搜档网
当前位置:搜档网 › Short-term dynamics of soil carbon, microbial biomass,and soil enzyme activities as compared

Short-term dynamics of soil carbon, microbial biomass,and soil enzyme activities as compared

Short-term dynamics of soil carbon, microbial biomass,and soil enzyme activities as compared
Short-term dynamics of soil carbon, microbial biomass,and soil enzyme activities as compared

SHORT COMMUNICATION

Short-term dynamics of soil carbon,microbial biomass,

and soil enzyme activities as compared to longer-term effects of tillage in irrigated row crops

Daniel Geisseler &William R.Horwath

Received:6March 2009/Revised:1May 2009/Accepted:5May 2009/Published online:25August 2009#The Author(s)2009.This article is published with open access at https://www.sodocs.net/doc/3010382789.html,

Introduction

The effects of disturbance on soil quality are difficult to determine because soil is inherently variable and physical and chemical soil properties change too slowly to reflect recent management history.Microbial and biochemical soil properties have been suggested as early and sensitive indicators of changes in soil quality as they manifest themselves over shorter timescales and are central to the ecological function of a soil (Karlen et al.1994;Bandick and Dick 1999).Soil enzyme activities in particular are increasingly used as indicators of soil quality because of their relationship to decomposition and nutrient cycling,ease of measurement,and rapid response to changes in soil management (Dick 1994;Dilly et al.2003).In a long-term study,Kandeler et al.(1999)found that enzyme activities were significantly increased in the top 10cm of the profile after only 2years of minimum and reduced tillage compared to conventional tillage.In contrast,significant effects of tillage treatments on microbial biomass,nitrogen (N)mineralization,and potential nitrification were not observed until after 4years.

Soil disturbance,however,is only one of the many factors affecting soil microbial and biochemical properties.Seasonal fluctuations in soil moisture,temperature,and substrate availability can also have large effects on microbial biomass and activity.Franzluebbers et al.(1994)found that soil microbial biomass carbon (C mic )changed significantly during the cropping season in all crop sequences

and tillage regimes under investigation.Bausenwein et al.(2008)also reported significant effects of sampling date on C mic and enzyme activities under minimum tillage.These observations raise the question of whether microbial and biochemical properties are affected by too many factors and fluctuate too much during the course of a season to be sensitive indicators of tillage-induced effects on soil quality.

In general,conservation tillage (CT)practices leave a significant amount of plant residue on the soil surface.This results in an increased soil organic matter content in the topsoil,which in turn leads to higher microbial biomass and activity.This increase in organic matter content in the topsoil however is often offset with a decrease in lower soil layers (Dick 1992;Omidi et al.2008).Franzluebbers (2002)suggested using changes in soil organic C with depth rather than the total amount of soil organic C in the profile as indicators of tillage-induced effects on soil properties.The stratification ratio,calculated by dividing the value for a soil property in the topsoil by its value in the subsoil,could not only be a more sensitive way to measure tillage-induced changes,but it also normalizes for differ-ences in climatic conditions and soil types between study sites.Because surface organic matter is essential to erosion control and water infiltration,the degree of stratification is directly linked to soil quality (Franzluebbers 2002).

The objective of this study was to compare short-term dynamics of soil C,microbial biomass,and soil enzyme activities with longer-term effects of tillage in irrigated row crops in order to determine how environmental factors affect the use of these properties as sensitive indicators of tillage-induced changes in soil quality.A field trial was designed to test the following hypotheses:(1)enzyme activities and microbial biomass N (N mic )respond more rapidly to differences in tillage treatments than total soil C.

D.Geisseler (*):W.R.Horwath

Department of Land,Air,and Water Resources,University of California,Davis,PES Building,1Shields Ave,Davis,CA 95616,USA

e-mail:djgeisseler@https://www.sodocs.net/doc/3010382789.html, Biol Fertil Soils (2009)46:65–72DOI 10.1007/s00374-009-0400-0

(2)Enzyme activities and N mic are more affected by environmental factors than total soil C,resulting in a larger temporal variability.(3)The vertical distribution of soil properties in the profile has a lower temporal variability than the average value in the top30cm of the profile, making it a more sensitive indicator of tillage-induced effects than the average values in the top30cm of the profile.The activities of protease,β-glucosidase,and β-glucosaminidase were chosen because these enzymes are involved in the degradation of proteins,cellulose,and chitin,respectively,which are among the most abundant organic compounds available to soil microorganisms. Material and methods

Experimental site

The study was carried out at the Long-Term Research on Agricultural Systems site,near Davis,CA,USA.The site has a Mediterranean climate with a mean annual tempera-ture of15.7°C and440-mm precipitation(Western Regional Climate Center,online at https://www.sodocs.net/doc/3010382789.html,).Soils at the site include Rincon silty clay loam(fine,montmoril-lonitic,thermic Mollic Haploxeralf)and Yolo Silt Loam (fine-silty,mixed,superactive,nonacid,thermic Mollic Xerofluvent;Soil Survey Staff1997)and have a sand content of15–28%and a clay content of26–32%(pipette method;Gee and Bauder1986).The average pH,measured in a1:2soil–water solution following a30-min equilibra-tion,was7.1.It increased by0.1unit from the surface to a depth of30cm and was about0.1units higher in the soil under CT compared to the standard tillage soil.The bulk density,measured in fall2007,was1.27g cm?3in the top 15cm and1.49in the15–30-cm layer,with no differences between the two tillage systems.

Plots under a corn–tomato rotation with a winter cover crop were chosen for the study.Crops are planted on beds and irrigation water is furrow run.Until2006,a mixture of vetch(Vicia dasycarpa)and peas(Pisum sativum)was used as the winter cover crop(Denison et al. 2004).In winter2006/2007,oat(Avena sativa)was added to the mixture.The two tillage treatments were established in2002.Tillage is performed with a bed-preserving disk harrow to a depth of15to20cm and one pass with a Cambridge roller to compact the soil surface. In the ST treatment,the plots are tilled in spring and fall before the planting of the main crop and the winter cover crop,respectively.In the CT system,no tillage is performed in fall;instead,the corn residue is chopped and left on the soil surface.In spring,a strip in the center of each bed,30cm wide and8cm deep,is tilled before the tomatoes are transplanted.Before the corn is planted,the beds are tilled as in the ST system.In2007, however,no tillage was performed in the CT microplots used for this study,leaving the cover crop residues on the soil surface.

When mowed on April7,the cover crop in both tillage systems had produced an aboveground biomass of9.2t ha?1 and was composed of74%oats,8%legumes(predom-inantly vetch),and18%weeds,dominated by fiddleneck (Amsinckia spp.)and common chickweed(Stellaria media).The total N content of the cover crop was1.1% and the C to N ratio37.The ST plots were tilled on May1 and corn planted on May14in both tillage systems(two rows per bed).The plots were irrigated every7to10days depending on evapotranspiration.The corn received56kg N ha?1in the form of ammonium sulfate on June18. Granular fertilizer was applied in a band at a distance of 5–10cm from the corn row and at a depth of about3cm. The corn was harvested in late September.

Soil sampling

Each tillage treatment was replicated three times.Micro-plots(5m long,three beds wide)within the main plots were assigned to the study.Soil samples from the top30cm of the central bed were taken five times between April and September2007.Samples were taken from the part of the bed between the corn rows to avoid the fertilizer bands. Five cores(1.5-cm diameter)were combined for each sample.The cores were divided into three layers,0–5,5–15,and15–30cm.The samples were stored in plastic bags and kept on ice for transport back to the laboratory,sieved through a4-mm sieve,stored at4°C,and analyzed within 24h of collection.

Soil analysis

Oven-dried and ball-milled soil samples were analyzed for total C and N content by dry combustion on a Carlo Erba CNS analyzer NA1500series2.

Microbial biomass N was determined on field moist samples using the chloroform fumigation extraction method(Horwath and Paul1994)followed by determi-nation of dissolved N in the extracts with the alkaline persulfate oxidation method(Cabrera and Beare1993). Briefly,samples of6g were weighed into glass vials and fumigated with chloroform for5days.Dissolved N was extracted with0.5M potassium sulfate(K2SO4; 5mL g?1soil)and the suspension filtered(Fisherbrand filter paper,Q5).Controls were treated identically except that they were not fumigated.An aliquot(0.5mL)of the extract was then mixed with0.5mL of persulfate reagent as described by Cabrera and Beare(1993)and the nitrate concentration determined using a single reagent

method(Doane and Horwath2003).Microbial biomass N was calculated by dividing the difference in N content between the fumigated and unfumigated sample by0.68to account for an incomplete N extraction(Horwath and Paul 1994).

Enzyme activities were assayed on1g of field moist soil in glass vials with screw caps.Protease,β-glucosidase,and β-glucosaminidase activity were determined following the procedures described by Ladd and Butler(1972),Tabatabai (1994),and Parham and Deng(2000),respectively.The assay conditions are summarized in Table1.

All results are expressed on a moisture-free basis. Moisture content was determined by drying the soil samples at105°C for24h.

Data analysis

Based on the soil properties measured in the three layers, the average values for the whole30-cm profile were calculated using the weighted average of the values measured in the different layers corrected for differences in bulk density.The stratification ratio was calculated by dividing the values measured in the0–5-cm layer by the values for the15–30-cm layer.

Statistical analyses were conducted with SAS(SAS Institute1990),using the general linear model procedure for analysis of variance.The data set was analyzed as a split plot design with tillage treatment as the main factor and depth or sampling date as subfactors.The assumptions of the statistical models were tested for every data set.Normality of the residuals was evaluated graphically and with the Shapiro–Wilk test.Homogene-ity of variances was tested by plotting the residuals vs. the predicted values and with Levene’s test.If neces-sary,the data were transformed.When data transforma-tion did not result in homogeneous variances,the MIXED procedure with the repeated statement was used.This procedure does not require homogeneous variances across all treatments(Littell et al.2006).Mean comparisons were performed using the Tukey test,which controls the experiment-wise type I error rateα(SAS Institute1990).Effects were considered significant for P<0.05.Results

In April,the top5cm of the profile and the subsoil had gravimetric soil moisture contents of10%and13%, respectively,with no differences between the two tillage systems.When the corn was planted on May14,the surface of the CT soil had a gravimetric moisture content of19%, compared to15%in the surface layer of the ST soil.Below 5cm,the gravimetric moisture content was22%in both tillage systems.During the main growing season,the corn was furrow-irrigated every7to10days.The irrigation water did not wet the surface soil of the beds between the corn rows.By July,the gravimetric moisture content of the top5cm had decreased to about8%in both tillage treatments,while the moisture content in the subsoil samples averaged15%without any significant differences between the tillage treatments.

The average C content in the top30cm of the soil profile was10.4and10.6g kg?1dry soil in the ST and CT soil,respectively,with no significant differences between the two tillage systems nor between sampling dates (Table2).Total soil C decreased significantly with depth at all sampling dates and in both tillage systems(Fig.1).In general,the total C content in the top5cm tended to be higher in the CT soil,while below5cm the ST soil contained more C.The stratification ratio for total soil C averaged1.49and1.31in the CT and ST soil,respectively. With the exception of the samples taken in April,the difference in the stratification ratio between the two tillage systems was not significant,nor did the stratification ratio change significantly over time(Table3).

The average N mic content in the soil profile changed significantly over time,being considerably lower later in the growing season.However,there were no significant differences between tillage treatments at any sampling date (Table2).In April,N mic deceased slightly but not significantly with depth in the CT soil while in the ST soil it was highest in the5–15-cm layer(Fig.1).Microbial biomass N was higher in the surface layer of the CT soil compared to the ST soil.Below a depth of5cm,however, there were no differences in N mic between the tillage treatments.At planting,N mic had doubled in the top5cm of the CT soil but remained at the same level in the lower

Table1Assay conditions used to determine the different soil enzyme activities

Enzyme activity Substrate used Buffer pH Temperature Time(h)

Protease(EC3.4.2.21-24)Na-caseinate(10g/L)0.1M Tris850°C(in water bath)2

β-glucosidase(EC3.2.1.21)p-nitrophenylβ-D-glucoside(0.01M)0.1M acetate522°C(on reciprocal shaker)1

β-glucosaminidase(EC3.2.1.30)p-nitrophenyl N-acetyl-β-D-

glucosaminide(0.002M)

0.1M acetate522°C(on reciprocal shaker)2

layers.In the ST soil,N mic had increased in the whole profile,with small differences between depths.By July,N mic had decreased considerably in both tillage systems in the top 5cm and continued decreasing at all depths until August.In August and September,the differences between tillage treatments and depths were small and not significant.In the top 5cm,N mic was slightly lower compared to the 5–15-cm layer.The stratification ratio also fluctuated widely in both tillage systems,which was mainly the result of the changes in the top 5cm (Table 3).

In general,enzyme activities were higher in the CT soil compared to the ST soil;however,only few differences

Table 2Average soil C,microbial biomass N (N mic ),and activity of protease,β-glucosidase,and β-glucosaminidase in the top 30cm of the soil profile Soil property

Tillage

Date 04/06

05/1407/0208/0309/03Total soil C (g kg ?1)ST 10.4a 10.8a 10.7a 10.6a 10.9a CT 10.810.110.510.210.3N mic (mg kg ?1)

ST 19.1b 30.2ab 29.0a 5.4c 11.5c CT 21.824.229.28.79.2Protease activity (mg tyrosine kg ?1h ?1)

ST 57.4a 44.8a 47.2a 39.7a 48.7a CT 51.948.245.743.545.8β-glucosidase activity (mg p -nitrophenol kg ?1h ?1)ST 174c 293a 204abc 191bc 224ab CT 234290304209272β-glucosaminidase activity (mg p -nitrophenol kg ?1h ?1)

ST 58.6ab

72.6ab

50.4b

56.9ab

63.4a

CT

55.6

52.2

51.3

51.9

64.8

Significant differences (P <0.05)between sampling dates are indicated with different letters.Italicized areas highlighting two values indicate significant differences between standard tillage (ST)and conservation tillage

(CT)

Fig.1Total soil C content (a )and soil microbial biomass N (b )as affected by tillage system,depth,and sampling date.ST =standard tillage;CT =conservation tillage.Data shown are means (n =3)±standard error of the means (SE)

were significant.On April 6and September 3,β-glucosidase activity was significantly increased in the CT soil,while,on May 15,β-glucosaminidase was higher in the ST soil.These two enzyme activities also changed significantly over time,while protease activity remained relatively constant (Table 2).The changes in enzyme activity with depth were similar for the three enzymes measured (Fig.2).In general,enzyme activities were highest in the top 5cm and decreased with depth.In the top 5cm of the profile,enzyme activities were higher under CT than ST,while in the 5–15-cm layer,the opposite trend was observed.In the 15–30-cm layer,the differences between tillage treatments were minimal.In contrast to N mic ,enzyme activities did not decrease in the top 5cm of the soil towards the end of the cropping season.The activity of the three enzymes per unit N mic was relatively stable from April to July with no clear trend related to depth or sampling date (data not shown).However,enzyme activity per unit N mic increased more than tenfold in the top 5cm in August and September,while the increase in the subsoil was less dramatic.The stratification ratio for all three enzymes was higher in the CT soil than in the ST soil at all sampling dates.The differences in the stratification ratio between tillage treatments for protease and β-glucosaminidase were only significant in April,while the differences in the β-glucosidase stratification ratio were significant at all sampling dates.The stratification ratio of β-glucosidase in the ST soil averaged 1.84over all sampling and was never above 2.0,while it averaged 5.39in the CT soil without any value below 5.0(Table 3).

Discussion

In general,5years of CT had little effect on the average soil C content and its distribution in the soil profile.Total soil C also changed little during the growing season,indicating that factors other than tillage had only small effects as well.Reduced tillage intensity has been found to increase soil

organic matter content (Logan et al.1991;Cannell and Hawes 1994)and to result in physically and chemically stratified soils,with more nutrients and organic matter localized near the surface (Hendrix et al.1986;West and Post 2002).The small effects in our study are most likely due to the short duration of the tillage experiment.

In contrast to total soil C,N mic fluctuated widely during the cropping season.Two factors,namely cover crop residue availability and soil moisture,appeared to be mainly responsible for these fluctuations in the size and distribution of N mic .The increase in N mic from May to July seems to be the result of the availability of C and nutrients from the cover crop residue.The incorporation of cover crop residue in the ST system had a positive effect on N mic in the 5–15-cm layer,while the residue,which was left on the surface in the CT system,increased N mic only in the top 5cm of the https://www.sodocs.net/doc/3010382789.html,ter in the season,N mic decreased in both tillage treatments,especially in the top 5cm.This is most likely due to the very low soil moisture content in this layer.At a location with similar soil type and management systems,Gunapala and Scow (1998)also found a signifi-cant and positive correlation between soil moisture and the size of the microbial biomass across different farming systems.These results are in agreement with Staley et al.(1988),who reported a significant effect of soil moisture on C mic in the surface soil layer.In addition to the temporal fluctuations,the spatial variability in N mic was also large.Under the conditions of the present study,N mic was therefore too sensitive to environmental factors to be a useful indicator of tillage-induced changes in soil quality.Different soil enzyme activities have been found to be sensitive indicators of tillage-induced changes in soil quality (Dick 1994;Ekenler and Tabatabai 2003a ,b ).In our study,soil enzyme activities were generally more sensitive to tillage-induced effects than total soil C and were less affected by environmental factors,especially the dry topsoil later in the season,than was N mic .During the first half of the growing season,the distribution of enzyme activities in the soil profile resembled the distribution of

Soil property

Tillage

Date 04/06

05/1407/0208/0309/03Total soil C ST 1.20a 1.25a 1.43a 1.35a

1.31a CT 1.60 1.46 1.50 1.44 1.46N mic

ST 1.17a 1.44a 1.58a bd 0.33a CT 1.96 5.01 1.000.70 1.72Protease activity ST 0.99a 2.52a 0.53a 1.83a 1.13a CT 2.25 5.29 2.65 1.89 1.98β-glucosidase activity ST 1.88a 1.79a 1.92a 1.75a 1.86a CT 5.04 5.74 5.50 5.46 5.19β-glucosaminidase activity

ST 1.13a

1.19a

1.74a

1.60a

1.44a

CT

2.91

2.09

2.24

1.71

2.99

Table 3Stratification ratios for soil C,microbial biomass N (N mic ),and activity of protease,β-glucosidase,and β-glucosaminidase

Significant differences (P <0.05)between sampling dates are indicated with different letters.Italicized areas highlighting two values indicate significant differences between standard tillage (ST)and conservation tillage (CT)

bd N mic in the top 5cm below detection limit

total soil C and N mic .This is in line with a number of studies which reported strong correlations between enzyme activities on one hand and N mic (Doran 1980;Madejón et al.2007)and soil organic C on the other hand (Dick 1984;Deng and Tabatabai 1996;Acosta-Martínez et al.2003)and shows that enzymes are mainly produced by soil micro-organisms to degrade available substrates.

During the second half of the season,enzyme activities were much less affected by the dry top soil than N mic ,which resulted in a considerable increase in enzyme activity per unit N mic .Extracellular enzymes may have been stabilized and protected by soil colloids (Burns 1982).Therefore,the elevated levels of enzyme activity in the dry soil may have been the result of low degradation rates of enzymes produced earlier in the season and not of continuous production.

While the differences in enzyme activities between tillage systems were larger than for total soil C,the higher variability of the data prevented most of the observed differences in protease and β-glucosaminidase activity from being significant.An exception was β-glucosidase activity.While the fluctuations in total β-glucosidase activity in the top 30cm of the soil profile during the season were similar to the other

enzyme

Fig.2Activity of protease (a ),β-glucosidase (b ),and β-glucosaminidase (c )as affected by tillage system,depth,and sampling date.ST =standard tillage;CT =conservation tillage.Data shown are means (n =3)±SE

activities,the stratification ratio was remarkably constant and significantly increased in the CT soil compared to the ST soil at all sampling dates.Other studies have also foundβ-glucosidase activity to be increased by reduced tillage.However,β-glucosidase activity did not appear to be more sensitive to tillage-induced changes in soil quality than other enzyme activities in these studies (Deng and Tabatabai1996;Curci et al.1997;Alvear et al. 2005;Roldán et al.2005;Madejón et al.2007).Therefore, our result may be site specific.

Conclusions

Under the conditions of our study,enzyme activities,but not N mic,were more sensitive to tillage-induced changes than total soil C.Therefore,hypothesis1was only supported with respect to enzyme activities.In line with hypothesis2,both enzyme activities and N mic were much more affected by environmental factors than total soil C, resulting in a larger spatial and temporal https://www.sodocs.net/doc/3010382789.html,ing the stratification ratio instead of the average values reduced some of the variability in enzyme activities but not in N mic (hypothesis3).However,only the stratification ratio forβ-glucosidase activity resulted in significant differences between tillage treatments at each sampling date.Therefore, in studies with small tillage-induced effects,enzyme activities from a single sampling date have to be interpreted with caution,as the differences observed may not be solely caused by the tillage treatments imposed. Acknowledgement We would like to thank Israel Herrera and Dennis Bryant for their support with field operations and Timothy Doane and Patricia Lazicki for their help with laboratory procedures. We also thank Randy Dahlgren,Kate Scow,the editor-in-chief,Paolo Nannipieri,and three anonymous reviewers for valuable suggestions on the manuscript.This research was in part supported by a research award from the UC Davis Agricultural Sustainability Institute. Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which per-mits any noncommercial use,distribution,and reproduction in any medium,provided the original author(s)and source are credited.

References

Acosta-Martínez V,Zobeck TM,Gill TE,Kennedy AC(2003) Enzyme activities and microbial community structure in semiarid agricultural soils.Biol Fertil Soils38:216–227

Alvear M,Rosas A,Rouanet JL,Borie F(2005)Effects of three soil tillage systems on some biological activities in an ultisol form southern Chile.Soil Tillage Res82:195–202

Bandick AK,Dick RP(1999)Field management effects on soil enzyme activities.Soil Biol Biochem31:1471–1479 Bausenwein U,Gattinger A,Langer U,Embacher A,Hartmann HP, Sommer M,Munch JC,Schloter M(2008)Exploring soil

microbial communities and soil organic matter:variability and interactions in arable soils under minimum tillage practice.Appl Soil Ecol40:67–77

Burns RG(1982)Enzyme activity in soil:location and a possible role in microbial ecology.Soil Biol Biochem14:423–427

Cabrera ML,Beare MH(1993)Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts.Soil Sci Soc Am J57:1007–1012

Cannell RQ,Hawes JD(1994)Trends in tillage practices in relation to sustainable crop production with special reference to temperate climates.Soil Tillage Res30:245–282

Curci M,Pizzigallo MDR,Crecchio C,Mininni R,Ruggiero P(1997) Effects of conventional tillage on biochemical properties of soils.

Biol Fertil Soils25:1–6

Deng SP,Tabatabai MA(1996)Effect of tillage and residue management on enzyme activities in soils II.Glycosidases.Biol Fertil Soils22:208–213

Denison FD,Bryant DC,Kearney TE(2004)Crop yields over the first nine years of LTRAS,a long-term comparison of field crop systems in a Mediterranean climate.Field Crops Res86:267–277

Dick WA(1984)Influence of long-term tillage and crop rotation combinations on soil enzyme activities.Soil Sci Soc Am J 48:569–574

Dick RP(1992)A review:long-term effects of agricultural systems on soil biochemical and microbial parameters.Agric Ecosys Environ 40:25–36

Dick RP(1994)Soil enzyme activities as indicators of soil quality.In: Doran JW,Coleman DC,Bezdicek DF,Stewart BA(eds) Defining soil quality for a sustainable environment.Soil Science Society of America,Madison,pp107–124

Dilly O,Blume HP,Munch JC(2003)Soil microbial activities in Luvisols and Anthrosols during9years of region-typical tillage and fertilization practices in northern Germany.Biogeochemistry 65:319–339

Doane TA,Horwath WR(2003)Spectrophotometric determination of nitrate with a single reagent.Anal Lett36:2713–2722

Doran JW(1980)Soil microbial and biochemical changes associated with reduced tillage.Soil Sci Soc Am J44:765–771

Ekenler M,Tabatabai MA(2003a)Tillage and residue management effects onβ-glucosaminidase activity in soils.Soil Biol Biochem 35:871–874

Ekenler M,Tabatabai MA(2003b)Effects of liming and tillage systems on microbial biomass and glycosidases in soils.Biol Fertil Soils39:51–61

Franzluebbers AJ(2002)Soil organic matter stratification ratio as an indicator of soil quality.Soil Tillage Res66:95–106 Franzluebbers AJ,Hons FM,Zuberer DA(1994)Seasonal changes in soil microbial biomass and mineralizable C and N in wheat management systems.Soil Biol Biochem26:1469–1475

Gee GW,Bauder JW(1986)Particle-size analysis.In:Klute A(ed) Methods of soil analysis.Part 1.Physical and mineralogical methods.American Society of Agronomy.Soil Science Society of America,Madison,pp383–411

Gunapala N,Scow KM(1998)Dynamics of soil microbial biomass and activity in conventional and organic farming systems.Soil Biol Biochem30:805–816

Hendrix PF,Parmelee RW,Crossley DA,Coleman DC,Odum EP, Groffman PM(1986)Detritus food webs in conventional and no-till agroecosystems.BioScience36:374–380

Horwath WR,Paul EA(1994)Microbial biomass.In:Weaver RW,Angle S,Bottomley P,Bezdiecek D(eds)Methods of soil analysis.Part 2.Microbiological and biochemical properties.Soil Science Society of America,Madison,pp 753–773

Kandeler E,Tscherko D,Spiegel H(1999)Long-term monitoring of microbial biomass,N mineralisation and enzyme activities of a Chernozem under different tillage managements.Biol Fertil Soils 28:343–351

Karlen DL,Wollenhaupt NC,Erbach DC,Berry EC,Swan JB,Eash NS,Jordahl JL(1994)Long-term tillage effects on soil quality.

Soil Tillage Res32:313–327

Ladd JN,Butler JHA(1972)Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates.Soil Biol Biochem4:19–30

Littell RC,Milliken GA,Stroup WW,Wolfinger RD,Schabenberger O(2006)SAS for mixed models.SAS Institute,Cary

Logan TJ,Lal R,Dick WA(1991)Tillage systems and soil properties in North America.Soil Tillage Res20:241–270

Madejón E,Moreno F,Murillo JM,Pelegrín F(2007)Soil biochemical response to long-term conservation tillage under semi-arid Mediterranean conditions.Soil Tillage Res94:346–352

Omidi H,Tahmasebi Z,Torabi H,Miransari M(2008)Soil enzymatic activities and available P and Zn as affected by tillage practices, canola(Brassica napus L.)cultivars and planting dates.Eur J Soil Biol44:443–450Parham JA,Deng SP(2000)Detection,quantification and character-ization ofβ-glucosaminidase activity in soil.Soil Biol Biochem 32:1183–1190

Roldán A,Salinas-García JR,Alguacil MM,Díaz E,Caravaca F (2005)Soil enzyme activities suggest advantages of conservation tillage practices in sorghum cultivation under subtropical con-ditions.Geoderma129:178–185

SAS Institute(1990)SAS/STAT user’s guide,version6.SAS Institute, Cary

Soil Survey Staff(1997)Official Soil Series Descriptions.http://soils.

https://www.sodocs.net/doc/3010382789.html,/technical/classification/osd/index.html.Accessed23 Oct2007

Staley TE,Edwards WM,Scott CL,Owens LB(1988)Soil microbial biomass and organic component alterations in a no-tillage chronosequence.Soil Sci Soc Am J52:998–1005

Tabatabai MA(1994)Soil enzymes.In:Weaver RW,Angle S, Bottomley P,Bezdiecek D(eds)Methods of soil analysis.Part

2.Microbiological and biochemical properties.Soil Science

Society of America,Madison,pp775–833

West TO,Post WM(2002)Soil organic carbon sequestration rates by tillage and crop rotation:a global data analysis.Soil Sci Soc Am J66:1930–1946

【操作系统】Windows XP sp3 VOL 微软官方原版XP镜像

操作系统】Windows XP sp3 VOL 微软官方原版XP镜像◆ 相关介绍: 这是微软官方发布的,正版Windows XP sp3系统。 VOL是Volume Licensing for Organizations 的简称,中文即“团体批量许可证”。根据这个许可,当企业或者政府需要大量购买微软操作系统时可以获得优惠。这种产品的光盘卷标带有"VOL"字样,就取 "Volume"前3个字母,以表明是批量。这种版本根据购买数量等又细分为“开放式许可证”(Open License)、“选择式许可证(Select License)”、“企业协议(Enterprise Agreement)”、“学术教育许可证(Academic Volume Licensing)”等5种版本。根据VOL计划规定, VOL产品是不需要激活的。 ◆ 特点: 1. 无须任何破解即可自行激活,100% 通过微软正版验证。 2. 微软官方原版XP镜像,系统更稳定可靠。 ◆ 与Ghost XP的不同: 1. Ghost XP是利用Ghost程序,系统还原安装的XP操作系统。 2. 该正版系统,安装难度比较大。建议对系统安装比较了解的人使用。 3. 因为是官方原版,因此系统无优化、精简和任何第三方软件。 4. 因为是官方原版,因此系统不附带主板芯片主、显卡、声卡等任何硬件驱动程序,需要用户自行安装。 5. 因为是官方原版,因此系统不附带微软后续发布的任何XP系统补丁文件,需要用户自行安装。 6. 安装过程需要有人看守,进行实时操作,无法像Ghost XP一样实现一键安装。 7. 原版系统的“我的文档”是在C盘根目录下。安装前请注意数据备份。 8. 系统安装结束后,相比于Ghost XP系统,开机时间可能稍慢。 9. 安装大约需要20分钟左右的时间。 10. 如果你喜欢Ghost XP系统的安装方式,那么不建议您安装该系统。 11. 请刻盘安装,该镜像用虚拟光驱安装可能出现失败。 12. 安装前,请先记录下安装密钥,以便安装过程中要求输入时措手不及,造成安装中断。 ◆ 系统信息:

物流商零担中转操作教程

物流商零担中转操作教程 Prepared on 22 November 2020

物流商零担中转操作教程物流商-零担中转 注:在客户使用物流商的零担中转模块之前,会出现两种情况:第一种为托运方(发货方)未使用八万物流在线平台;第二种为托运方(发货方)已经使用八万物流在线平台,并且在平台上发了一笔单据给物流商进行零担中转。在以下的流程中会分别对两种情况的操作进行介绍: 1、托运方(发货方)未使用八万物流在线平台。 步骤一:物流商在登录进平台后,点击进入平台的收货管理-零担收货清单模块。 步骤二:点击收货管理-零担收货清单模块的新增承运单按钮。 步骤三:根据托运方留下的物流信息,填写收货凭证,把物流信息录入平台。 1、填写终到站信息,省-市-区/县 2、点击查看按钮,填写托运方信息 3、填写未注册公司信息,并点击保存按钮 4、点击查看按钮,填写提货方信息 5、若提货方未使用平台,填写未注册公司信息,并点击保存按钮;若使用了平台,可通过手机号码搜索到该公司,点击选定按钮 6、填写货物信息 7、填写费用信息,结算方式可供选择 8、填写其他注意事项 步骤四:单据填写完整后,点击保存按钮,保存单据。 步骤五:系统自动跳转至零担收货清单界面,这笔单据已经保存在零担收货系统的清单中,物流状态为:新增单。 步骤六:在零担收货系统的清单中,找到需要中转的单据,点击详单按钮查看收货凭证。 步骤七:在承运收货凭证中,点击增至零担中转按钮。 步骤八:点击进入平台的发货管理-零担中转模块。 步骤九:点击发货管理-零担中转模块的待托运中转按钮,进入托运发货清单。 步骤十:找到需要中转的单据,此时物流状态为待中转,点击详单按钮查看托运发货凭证。 步骤十一:托运发货凭证中核对物流信息,点击查看按钮选择所要中转的物流公司。 步骤十二:中转的物流公司若未使用平台,就填写未注册公司信息并点击白色保存按钮;若使用了平台,可以根据对方手机号码搜索到该物流公司并直接进行选定。 步骤十三:完成中转物流公司的选定后,点击零担中转按钮,进行中转。 步骤十四:点击确定按钮。 步骤十五:单据自动跳转到物流商的发货管理-零担中转模块下的待验货收货中,在托运发货清单里,可以看到需要中转的单据,点击详单按钮可以查看托运发货凭证,此时单据物流状态为待收货 步骤十六:选择的中转物流公司在平台上对中转的单据进行收货操作后,单据会自动跳转至物流商的发货管理-零担中转模块下的发货完成中,在其托运发货清单中有详细记录,此时物流状态为已完成,物流商的零担中转操作完成。 2、托运方(发货方)已经使用八万物流在线平台,并且在平台上发了一笔单据给物流商进行零担中转。 步骤一:物流商在登录进平台后,点击进入平台的收货管理-零担收货清单模块。 步骤二:点击收货管理-零担收货清单模块的待验货收货按钮,进入承运验货收货清单。 步骤三:查询到托运方需要进行零担中转的单据,此时物流状态为待收货,点击收货按钮。 步骤四:进行确认收货。

Windows7 SP1官方原版下载

Windows7 SP1官方原版 以下所有版本都为Windows7 SP1官方原版,请大家放心下载! 32位与64位操作系统的选择:https://www.sodocs.net/doc/3010382789.html,/Win7News/6394.html 最简单的硬盘安装方法:https://www.sodocs.net/doc/3010382789.html,/thread-25503-1-1.html 推荐大家下载旗舰版,下载后将sources/ei.cfg删除即可安装所有版本,比如旗舰,专业,家庭版。 ============================================ Windows 7 SP1旗舰版中文版32位: 文件cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso SHA1:B92119F5B732ECE1C0850EDA30134536E18CCCE7 ISO/CRC:76101970 cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso.torrent(99.63 KB, 下载次数: 326189) Windows 7 SP1旗舰版中文版64位: 文件cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso SHA1: 2CE0B2DB34D76ED3F697CE148CB7594432405E23 ISO/CRC: 69F54CA4 cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso.torrent(128.17 KB, 下载次数: 197053)

现代物流管理基础教学大纲

现代物流管理基础教学 大纲 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

教学大纲 课程:现代物流管理基础适用专业:物流管理 系部:工商管理系 2011 年 8 月 19 日 课程教学大纲审核表

《现代物流管理基础》教学大纲 课程代码:030418 学时:52学时 学分:4学分 课程类别:专业课 一、课程的性质与任务 课程的性质:现代物流管理基础是物流管理专业的一门基础专业课。对掌握专业物流知识,了解专业物流公司的经营与管理至关重要,也为学 习其他专业课打下了良好基础。 课程的任务:本课程的任务是掌握有关物流的基本概念, 物流系统所涉及的各种要素,物流信息技术及系统和有关供应链管理知识等。 前导课程:商品学 后续课程:采购与供应管理,运输管理实务,仓储与配送管理,物流管理信息系统,第三方物流,企业物流管理,国际贸易,报关与报检实务等 二、教学基本要求 知识要求:要求学生掌握有关物流的基本概念,物流系统的基本要素,发展现状,将来的趋势等。 能力要求:要求学生能有物流的基本概念,达到一定的物流理论水平,还要具备一定的实践操作能力,尤其是动手能力。 道德要求:具备一定的职业素养,具有爱岗敬业,无私奉献,明礼诚信等素质。 三、教学条件 要求学校要有实习实训基地,同时与企业要有合作和来往,经常可以带学生去企业考察和学习,让学生感受到理论与实践的差距所在。 四、教学内容及学时安排 (一)教学内容 模块一物流管理基本概念 任务一什么是物流、物流管理 任务二什么是物流系统

模块二包装 任务一何谓包装及包装地位 任务二包装材料 任务三常见包装技术 模块三运输 任务一运输的地位 任务二运输方式 任务三运输线路设计 模块四仓储 任务一何谓仓储及仓储地位 任务二仓储作业管理----ABC分类管理法、入库、盘点、出库作业 模块五装卸搬运 任务一装卸搬运概述 任务二装卸搬运合理化 模块六流通加工 任务一流通加工概述 任务二主要的流通加工类型 任务三流通加工合理化 模块七配送 任务一配送概述 任务二配送业务流程 模块八物流信息 任务一物流信息概述 任务二物流信息技术及应用 (二)基本要求 本课程要求学生掌握物流的有关基本概念,物流系统的构成,物流系统各构成要素,供应链物流等。 (三)实验(上机、习题课或讨论课)内容和基本要求 学生在本课程的学习中应在课外进行一定量的阅读、复习和练习, 进一步消化吸收课堂教学内容和掌握分析方法。讨论课中要求学生通过查找有关物流的最新发展动态, 并结合课堂上所学的内容对新发展做出自己的理解。 五、各教学环节学时分配

Microsoft 微软官方原版(正版)系统大全

Microsoft 微软官方原版(正版)系统大全 微软原版Windows 98 Second Edition 简体中文版 https://www.sodocs.net/doc/3010382789.html,/viewthread.php?tid=16446&page=1&extra=#pid125031 微软原版Windows Me 简体中文版 https://www.sodocs.net/doc/3010382789.html,/viewthread.php?tid=16448&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows 2000 Professional 简体中文版 https://www.sodocs.net/doc/3010382789.html,/viewthread.php?tid=16447&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows XP Professional SP3 简体中文版 https://www.sodocs.net/doc/3010382789.html,/viewthread.php?tid=16449&page=1&extra=#pid125073微软原版Windows XP Media Center Edition 2005 简体中文版 https://www.sodocs.net/doc/3010382789.html,/viewthread.php?tid=16451&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows XP Tablet PC Edition 2005 简体中文版 https://www.sodocs.net/doc/3010382789.html,/viewthread.php?tid=16450&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Server 2003 R2 Enterprise Edition SP2 简体中文版(32位) https://www.sodocs.net/doc/3010382789.html,/viewthread.php?tid=16452&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Server 2003 R2 Enterprise Edition SP2 简体中文版(64位) https://www.sodocs.net/doc/3010382789.html,/viewthread.php?tid=16453&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Vista 简体中文版(32位) https://www.sodocs.net/doc/3010382789.html,/viewthread.php?tid=16454&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Vista 简体中文版(64位) https://www.sodocs.net/doc/3010382789.html,/viewthread.php?tid=16455&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows7 SP1 各版本下载地址: https://www.sodocs.net/doc/3010382789.html,/viewthread.php?tid=12387&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 Datacenter Enterprise and Standard 简体中文版(32位) https://www.sodocs.net/doc/3010382789.html,/viewthread.php?tid=16457&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 Datacenter Enterprise and Standard 简体中文版(64位) https://www.sodocs.net/doc/3010382789.html,/viewthread.php?tid=16458&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 R2 S E D and Web 简体中文版(64位) https://www.sodocs.net/doc/3010382789.html,/viewthread.php?tid=16459&highlight=%CE%A2%C8%ED%D4%AD %B0%E6

物流运输公司数据库设计

物流运输公司数据库设 计 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

内蒙古科技大学 本科生课程设计论文 题目:物流运输公司数据库设计 学生姓名: 学号: 专业:计算机 班级:13级4班 指导教师: 2015 年 12 月 30 日

内蒙古科技大学课程设计任务书

摘要 随着时间的推移,数据库在各个领域都被广泛的运用。数据库技术已经成为现代信息技术的重要组成部分,是现代计算机信息系统和计算机应用系统的基础和核心。 我所做的是物流运输公司物数据库设计,目的是为了让物流运输公司更好的实行自动化管理,减少了投入的人力、精力,能让数据存储在计算机内,能够有组织的,统一管理公司的业务。我利用课本中的知识,通过需求分析,概念设计,逻辑设计,及数据库的实施和运行等阶段,为物流运输公司设计了一个小型数据库。 关键词:SQL SERVER;数据库设计;物流运输公司 目录

前言 这次课程设计就是对本学期所学的《数据库原理及应用》及《SQL server 从零开始学》的实践,这两门课既有较强的理论性,又有较强的实践性的专业基础课程,需要把理论知识和实际应用紧密结合起来。我的课设题目是“物流运输公司数据库设计”,通过对物流公司内部管理来实现数据库的功能。 这学期学习完数据库的理论知识,又学习了SQL语言的运用,最后用自己的电脑实践,用“物流运输公司数据库设计”来举例用理论来联系实践,了解并

掌握了数据库管理系统的基本原理和数据库系统设计的方法,培养了我应用及设计数据库的能力。 通过亲身实践,我了解物流管理的结构,需要了解客户、公司、货物之间的关系,首先,它们被输入到数据库后,能够查询,修改和删除,然后通过建立键的关系,来建立表的联系,然后通过需求分析,了解了需求分析的过程和目的,建立数据字典,概念设计阶段要完成数据抽象与局部视图设计以及视图的集成。逻辑结构设计阶段要把E-R图转化为关系模式。最后是数据库的实施和运行。 第一章:系统分析及设计 主要的需求 物流运输公司A需要建立一个管理数据库存储以下信息: 1.物流运输公司A中主要的实体有员工、订单、运单、车辆、客户。 2.物流运输公司A有多名负责的不同工作的员工:货运员工和维修员工。 3.每一笔订单包含订单编号、货物名称、送货日期、货物数量、客户编号。 4.每一笔运单包含运单编号、订单编号、出车司机、签收日期、出车日期、回车日期。 5.物流运输公司A还会为客户建立客户表,客户表包含客户编号、客户名称、客户性别、客户地址、联系电话。 6.物流运输公司A会建立一个车辆表,包含:车辆编号、车牌号、车辆型号、最大载重、购买金钱。 7.对于维修的车辆,还会建立一个维修记录表,记录维修编号、维修车牌号、开始维修时间、结束维修时间、维修费用、维修地点。 数据库的E-R图 实体E-R模型设计 1.客户E-R模型如图所示。 图客户E-R模型 2.车辆E-R模型如图所示。 图车辆E-R模型 3.订单信息E-R模型如图所示 图订单信息E-R模型 4.运单信息E-R模型如图所示。

蓝桥ERP物流管理软件操作教程

蓝桥E R P物流管理软 件操作教程 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

蓝桥物流系统操作方法和岗位职责 一、开单文员岗位职责注意事项: 1、输入单据时要用输入法半角状态输入, 进入系统点营运中心选开单如下图 2、新增,录入相关信息 2、正确输入托运单相关项目(发货人、收货人、收货人电话、发货人电话,运费等)如上图。要签回单,一定在回单要求里面注明份数,然后按F9打印。 3、中转货物一定填经由地,否则到站接收后看到这票货。 二、配载文员岗位职责和注意事项: 1、短途接驳, 在营运中心点短途接如下图 点新增调出库存如下图 双击移出要短驳的单到右边,移完要驳的单,点击填写车辆等信息并完成我,如下图 填写相关车辆信息并点击完成 2、短驳接收 在营运中心点短途接驳,按时间提取短驳的车辆,找到其它公司驳过来的车辆,选定,双击打开,点接收本车就可以了,如下图。 3、分配配载 点开营中心,选分单配载如下图 点击新增并调出库存,并将要发车的移到右边如下图 点击填写车辆等,并填写相关信息(车牌,长途车运费,到站等信息) 提取已配载好的车,然后打印清单

注意,如果发现漏装可以点淌有库存进补装去,如装错了选择单票剔除,如果取消,就点整车做废.完全无娱就点完成本车,这样到站就可以到货确认那里相关车辆,如果不点,到站就在到货确认里面看不到这辆车。 三、货物分流文员岗位职责和注意事项 1、到货接收 在营运中心点到货确认 然后确认到货车辆,也可以查看到货清单。 2、异常登记,在车辆到达仓库在卸货过程发现异常情况(如:少货,多货,破损等情况)都进行登 记。在营运中心点异常登记,点新增就会出现一个填写界面,如下图,注明红圈的为必填项目。 3、到货库存查询,在营运中心点到货库存,按时间,发站提取库存数来掌握仓库现在有多少货未分 流。 4、到货通知 在营运中心点到货通知 按时间提未通知的单据,然后在电话一栏中选已通知,并点通知保存。 5、客户提货 在营运中心中点击客户提货如下图 将客提走的移到右边,并点确认,填提货人相关信息,并战 6、送货上门 在营运中心点送货上门,然后点安排送货,将要送货单,移到右边,并点送货车辆,输入送货信息。如下图: 7、中转货物分流(终端代理) 在营运中心点,终端代理如下图

windows正版系统+正版密钥

精心整理正版Windows系统下载+正版密钥 2010-05-3011:49 喜欢正版Windows系统 这是我收集N天后的成果,正版的Windows系统真的很好用,支持正版!大家可以用激活工 具激活!现将本收集的下载地址发布出来,希望大家多多支持! Windows98第二版(简体中文) 安装序列号:Q99JQ-HVJYX-PGYCY-68GM3-WXT68 安装序列号:Q4G74-6RX2W-MWJVB-HPXHX-HBBXJ 安装序列号:QY7TT-VJ7VG-7QPHY-QXHD3-B838Q WindowsMillenniumEdition(WindowME)(简体中文) 安装序列号:HJPFQ-KXW9C-D7BRJ-JCGB7-Q2DRJ 安装序列号:B6BYC-6T7C3-4PXRW-2XKWB-GYV33 安装序列号:K9KDJ-3XPXY-92WFW-9Q26K-MVRK8 Windows2000PROSP4(简体中文) SerialNumber:XPwithsp3VOL微软原版(简体中文) 文件名:zh-hans_windows_xp_professional_with_service_pack_3_x86_cd_vl_x14-74070.iso 大小:字节 MD5:D142469D0C3953D8E4A6A490A58052EF52837F0F CRC32:FFFFFFFF 邮寄日期(UTC):5/2/200812:05:18XPprowithsp3VOL微软原版(简体中文)正版密钥: MRX3F-47B9T-2487J-KWKMF-RPWBY(工行版)(强推此号!!!) QC986-27D34-6M3TY-JJXP9-TBGMD(台湾交大学生版) QHYXK-JCJRX-XXY8Y-2KX2X-CCXGD(广州政府版)

{物流管理}第三方物流管理教程案例习题分册

(物流管理)第三方物流管理教程案例习题分册

第一章第三方物流概述案例与习题 案例l: 合理搭配客户,实现季节性互补效益 一家上海的民营物流公司在市区配送方面很有优势,一开始他们的客户都是大型的食品企业,这些企业都有一个特点,天气热的季节,食品销售进入淡季,而随着大气转凉,销售量逐渐回升,因此,物流活动也有明显的季节性,考虑到在天热时物流服务能力的闲置,该物流企业意识到应该选择一些在夏天进入销售旺季的产品,在经过市场调研后,他们确定了啤酒和饮料企业作为营销的主攻方向。由于这些啤酒和饮料企业正在为这种季节性波动造成的成本和管理问题发愁,双方一拍即合,很快签定了合同。 经过客户的合理搭配,该物流公司实现了全年物流业务量的相对稳定,取得了明显的经济效益。 (资料来源:郝聚民编著的《第三方物流》16页)思考题:这家物流公司如何进行客户运作整合?这种运作整合有什么价值? 案例简评:第三方物流整合运作所产生的规模经济效益是递增的,如果运作得好,将导致竞争优势及更大的客户基础这家民营物流公司将大型的食品企业与啤酒和饮料企业的物流业务整合,使得全年物流业务量的相对稳定,取得了明显的经济效益。 案例2: 冠生园集团物流外包 2

冠生园集团是国内惟一一家拥有“冠生园”、“大白兔”两个中国驰名商标的老字号食品集团。集团生产大白兔奶糖、蜂制品系列、酒、冷冻微波食品、面制品等食品,总计达到了2000多个品种,其中糖果销售额近4亿元人民币。近几年市场需求增大了,但运输配送跟不上。集团拥有的货运车辆近100辆,要承担上海市3000多家大小超市和门店的配送,还有北京、大原、深圳等地的货物运输。淡季运力空放,旺季忙不过来,每年维持车队运行的成本费用就达上百万元。 产品规格品种多、市场辐射面大,靠自己配送运输成本高、浪费大。为此,2002年初,冠生国集团下属合资企业达能饼干公司率先做出探索,将公司产品配送运输全部交给第三方物流。物流外包以后,不仅配送准时准点,而且费用要比自己做节省许多。达能公司把节约下来的资金投入到开发新产品与改进包装上,使企业又上了一个新台阶。为此,集团销售部门专门组织各企业到达能公司去学习,决定在集团系统推广它们的做法。经过选择比较,集团委托上海虹鑫物流有限公司作为第三方物流机构,搞“门对门”物流配送。 虹鑫物流与冠生国签约后,通过集约化配送,极大地提高了效率。每天一早,他们在电脑上输入冠生园相关的配送数据,制定出货最佳搭配装车作业图,安排准时、合理的车流路线。货物不管多少,就是两三箱也送。此外按照签约要求,遇到货物损坏,按规定赔偿。一次,整整一车糖果在运往河北途中翻入河中,物流公司掏出5万元,将掉

现代物流管理操作教程教材内容修订稿

现代物流管理操作教程 教材内容 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

第一章报关辅助管理 第一节报关单填制要求 本系统将以海关的H2000为标准来填制报关单,所以在操作过程中必须熟练掌握如下内容。 1.备案号:填写《加工贸易登记手册》、《免征税证明》或其他有关备案审批文件的编号。无备案审批文件的报 关单,本栏目免予填报。一份报关单只允许填报一个备案号。 2.进口日期/出口日期:进口日期与运载进口货物的运输工具申报进境的日期一致。出口日期仅在海关打印报关单 证明联时用,其与运载出口货物的运输工具办结出境手续的日期一致。预录入报关单、EDI报关时免于申报。 无实际进出境的报关单填报向海关申报的日期。标准格式为:YYYY/MM/DD。本系统显示格式为:。 3.申报日期:除特殊情况(如预报关或提前报关)外,进口货物申报日期不能早于进口日期,出口货物申报日期 不能晚于出口日期。标准格式为:YYYY/MM/DD。本系统显示格式为:。 4.经营单位:经营单位应符合a.对外签订并执行进出口贸易合同的单位;b.中国境内法人。填写方法是单位名称 +10位编码,缺一不可。 特殊情况下经营单位确定原则: 三资企业委托外贸公司进口投资设备物品的,经营单位填报外商投资企业,并在备注栏注明“委托某某公 司”进口; 援助、赠送、捐赠的货物,填报直接接受货物的单位。 进出口企业之间相互代理进出口,或没有进出口经营权的企业委托有进出口经营权的企业代理进出口的, 填报代理方。 合同的签订者和执行者不是同一企业的,按执行合同的企业填报。 对委托我驻港澳机构成交的货物,国内委托人为经营单位(中国境内法人)。如上海汽车进出口公司委托 香港大兴汽车进出口公司进口汽车,经营单位应填报上海汽车进出口公司。 5.运输工具名称:指载运货物进出境的运输工具的名称或运输工具编号。 海运货物:船名+“/”+航次 空运货物:航班号+进出境日期+“/”+总运单号 6.提运单号:指进出口货物提单或运单的编号。一份报关单只允许填报一个提运单号。进口提前报关本栏为空。 7.征免性质:指海关对进出口货物实施征、减、免税管理的性质类别。一份报关单只允许填报一种征免性质。加 工贸易结转货物本栏为空。 8.许可证号:一份报关单只允许填报一个许可证号,如一份报关单对应多个许可证号的必须拆单申报。 9.批准文号:进口报关单本栏填报《进口付汇核销单》编号。出口报关单本栏填报《出口收汇核销单》编号。进 口免填。 10.成交方式:进口按实际成交方式填报。出口填报FOB,若按CIF或CFR签订合同,在备注栏内注明合同价。无 实际进出境的,进口填报CIF价,出口填报FOB价。 11.装运港/指运港:装运港指进口货物在运抵我国关境前的最后一个境外装运港。指运港指出口货物运往境外的最 终目的港。无实际进出境的,填报“中国境内”。 12.收货单位/发货单位:收货单位即进口货物在境内的最终消费、使用单位。包括自行从境外进口货物的单位及委 托有外贸经营权的企业进口货物的单位。发货单位指出口货物在境内的生产或销售单位。包括自行出口货物的单位及委托有外贸经营权的企业出口的单位。 13.境内目的地/境内货源地:境内目的地指已知的进口货物在国内的消费、使用地或最终运抵地。境内货源地指出 口货物在国内的产地或原始发货地。 14.集装箱号:填报首个集装箱的箱号/规格/自重,其余填在唛头标记栏。非集装箱货物填报为0。如 TEXU360231/20/22000表示箱号为TEXU360231的20’的集装箱,自重为22000KGS。

windows系统官网原版下载

微软MSDN官方(简体)中文操作系统全下载 这不知是哪位大侠收集的,太全了,从DOS到Windows,从小型系统到大型系统,从桌面系统到专用服务器系统,从最初的Windows3.1到目前的Windows8,以及Windows2008,从16位到32位,再到64位系统,应有尽有。全部提供微软官方的校验文件,这些文件都可以在微软官方MSDN订阅中得到验证,完全正确! 下载链接电驴下载,可以使用用迅雷下载,建议还是使用电驴下载。你可以根据需要在下载链接那里找到你需要的文件进行下载!太强大了!!! 产品名称: Windows 3.1 (16-bit) 名称: Windows 3.1 (Simplified Chinese) 文件名: SC_Windows31.exe 文件大小: 8,472,384 SHA1: 65BC761CEFFD6280DA3F7677D6F3DDA2BAEC1E19 邮寄日期(UTC): 2001-03-06 19:19:00 ed2k://|file|SC_Windows31.exe|8472384|84037137FFF3932707F286EC852F2ABC|/ 产品名称: Windows 3.2 (16-bit) 名称: Windows 3.2.12 (Simplified Chinese) 文件名: SC_Windows32_12.exe 文件大小: 12,832,984 SHA1: 1D91AC9EB3CBC1F9C409CF891415BB71E8F594F7 邮寄日期(UTC): 2001-03-06 19:21:00 ed2k://|file|SC_Windows32_12.exe|12832984|A76EB68E35CD62F8B40ECD3E6F5E213F|/ 产品名称: Windows 3.2 (16-bit) 名称: Windows 3.2.144 (Simplified Chinese) 文件名: SC_Windows32_144.exe 文件大小: 12,835,440 SHA1: 363C2A9B8CAA2CC6798DAA80CC9217EF237FDD10 邮寄日期(UTC): 2001-03-06 19:21:00 ed2k://|file|SC_Windows32_144.exe|12835440|782F5AF8A1405D518C181F057FCC4287|/ 产品名称: Windows 98 名称: Windows 98 Second Edition (Simplified Chinese) 文件名: SC_WIN98SE.exe 文件大小: 278,540,368 SHA1: 9014AC7B67FC7697DEA597846F980DB9B3C43CD4 邮寄日期(UTC): 1999-11-04 00:45:00 ed2k://|file|SC_WIN98SE.exe|278540368|939909E688963174901F822123E55F7E|/ 产品名称: Windows Me 名称: Windows? Millennium Edition (Simplified Chinese) 文件名: SC_WINME.exe

物流商零担中转操作教程

物流商零担中转操作教程Newly compiled on November 23, 2020

物流商零担中转操作教程物流商-零担中转 注:在客户使用物流商的零担中转模块之前,会出现两种情况:第一种为托运方(发货方)未使用八万物流在线平台;第二种为托运方(发货方)已经使用八万物流在线平台,并且在平台上发了一笔单据给物流商进行零担中转。在以下的流程中会分别对两种情况的操作进行介绍: 1、托运方(发货方)未使用八万物流在线平台。 步骤一:物流商在登录进平台后,点击进入平台的收货管理-零担收货清单模块。 步骤二:点击收货管理-零担收货清单模块的新增承运单按钮。 步骤三:根据托运方留下的物流信息,填写收货凭证,把物流信息录入平台。 1、填写终到站信息,省-市-区/县 2、点击查看按钮,填写托运方信息 3、填写未注册公司信息,并点击保存按钮 4、点击查看按钮,填写提货方信息 5、若提货方未使用平台,填写未注册公司信息,并点击保存按钮;若使用了平台,可通过手机号码搜索到该公司,点击选定按钮 6、填写货物信息 7、填写费用信息,结算方式可供选择 8、填写其他注意事项 步骤四:单据填写完整后,点击保存按钮,保存单据。 步骤五:系统自动跳转至零担收货清单界面,这笔单据已经保存在零担收货系统的清单中,物流状态为:新增单。 步骤六:在零担收货系统的清单中,找到需要中转的单据,点击详单按钮查看收货凭证。 步骤七:在承运收货凭证中,点击增至零担中转按钮。 步骤八:点击进入平台的发货管理-零担中转模块。 步骤九:点击发货管理-零担中转模块的待托运中转按钮,进入托运发货清单。 步骤十:找到需要中转的单据,此时物流状态为待中转,点击详单按钮查看托运发货凭证。 步骤十一:托运发货凭证中核对物流信息,点击查看按钮选择所要中转的物流公司。 步骤十二:中转的物流公司若未使用平台,就填写未注册公司信息并点击白色保存按钮;若使用了平台,可以根据对方手机号码搜索到该物流公司并直接进行选定。 步骤十三:完成中转物流公司的选定后,点击零担中转按钮,进行中转。 步骤十四:点击确定按钮。 步骤十五:单据自动跳转到物流商的发货管理-零担中转模块下的待验货收货中,在托运发货清单里,可以看到需要中转的单据,点击详单按钮可以查看托运发货凭证,此时单据物流状态为待收货 步骤十六:选择的中转物流公司在平台上对中转的单据进行收货操作后,单据会自动跳转至物流商的发货管理-零担中转模块下的发货完成中,在其托运发货清单中有详细记录,此时物流状态为已完成,物流商的零担中转操作完成。 2、托运方(发货方)已经使用八万物流在线平台,并且在平台上发了一笔单据给物流商进行零担中转。 步骤一:物流商在登录进平台后,点击进入平台的收货管理-零担收货清单模块。 步骤二:点击收货管理-零担收货清单模块的待验货收货按钮,进入承运验货收货清单。 步骤三:查询到托运方需要进行零担中转的单据,此时物流状态为待收货,点击收货按钮。 步骤四:进行确认收货。

U623-现代物流管理教材中习题参考答案

现代物流管理教材中习题参考答案 第一章物流发展与物流职场分析 一、单项选择题 1.现代物流产生哪个国家()? A.美国 B.日本 C.德国 D.英国 答案:A 2.以下哪一项不是现代物流特征()。 A.系统化 B.成本最小化 C.一体化 D.网络化 答案:C 3.目前国际标准组织(ISO)制定的物流基础模数尺寸为()。A.600mm×400mm。 B.300mm×200mm C.500mm×400mm D.600mm×600mm 答案:A 4.客户企业进行物流战略规划和物流体系构建,要求提供()。A.一体化的物流服务和解决方案 B.稳定性的物流服务和解决方案C.最低成本的物流服务和解决方案 D.高效率的物流服务和解决方案答案:A 5.现代物流业需要的人才是()。 A.通用性物流人才 B.专业性物流人才 C.效率性物流人才 D.专业性物流人才和通用性物流人才 答案:D

二、多项选择题 1.物流管理的职能包括()。 A.计划 B.组织 C.领导 D.控制 E.安全 答案:ABCD 2.物流标准化管理包括()。 A.技术标准化 B.工作标准化 C.服务标准化 D.管理标准化 E.领导标准化 答案:ABD 3.物流服务归纳起来包含了三个要素()。 A.品质保证 B.技术保证 C.输送保证 D.信息保证 E.备货保证 答案:ACE 4.我国人力资源和社会保障部物流从业人员职业资格证书有()。 A.物流师 B.高级物流师 C.物流员 D.助理物流员 E.助理物流师 答案:ABCE 5.提升物流职业能力路径有()。 A.课程学习 B.仿真训练 C.社会实践 D.顶岗实习 E.毕业实习 答案:ABCDE 三、判断题 1.商流与物流合一效率更高。(X)

Windows7官方个版本正版镜像下载地址

Windows7官方个版本正版镜像下载地址 简体中文旗舰版: 32位:下载地址:ed2k://|file|cn_windows_7_ultimate_x86_dvd_x15-65907.iso|2604238848|D6F139D7A45E81B 76199DDCCDDC4B509|/ SHA1:B589336602E3B7E134E222ED47FC94938B04354F 64位:下载地址:ed2k://|file|cn_windows_7_ultimate_x64_dvd_x15-66043.iso|3341268992|7DD7FA757CE6D2D B78B6901F81A6907A|/ SHA1:4A98A2F1ED794425674D04A37B70B9763522B0D4 简体中文专业版: 32位:下载地址:ed2k://|file|cn_windows_7_professional_x86_dvd_x15-65790.iso|2604238848|e812fbe758f 05b485c5a858c22060785|h=S5RNBL5JL5NRC3YMLDWIO75YY3UP4ET5|/ SHA1:EBD595C3099CCF57C6FF53810F73339835CFBB9D 64位:下载地址:ed2k://|file|cn_windows_7_professional_x64_dvd_x15-65791.iso|3341268992|3474800521d 169fbf3f5e527cd835156|h=TIYH37L3PBVMNCLT2EX5CSSEGXY6M47W|/ SHA1:5669A51195CD79D73CD18161D51E7E8D43DF53D1 简体中文家庭高级版: 32位:下载地址:ed2k://|file|cn_windows_7_home_premium_x86_dvd_x15-65717.iso|2604238848|98e1eb474f9 2343b06737f227665df1c|h=GZ7FZE7XURI5HNO2L7H45AGWNOLRLRUR|/ SHA1:CBA410DB30FA1561F874E1CC155E575F4A836B37 64位:下载地址:ed2k://|file|cn_windows_7_home_premium_x64_dvd_x15-65718.iso|3341268992|9f976045631 a6a2162abe32fc77c8acc|h=QQZ3UEERJOWWUEXOFTTLWD4JNL4YDLC6|/ SHA1:5566AB6F40B0689702F02DE15804BEB32832D6A6 简体中文企业版: 32位:下载地址:ed2k://|file|cn_windows_7_enterprise_x86_dvd_x15-70737.iso|2465783808|41ABFA74E5735 3B2F35BC33E56BD5202|/ SHA1:50F2900D293C8DF63A9D23125AFEEA7662FF9E54 64位:下载地址:ed2k://|file|cn_windows_7_enterprise_x64_dvd_x15-70741.iso|3203516416|876DCF115C2EE 28D74B178BE1A84AB3B|/ SHA1:EE20DAF2CDEDD71C374E241340DEB651728A69C4

基本功能演示

第二章 软硬件基本功能演示 在详细学习每个部分之前,我们先通过一个实例来全程演示Quartus Ⅱ以及便携式EDA-Ⅰ实验平台的基本功能及实验流程,帮助大家提升学习兴趣。 选择4位的3选1多路选择器为例,利用Quartus Ⅱ完成基于VHDL 语言输入的工程设计过程, 包括创建工程文件、VHDL 程序输入、编译综合、波形仿真验证、管脚分配以及下载等。 实例原理介绍:3选1多路选择器是通过控制电路实现三路四位数据的选择输出显示,sel 作为选择信号,d0,d1,d2 sel=“01”时选择选择d1,其他情况选择d2。 1、 创建工程文件 Quartus Ⅱ软件的工程文件是指所有的设计文件、软件源文件和完成其他操作所需的相关文件的总称。 双击Quartus Ⅱ软件图标,进入如下界面: 图2.1 Quartus Ⅱ软件界面 选择左上角的File —>New Project Wizard ,打开新建工程向导。

点击页面下方的next,进入新建工程向导。 图 2.2 新建工程向导第1页 在下图2.1.2的对话框,分别按照提示输入新建工程所在位置、工程名称(mux3_1)和顶层实体名称(mux3_1)。注意:默认工程名与顶层实体名一致。 图 2.3 新建工程向导第2页 完成后点击“Next”按钮,进入下一步,在图示2.4新建工程向导第3页中可以添加工程所需的源文件以及设置用户库。

图 2.4 新建工程向导第3页 这一步一般直接点击“Next”跳过,进入下一步,选择目标器件。在“Family”下拉列表中选择器件系列为Flex10K,在Target device选项中选中Specific device selected in ‘Available devices’list,依据实验平台的型号,确定器件型号Available device 为。 图 2.5 新建工程向导第4页

Demo功能演示场景

一平台功能简单介绍1 数据采集和传输 1、GIS地图 2、道路监控点位管理 3、中转服务器管理配置 4、实时监控 5、卡口数据库 6、黑名单库 7、套牌车库 8、车管库接入 9、违章库接入 10、盗抢库接入 11、犯罪人员库接入 2 数据分析挖掘 1、数据和视频查询 2、轨迹分析 3、轨迹跟踪 4、分析研判 5、视频图像处理 3联网布控报警 1、联网布控 2、实时报警 4调度指挥 1、GPS定位 2、围堵预案 3、短信平台 4、第三方系统联动接口 5资源共享 1、基础数据同步接口 2、第三方系统数据接口 3、时钟系统接口 6设备维护管理

1、系统巡检 2、设备状态管理 3、维护调度系统接口 4、系统运行日志 二业务应用场景 场景1: 某街道附近连续发生团伙案件,结合目击者报告,犯罪团伙乘坐一辆小型车进行犯罪,公安干警希望了解当时附近道路监控点的记录。 平台操作1: 在GIS地图上标注出几次发生案件的地点; 在GIS地图上标出以各犯罪地点为圆心,周边500米内的道路监控点; 从中选择嫌疑车辆可能经过的若干个卡口; 对各标出的道路监控点进行单独点击查询演示;(犯罪事件前后30分钟过车信息犯罪事件前后30分钟视频文件信息,道路监控点三维场景演示) 场景2: 公安干警希望得到几次犯罪时间在几个道路监控点的均出现的车辆信息,并结合各种线索缩小侦查范围。 平台操作2: 在GIS上选定的几个道路监控点进行联合查询,条件为几次犯罪时间前后,在其中任一个道路监控点出现过的车辆信息; 将得到的车辆信息列表分别和车管库,盗抢库,犯罪人员信息库相关联进行搜索,检查其中是否有车主是有前科人员,是否有车辆属于盗抢车辆,如果有,都属于嫌疑更大的目标; 根据以上查询缩小查询范围以后,得到10辆以下的车辆信息,对此批车辆进行轨迹分析,排除不可能的车辆,进一步缩小范围; 场景3: 公安干警对嫌疑车辆进行布控,设置围堵预案。 平台操作3: 对最终的3~5辆车,在GIS上进行布控操作; 在GIS上,对嫌疑车辆设置围堵预案; 场景4: 平台道路监控点发现嫌疑车辆,进行报警,公安干警根据设置的围堵预案在前方拦截,抓获嫌疑车辆。 平台操作3: 在GIS上弹出报警窗口和报警监控点位置,点击弹出报警信息和车辆图片; 在GIS上,根据报警监控点位置激发相应围堵预案,使用短信平台通知一线干警进行围堵; 在GIS上,根据GPS信息实时显示围堵警车的轨迹,根据各卡点信息显示嫌疑车辆

相关主题