熟。因而实际电磁设计中,选定典型的通用定、转子冲片后,根据负载大小选取叠厚,经实验测试后再根据经验调整转子端环尺寸和定子线圈的线径和匝数,进而达到用户要求的电气性能参数。 二、支架组件结构 罩极电机主要由转子组件、定子组件、线包组件、支架组件及连接紧固件组成。转子组件主要由铸铝转子、轴和防止转子前后窜动的止推垫圈以及调整窜动量的垫片组成;定子组件主要由短路环与主定子铁芯组成;线包组件主要由线圈、骨架、引接线或热保护器及相关绝缘包扎材料组成;支架组件根据轴伸端和非轴伸端安装位置不同分前支架组件和后支架组件,主要由下列几个零件组成: 支架是支架组件的主体,常用的材料有压铸铝合金、压铸锌合金、钢板、铝板和塑料等。由于铝的密度比锌的密度小,压铸铝合金相对压铸锌合金材料成本低。但由于熔化温度较高,压铸工艺较难,因而铸造后合格率较低。压铸锌合金则相反,但机械强度不如铝合金,热变形量较大,在H级高温电机中不宜使用。对于结构较复杂的常用压铸工艺,对于结构简单的则用板材冲压成型工艺。为了控制加工成本,冲压或压铸成型后的支架除了螺丝孔外一般不再做机加工处理。由于支架轴承孔与支架安装脚之间的位置精度直接影响到转子与定子之间的气隙,气隙不均将增加电磁噪音和机械振动,因此对支架成型模具有较高精度要求。另外,由于轴承室不再加工,对轴承室与轴承配合的相关尺寸也有较高要求。 最常用的轴承是一种粉末冶金球形滑动轴承,俗称含油轴承,它是用冶金粉末成型烧结而成,经过浸油处理后使粉末颗粒间的间隙充满润滑油。常用的粉末冶金材料有铁基和铜基材料。铁基相对铜基成本低、抗压强度大、硬度高。铜基则相反,由于铜本身就是一种固体润滑材料,且铜基中一般都加入了 8%~11%锡,因而在要求降低噪音或转速相对较高、对电机可靠性要求较高的情况下最好选用铜基。轴承中的润滑油应根据电机的绝缘等级选取,按使用温度分低温油、常温油和高温油。低温油用于电冰箱电机及环境温度在0℃ 以下的低温特殊场合,粘度为5 mm2/s~22 mm2/s,粘度指数大于 80 ;常温油用于A、E、B、F级普通电机,粘度为32 mm2/s~68 mm2/s,粘度指数大于 100;高温油则用于烤箱电机等高温环境、绝缘等级为 H 级的电机,粘度在68 mm2/s~100 mm2/s 之间,粘度指数大于 150。一般轴径大、功率大、转速高者取大值。低温油和高温油作为特种油相对于常温油成本高很多,润滑油的性能好坏直接影响到电机的启动性能、噪音、寿命和成本,目前罩极电机行业大多数是使用进口润滑油。因罩极电机起动力矩很小,约为额定力矩的 0.3 倍,当润滑油的粘度过高或润滑油过早变质、干枯,都有可能使电机启动困难。 含油轴承对内孔有较高要求,当其内孔粗糙度为0.8,对应轴的粗糙度为 0.2,同时孔与轴的单边间隙在 4μm~8μm 时,是控制电机噪音较为经济的参数。 与滚动轴承相比,含油轴承成本要低一些,因此前、后支架组件一般选用相同的含油轴承,但对一些特殊情况,根据用户的负载要求也有采用两端都是滚动轴承的方式。为了减少振动,可在滚动轴承与支架之间加入橡胶轴承套。个别为了节省成本,又考虑电机是径向负载的原因,仅在负载端使用滚动轴承,但这种方式由于滑动轴承与轴磨损后间隙发生变化,而另一端滚动轴承不会出现间隙变化,在使用一定时间后,这种气隙的变化将使电机噪音变大。 弹性压盖常用 0.2 mm~0.4 mm 厚的不锈钢板做成爪形结构,要求有一定的弹性和硬度,通过与支架铆压后的变形把含油轴承压紧,支架组件的轴承回复力矩大小完全由其变形量决定。由于支架组件组装铆压后其含油轴承是可转动的,回复力矩就是指使含油轴承转动所需的最小转矩,一般为所需电机额定转矩的 0.3~0.7 倍,功率大者取小值,功率小者取大值,通常值取在 200 gf.cm~l000 gf.cm 之间,很大程度上来自于各生产厂家的经验数据。该值太小则易引起轴承震动使噪音变大,太大则常引起启动困难,因而它是检验支架组件合格与否的一个关键数据。 轴承盒常用 0.2~0.4 的镀锌钢板冲压而成,主要目的是压在弹性压盖上,使经支架铆压后的弹性压盖四周受力均匀。弹性压盖和轴承盒被同时压紧,这种方式回复力矩相对较大;用于浮动弹性压盖的支承,这种方式弹性压盖与轴承盒是可相对移动的,个别情况下通过严格控制轴承盒孔与轴

单相罩极电机生产制造项目实施方案

单相罩极电机生产制造项目 实施方案 投资分析/实施方案

报告说明 在服务机器人方面,IFR按照应用领域划分,将服务机器人分为个 人/家用机器人(Personal/DomesticRobots)和专业服务机器人(ProfessionalServiceRobots)两大类。 本期项目总投资包括建设投资、建设期利息和流动资金。根据谨 慎财务估算,项目总投资27241.40万元,其中:建设投资23469.41 万元,占项目总投资的86.15%;建设期利息249.90万元,占项目总投资的0.92%;流动资金3522.09万元,占项目总投资的12.93%。 根据谨慎财务测算,项目正常运营每年营业收入67600.00万元, 综合总成本费用55048.62万元,净利润7533.91万元,财务内部收益 率21.62%,财务净现值2037.14万元,全部投资回收期4.60年。本期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。 本期项目技术上可行、经济上合理,投资方向正确,资本结构合理,技术方案设计优良。本期项目的投资建设和实施无论是经济效益、社会效益等方面都是积极可行的。 综合判断,在经济发展新常态下,我区发展机遇与挑战并存,机 遇大于挑战,发展形势总体向好有利,将通过全面的调整、转型、升级,步入发展的新阶段。知识经济、服务经济、消费经济将成为经济

增长的主要特征,中心城区的集聚、辐射和创新功能不断强化,产业发展进入新阶段。 该报告是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法,在投资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。在此基础上,综合论证项目建设的必要性,财务的盈利性,经济上的合理性,技术上的先进性和适应性以及建设条件的可能性和可行性,从而为投资决策提供科学依据。 本报告为模板参考范文,不作为投资建议,仅供参考。报告产业背景、市场分析、技术方案、风险评估等内容基于公开信息;项目建设方案、投资估算、经济效益分析等内容基于行业研究模型。本报告可用于学习交流或模板参考应用。

伺服电机选型计算公式

伺服电机选型计算公式 伺服电机选择的时候,首先一个要考虑的就是功率的选择。一般应注意以下两点: 1。如果电机功率选得过小.就会出现“小马拉大车”现象,造成电机长期过载,使其绝缘因发热而损坏,甚至电机被烧毁。 2。如果电机功率选得过大.就会出现“大马拉小车”现象,其输出机械功率不能得到充分利用,功率因数和效率都不高,不但对用户和电网不利。而且还会造成电能浪费。 也就是说,电机功率既不能太大,也不能太小,要正确选择电机的功率,必须经过以下计算或比较: P=F*V/100 (其中P是计算功率,单位是KW,F是所需拉力,单位是N,V是工作机线速度m/s) 此外.最常用的是采用类比法来选择电机的功率。所谓类比法,就是与类似生产机械所用电机的功率进行对比。

具体做法是:了解本单位或附近其他单位的类似生产机械使用多大功率的电机,然后选用相近功率的电机进行试车。试车的目的是验证所选电机与生产机械是否匹配。 验证的方法是:使电机带动生产机械运转,用钳形电流表测量电机的工作电流,将测得的电流与该电机铭牌上标出的额定电流进行对比。 如果电功机的实际工作电流与铭脾上标出的额定电流上下相差不大,则表明所选电机的功率合适。如果电机的实际工作电流比铭牌上标出的额定电流低70%左右.则表明电机的功率选得过大,应调换功率较小的电机。 如果测得的电机工作电流比铭牌上标出的额定电流大40%以上.则表明电机的功率选得过小,应调换功率较大的电机。 实际上应该是考虑扭矩(转矩),电机功率和转矩计算公式。即T = 9550P/n 式中: P —功率,kW;n —电机的额定转速,r/min;T —转矩,Nm。

会罩极电机设计的请进

会罩极电机设计的请进 电机, 设计 本人初学电机,就遇到公司要在原有硬件基础上设计罩极电机难题,,因为原有工程师休假,设计任务落到本人身上,但本人对电机设计接触甚少!这下要麻烦各位了,真的希望各位能出手相助,本人也已经开始研究了!谢谢! 转定于已固定,若设计中需要用到可联系本人提供,QQ:156771731.以下为原二极罩极电机参数:120V/60Hz;两极线圈电阻2X45Ω,圈数2X870匝;Φ0.21mm漆包线;17W,0.23A;转速2650±150n/min,温升≤75K的罩极二极电机. 改绕后的要求:用于230V/50HZ,转速2650±200n/mim.温升≤75K.求所用线径及圈数! 0.13线1900匝 如果没错的话,你的应该是5812型号的,我的QQ是16078324,你的产品应该是用在卧式暖风机上的,是风轮为直接负载 1 不是吧,出乎意料,要那么多匝啊.恐怕非常难放了... 0.12线,2X1100匝行不行!? 同意6楼意见,1900匝已偏少了,匝数再少是不行的,除非原来电机的磁路非常不饱和。 今天终于上班了,报道一下我的试验结果: 1.0.15线1500匝,负载26W,转速2250n/min 2.0.13线1800匝,负载18.3W,转速2370n/min 3.0.13线1900匝,负载16W,转速2220n/min 0.15线的功率这么大,为何转速都上不来的? 难道饱和了,如果磁饱和了,要怎么样才能改变转速!? 正确点是提高转速! 明天继续将0.13线减到1700匝看什么结果... 1 你带的什么负载?你怎么知道负载是多少瓦? 2 原电机在60Hz下转速为2650转,那么在50Hz下恐怕很难达到2650转,除非动转子。 3 理论上在60Hz下功率为17W,那么在50Hz下应该功率不会到17W,否则温升会超标,所以建议你不必再试1700匝。 西莫团队欢迎您的加盟!! 1.带的是风叶;想知道负载及不带负载瓦数,可以用功率表测量! 2.60HZ时最高转速是2900转,50HZ下最高转速应该能达到2400,请问怎么动转子呢,谢谢! 3.为何60Hz下功率为17W,50Hz下应该不到17W的!?1)0.15线1500匝,负载26W,转速2250n/min

“单相罩极电动机”讲义

“单相罩极异步电动机”通俗讲义 (工程部贺建桥) 一异步电动机工作原理: 异步电动机按电源特性可分为单相异步电动机和多相异步电动机,以三相异步电动机为例。 1 异步电动机的基本结构 定子及其绕组、转子及其绕组、气隙、端盖 2 异步电动机工作原理 定子绕组通入三相交流电,在气隙中产生旋转磁场, 设其旋转速度(即同步速)为n1,n1的大小由电源频率f 和电机的极对数p确定:n1=60×f/p 转子绕组在旋转磁场中被动切割磁力线而产生感应 电势,在转子绕组闭合的情况下产生感应电流I2,I2在磁 场中产生电磁力F,驱动转子以n2的速度旋转,电能转化 为机械能。 3 为何叫“异步电动机” 实际上上述是感应电动机的工作原理,一般称感应 电动机为异步电动机,原因是转子的旋转速度n2<同步速n1 分析如下: 假设n2=n1,则转子绕组与旋转磁场无相对运动,即 转子导体不切割磁力线,无感应电流I2的产生,也就没有电 磁力F的产生,导致转子无法旋转。 假设n2>n1,必须由外界输入机械能才能实现,此时 电机处于发电机工作状态,而不是电动机工作状态了。 所以,感应电动机的转速n2永远落后于其旋转磁场的 转速n1,这也是异步电动机说法的由来。 二单相罩极异步电动机工作原理 1 旋转磁场产生的条件 理论分析表明(分析从略):多相交流电流在电机绕组中产生旋转磁场,而单相交流电流在电机绕组中无法直接产生旋转磁场而是脉振磁场。 所以,单相电动机首先要解决的问题就是设法产生旋转磁场,如电阻移相、电容移相等都可以产生旋转磁场。 2 单相罩极异步电动机工作原理 电阻或电容移相都是在电机绕组中通过电流移相实现近似两相电流来产生旋转磁场,

电机选型计算公式总结

电机选型计算公式总结功率:P=FV(线性运动) T=9550P/N(旋转运动) P——功率——W F——力——N V——速度——m/s T——转矩——N.M 速度:V=πD N/60X1000 D——直径——mm N——转速——rad/min 加速度:A=V/t A——加速度——m/s2 t——时间——s

力矩:T=FL 惯性矩:T=Ja L——力臂——mm(圆一般为节圆半径R)

J ——惯量——kg.m2 a ——角加速度——rad/s2 1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2MD J = 对于钢材:341032-??= g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2.丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf· cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ?? ???=n v J π g w 2s 2 ? ?? ??=π(kgf·cm·s 2) 角加速度a=2πn/60t v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 1 22 22 1????? ???????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量

罩极电机设计指引

罩极电机设计指引 1.概述 罩极电机是微型单相感应电动机中最简单的一种,由于它具有结构简单,制造方便,成本低廉,运行可靠,过载能力强,维修方便等优点而被广泛地用于各种小功率驱动装置中。其缺点是运行性能和起动性能较差,效率和功率因子较低,一般用于空载或轻载起动的小容量场合。如电风扇、加湿机、空清机等。 2.工作原理 一个没有罩极环仅有主绕组的电机,是没有起动转矩,在实际中是无法使用的,为了获得起动转矩,采用附图副绕组的措施。这个绕组不是靠外接电源供电,而是靠它与主绕组轴线间保持有θ<90°的偏角,见图1。主绕组通电后,其中一部分主磁通φm′会穿过这一短路环,感应电势产生电流,短路环则如变压器的副绕组一样,产生去磁通φk,与φm′合成后在罩极区间将是φs,最后决定了罩极环上的电势Ek,这样在主极与罩极的不同区间使有时间相位不同的φm与φs在脉振,构成了椭圆磁场,产生了起动转矩。在转子是闭路的条件下,转子就会起动。由于φm是超前φs的,磁场是从超前的磁通移向滞后的,所以电机的旋转方向是由主极移向罩极的顺时针方向。 图1 罩极电机的原理及矢量图 3.技术指标及术语 3.1技术指标 额定功率 额定电压 额定电流 额定转速 3.2术语 3.2.1效率 电机输出功率与输入功率之比。 3.2.2功率因子COSΦ 电机输入有效功率与视在功率之比。

3.2.3起动扭力Tst 电机在额定电压,额定频率和转子堵住时所产生的扭力。 3.2.4最大扭力Tmax 电机在额定电压,额定频率和运行温度下,转速不发生突降时产生的最大转矩。 3.2.5噪音 电机在空载稳态运行时A计权声功率级dB(A)。 3.2.6振动 电机在空载稳态运行时振动加速度有效值(m/s2)。 4.基本结构 罩极电机是结构最简单的一种单相电动机,其结构可以分为两类,一类是隐极式,从外形来看,定转子均匀开槽,转子为鼠笼式。定子上有主绕组和自行闭路的副绕组或称为罩极绕组。两绕组可以做成等线圈式,也可以分别做成正弦绕组。不过两绕组要不成正交的安放,即绕组轴线间夹角小于90度。它的定子上有主副两套绕组,但其主绕组大多采用集中绕组形式,副绕组则是一个置于局部磁极上的短路线圈,即罩极线圈(也称短路环)。这类电机又可以分为两种,一种如图2(a)、(b)所示的圆形结构,它的定子可明显的看出凸极型式。主绕组套在磁极上,罩极环则嵌于磁极一角,且多为一个。另一种是方形结构,铁芯如变压器一样,见图2(c),主绕组背套于一根铁心柱上,磁极与转子则在铁芯的另一根柱上,在磁极一角多放两个罩环。在罩极电机中,只要设法产生旋转的气隙磁场,电机就有自起动能力,并可正常运转。在罩极电机中,定子主副绕组、轴线在空间非正交安置,并为了改善罩极电机的性能,采用了各种措施,如阶梯气隙、磁桥等,出现了磁的不对称,又因副绕组中的电流是靠主绕组感应产生的,造成了电的不对称,分别产生时间和空间相位都不相同的磁势,合成为一个类似旋转磁势的运动磁势,它在空间建立的运动磁场与转子相互作用,就可以使之起动和运转。 5.特性分析 5.1罩极电机效率是偏低的,仅在=5~30%之间,因此多用在小功率驱动中。 5.2罩极电机的主、副相电流变化均不大,故多以电机不动时的电流来计算它的损耗和温升。所以罩极电机 会在堵转时运行也不至发生问题,运行可靠是它的最大有点。 5.3罩极电机的起动和最大转矩倍数规定为T*st=0.3,T*max=1.3,均属偏小。因此,罩极电机主要用于对 起动转矩要求不高的地方。 5.4罩极电机经特殊设计,可以在两个方向上旋转。这样的罩极电机磁极在两个极尖上都开有放罩极绕组的 槽口。根据需要闭合一个罩极绕组,电机就在那个方向旋转。 5.5罩极电机可以像单相异步电机那样采用降压或抽头调速。绕组抽头调速的电机,就是在电机的绕组上附 加多绕些调速线圈。把这些调速线圈串入回路连于电源上去时,如同电机回路中串入一个电抗一样。达

电动汽车电机选择与设计

电动汽车 电动汽车 电动汽车电机选择与设计 学院:机械与车辆学院指导教师: 专业:时间:2011.5.23-27 中国·珠海

电动汽车电机选择与设计 摘要:介绍了轮毂电机相对于燃油汽车和单电机集中驱动系统的优势,比较了各种电动汽车用电机的基本性能,选择不同性能的电机满足现状电动汽车的性能、结构需要,并对电动汽车的动力驱动——轮毂电机、以及涉及动力模块上结构、功能上的设计。 关键词:电动汽车;驱动系统;轮毂电机 概述 全世界的汽车保有量和使用量的逐日增大,世界能源问题越来越突出,电动汽车方向逐渐出现并在汽车领域占有了一个非常重要的位置,由于传统汽车的技术成熟,人们对汽车的性能要求已经达到一个比较高的程度。在对于电动汽车普及方面上,这是一个很大的障碍。但是,新能源汽车的开发发展是必然的,应当冲破旧思想的束缚,大胆创新,将电动汽车的优势充分体现是如今比较重要的一步。 早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。相对与传动汽车、单电机集中驱动的汽车,轮毂电机式电动汽车具有以下优点: (1)动力控制通过电子线控技术实现对各电动轮进行无级变速控制,以及各电动轮之间的差速要求,省略了传统汽车所需的波箱、离合器、变速器、传动轴等;在电机所安装的位置同时可见,整车的结构变得简洁、紧凑,车身高降低,可利用空间大,传动效率高。 (2)容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。

(3)底架结构大为简化,使整车总布置和车身造型设计的自由度增加。若能将底架承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。 (4)若在采用轮毂电机驱动系统的四轮电动汽车上导人线控四轮转向技术(4WS),实现车辆转向行驶高性能化,可有效减小转向半径,甚至实现零转向半径,大大增加了转向灵便性。 1.电动汽车基本参数参数确定 1.1 该电动汽车基本参数要求,如下表: 参数 数值 参数 数值 最大总质量(kg ) 1400 轮胎半径(m ) 0.33 迎风面积(㎡) 2.50 传动效率 0.90 风阻系数 0.33 最高车速(km/h ) 100 1.2 动力性指标如下: (1)最大车速max 100a u km ≥; (2)在车速a u =60km/h 时爬坡度i ≥5%(3度); (3)在车速a u =40km/h 时爬坡度i ≥12% (6.8度); (4)原地起步至100km/h 的加速时间35t s ≤; (5)最大爬坡度i ≥12%(16度); (5)0到75km/h 加速时间25t s ≤; (6)具备2~3倍过载能力[7]。 2.电机参数设计

单相罩极电机生产线建设项目投资计划书

单相罩极电机生产线建设项目 投资计划书 投资分析/实施方案

报告说明 国内办公设备行业的形成时间大概在20世纪90年代中后期,伴 随着经济的蓬勃发展,企事业单位对于传真机、打印机、复印机、扫 描仪等办公设备需求日增,我国已经成为了全球办公设备和办公耗材 的生产大国,根据国家统计局统计,2014年我国打印机、复印和胶印 设备产量分别约6,601万台、713万台。 本期项目总投资包括建设投资、建设期利息和流动资金。根据谨 慎财务估算,项目总投资38495.97万元,其中:建设投资31816.81 万元,占项目总投资的82.65%;建设期利息700.71万元,占项目总投资的1.82%;流动资金5978.45万元,占项目总投资的15.53%。 根据谨慎财务测算,项目正常运营每年营业收入101400.00万元,综合总成本费用79188.23万元,净利润13932.64万元,财务内部收 益率20.66%,财务净现值2657.16万元,全部投资回收期4.95年。本期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。 本期项目技术上可行、经济上合理,投资方向正确,资本结构合理,技术方案设计优良。本期项目的投资建设和实施无论是经济效益、社会效益等方面都是积极可行的。

综合判断,在经济发展新常态下,我区发展机遇与挑战并存,机 遇大于挑战,发展形势总体向好有利,将通过全面的调整、转型、升级,步入发展的新阶段。知识经济、服务经济、消费经济将成为经济 增长的主要特征,中心城区的集聚、辐射和创新功能不断强化,产业 发展进入新阶段。 报告对项目市场、技术、财务、工程、经济和环境等方面进行精 确系统、完备无遗的分析,完成包括市场和销售、规模和产品、厂址、原辅料供应、工艺技术、设备选择、人员组织、实施计划、投资与成本、效益及风险等的计算、论证和评价,选定最佳方案,作为决策依据。 本报告为模板参考范文,不作为投资建议,仅供参考。报告产业 背景、市场分析、技术方案、风险评估等内容基于公开信息;项目建 设方案、投资估算、经济效益分析等内容基于行业研究模型。本报告 可用于学习交流或模板参考应用。

罩极电机设计指引

罩极电机设计指引 标题: 罩极电机设计指引 1. 概述 罩极电机是微型单相感应电动机中最简单的一种.由于它具有结构简单,制造方便, 成本低廉,运行可靠,过载能力强,维修方便等优点而被广泛地用于各种小功率驱动装置 中.其缺点是运行性能和起动性能较差,效率和功率因子较低,一般用于空载或轻载起动 的小容量场合.如电风扇等. 2. 工作原理 一个没有罩极环仅有主绕组的电机, 是没有起动转矩, 在实际中是无法使用, 为了获得起动转矩, 采用附加副绕组的措施。这个绕组不是靠外接电源供电, 而是靠它与主绕组轴线间保待有θ<90:的偏角, 见图1。主绕组通电后, 其中一部分主磁通Φm’会穿过这一短路环, 感应电势产生电流, 短路环则如 变压器的副绕组一样, 产生去磁通Φk, 与Φm’合成后在罩极区间将是Φs, 最后决定了罩极环上的电 势Ek, 这样在主极与罩极的不同区间使有时间相位不同的Φm与Φs在脉振, 构成了椭圆磁场, 产生了 起动转矩。在转子是闭路的条件下, 转子就会起动。由于Φm是超前Φs的, 磁场是从超前的磁通移向

滞后的, 所以电机的旋转方向是由主极移向罩极的顺时针方向。FORM0438 (4-19-2001) Page 1 of 12 a)工作原理 (b) 矢量图 图1罩极电机的原理及矢量图 3. 技术指针及术语 3.1 技术指针 额定功率 额定电压 额定电流 额定转速 3.2 术语 3.2.1 效率 电机输出功率与输入功率之比. 3.2.2 功率因子COS? 电机输入有效功率与视在功率之比. 3.2.3 起动扭力Tst

电机在额定电压, 额定频率和转子堵住时所产生的扭力. 3.2.4 最大扭力Tmax 电机在额定电压, 额定频率和运行温度下,转速不发生突降时所产生的最大转矩. 3.2.5 噪音 电动机在空载稳态运行时A计权声功率级dB(A). 3.2.6 振动 2) 电动机在空载稳态运行时振动加速度有效值(m/s 4. 基本结构 罩极电机是结构最简单的一种单相电动机,其结构可分为两类.一是隐极式,从外形来看,定转子均匀开槽,转子为鼠笼式.定子上有主绕组和自行闭路的副绕组或称为罩极绕组.两绕组可以作成等线圈式,也可分别作成正弦绕组.不过两绕组要不成正交的安放,即绕组轴线间夹角小于90度. 它的定子上有主副相两套绕组, 但其主绕组大多采用集中绕组形式, 副绕组则是一个置于局部磁极上的短路线圈, 即罩极线圈(也称短路环).这类电机又可分为两种,一种如图1(b)所示的圆形结构,它的定子可明显的看出凸极型式.主绕组套在磁极上,罩极环则嵌于磁极一角,且多为一个.另一种是方型结构,铁芯如变器一样,见图1(a),主绕组被套于一根铁心柱上,磁极与转子则在铁芯的另一根柱上,在磁极一角多放两个罩环。在罩极电机中, 只要设法产生旋转的气隙磁场, 电机就有自起动能力, 并可正常运转。在罩极电机中, 定子主副相绕组、轴线在空间非正交安置, 并为了改善罩极电机的性能, 采取了各种措施, 如阶梯气隙, 磁桥等, 出现了磁的不对称, 又因副绕组中的电流是靠主绕组感应产生的, 造成了电的不对称, 分别产生时间和空间相位都不相同的磁势, 合成为一个类似旋转磁势的运动磁势, 它在空间建立的运动磁场与转子相互作用, 就可以使之起动和运转。

罩极电机设计指引

标题:罩极电机设计指引 1.概述 罩极电机是微型单相感应电动机中最简单的一种.由于它具有结构简单,制造方便, 成本低廉,运行可靠,过载能力强,维修方便等优点而被广泛地用于各种小功率驱动装置 中.其缺点是运行性能和起动性能较差,效率和功率因子较低,一般用于空载或轻载起动 的小容量场合.如电风扇等. 2.工作原理 一个没有罩极环仅有主绕组的电机, 是没有起动转矩, 在实际中是无法使用, 为了获得起动转矩, 采用附加副绕组的措施。这个绕组不是靠外接电源供电, 而是靠它与主绕组轴线间保待有θ<90 的偏角, 见图1。主绕组通电后, 其中一部分主磁通Φm’会穿过这一短路环, 感应电势产生电流, 短路环则如变压器的副绕组一样, 产生去磁通Φk, 与Φm’合成后在罩极区间将是Φs, 最后决定了罩极环上的电势Ek, 这样在主极与罩极的不同区间使有时间相位不同的Φm与Φs在脉振, 构成了椭圆磁场, 产生了起动转矩。在转子是闭路的条件下, 转子就会起动。由于Φm是超前Φs的, 磁场是从超前的磁通移向滞后的, 所以电机的旋转方向是由主极移向罩极的顺时针方向。 a)工作原理 (b) 矢量图 图1罩极电机的原理及矢量图 3.技术指针及术语 3.1技术指针 额定功率 额定电压 额定电流 额定转速 3.2术语 3.2.1效率

电机输出功率与输入功率之比. 3.2.2功率因子COS? 电机输入有效功率与视在功率之比. 3.2.3起动扭力Tst 电机在额定电压, 额定频率和转子堵住时所产生的扭力. 3.2.4最大扭力Tmax 电机在额定电压, 额定频率和运行温度下,转速不发生突降时所产生的最大转矩. 3.2.5噪音 电动机在空载稳态运行时A计权声功率级dB(A). 3.2.6振动 电动机在空载稳态运行时振动加速度有效值(m/s2) 4.基本结构 罩极电机是结构最简单的一种单相电动机,其结构可分为两类.一是隐极式,从外形来看,定转子均匀开槽,转子为鼠笼式.定子上有主绕组和自行闭路的副绕组或称为罩极绕组.两绕组可以作成等线圈式,也可分别作成正弦绕组.不过两绕组要不成正交的安放,即绕组轴线间夹角小于90度. 它的定子上有主副相两套绕组, 但其主绕组大多采用集中绕组形式, 副绕组则是一个置于局部磁极上的短路线圈, 即罩极线圈(也称短路环). 这类电机又可分为两种,一种如图1(b)所示的圆形结构,它的定子可明显的看出凸极型式.主绕组套在磁极上,罩极环则嵌于磁极一角,且多为一个.另一种是方型结构,铁芯如变器一样,见图1(a),主绕组被套于一根铁心柱上,磁极与转子则在铁芯的另一根柱上,在磁极一角多放两个罩环。在罩极电机中, 只要设法产生旋转的气隙磁场, 电机就有自起动能力, 并可正常运转。在罩极电机中, 定子主副相绕组、轴线在空间非正交安置, 并为了改善罩极电机的性能, 采取了各种措施, 如阶梯气隙, 磁桥等, 出现了磁的不对称, 又因副绕组中的电流是靠主绕组感应产生的, 造成了电的不对称, 分别产生时间和空间相位都不相同的磁势, 合成为一个类似旋转磁势的运动磁势, 它在空间建立的运动磁场与转子相互作用, 就可以使之起动和运转。 5.1罩极电机效率是偏低的,仅在=(5~30)%之间,因此多用在小功率驱动中. 5.2罩极电机的主,副相电流变化均不大,故多以电机不动时的电流来计算它的损耗和温升.所以罩极电机

相关主题